Annotate modular simulator headers with exposure level
[gromacs.git] / src / gromacs / modularsimulator / statepropagatordata.h
blob72848a2b93e57e6aa3e8224af77c2079a95ad8a3
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2019,2020, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
35 /*! \internal \file
36 * \brief Declares the state for the modular simulator
38 * \author Pascal Merz <pascal.merz@me.com>
39 * \ingroup module_modularsimulator
41 * This header is only used within the modular simulator module
44 #ifndef GMX_MODULARSIMULATOR_STATEPROPAGATORDATA_H
45 #define GMX_MODULARSIMULATOR_STATEPROPAGATORDATA_H
47 #include "gromacs/gpu_utils/hostallocator.h"
48 #include "gromacs/math/paddedvector.h"
49 #include "gromacs/math/vectypes.h"
51 #include "modularsimulatorinterfaces.h"
52 #include "topologyholder.h"
54 struct gmx_mdoutf;
55 enum class PbcType : int;
56 struct t_commrec;
57 struct t_inputrec;
58 class t_state;
59 struct t_mdatoms;
61 namespace gmx
63 enum class ConstraintVariable;
64 class FreeEnergyPerturbationElement;
66 /*! \internal
67 * \ingroup module_modularsimulator
68 * \brief StatePropagatorData and associated data
70 * The `StatePropagatorData` contains a little more than the pure
71 * statistical-physical micro state, namely the positions,
72 * velocities, forces, and box matrix, as well as a backup of
73 * the positions and box of the last time step. While it takes
74 * part in the simulator loop to be able to backup positions /
75 * boxes and save the current state if needed, it's main purpose
76 * is to offer access to its data via getter methods. All elements
77 * reading or writing to this data need a pointer to the
78 * `StatePropagatorData` and need to request their data explicitly. This
79 * will later simplify the understanding of data dependencies
80 * between elements.
82 * The `StatePropagatorData` takes part in the simulator run, as it might
83 * have to save a valid state at the right moment during the
84 * integration. Placing the StatePropagatorData correctly is for now the
85 * duty of the simulator builder - this might be automatized later
86 * if we have enough meta-data of the variables (i.e., if
87 * `StatePropagatorData` knows at which time the variables currently are,
88 * and can decide when a valid state (full-time step of all
89 * variables) is reached. The `StatePropagatorData` is also a client of
90 * both the trajectory signaller and writer - it will save a
91 * state for later writeout during the simulator step if it
92 * knows that trajectory writing will occur later in the step,
93 * and it knows how to write to file given a file pointer by
94 * the `TrajectoryElement`.
96 * Note that the `StatePropagatorData` can be converted to and from the
97 * legacy `t_state` object. This is useful when dealing with
98 * functionality which has not yet been adapted to use the new
99 * data approach - of the elements currently implemented, only
100 * domain decomposition, PME load balancing, and the initial
101 * constraining are using this.
103 class StatePropagatorData final :
104 public ISimulatorElement,
105 public ITrajectoryWriterClient,
106 public ITrajectorySignallerClient,
107 public ICheckpointHelperClient,
108 public ILastStepSignallerClient
110 public:
111 //! Constructor
112 StatePropagatorData(int numAtoms,
113 FILE* fplog,
114 const t_commrec* cr,
115 t_state* globalState,
116 int nstxout,
117 int nstvout,
118 int nstfout,
119 int nstxout_compressed,
120 bool useGPU,
121 FreeEnergyPerturbationElement* freeEnergyPerturbationElement,
122 const TopologyHolder* topologyHolder,
123 bool canMoleculesBeDistributedOverPBC,
124 bool writeFinalConfiguration,
125 std::string finalConfigurationFilename,
126 const t_inputrec* inputrec,
127 const t_mdatoms* mdatoms);
129 // Allow access to state
130 //! Get write access to position vector
131 ArrayRefWithPadding<RVec> positionsView();
132 //! Get read access to position vector
133 ArrayRefWithPadding<const RVec> constPositionsView() const;
134 //! Get write access to previous position vector
135 ArrayRefWithPadding<RVec> previousPositionsView();
136 //! Get read access to previous position vector
137 ArrayRefWithPadding<const RVec> constPreviousPositionsView() const;
138 //! Get write access to velocity vector
139 ArrayRefWithPadding<RVec> velocitiesView();
140 //! Get read access to velocity vector
141 ArrayRefWithPadding<const RVec> constVelocitiesView() const;
142 //! Get write access to force vector
143 ArrayRefWithPadding<RVec> forcesView();
144 //! Get read access to force vector
145 ArrayRefWithPadding<const RVec> constForcesView() const;
146 //! Get pointer to box
147 rvec* box();
148 //! Get const pointer to box
149 const rvec* constBox() const;
150 //! Get pointer to previous box
151 rvec* previousBox();
152 //! Get const pointer to previous box
153 const rvec* constPreviousBox() const;
154 //! Get the local number of atoms
155 int localNumAtoms();
156 //! Get the total number of atoms
157 int totalNumAtoms();
159 /*! \brief Register run function for step / time
161 * This needs to be called during the integration part of the simulator,
162 * at the moment at which the state is at a full time step. Positioning
163 * this element is the responsibility of the programmer writing the
164 * integration algorithm! If the current step is a trajectory writing
165 * step, StatePropagatorData will save a backup for later writeout.
167 * This is also the place at which the current state becomes the previous
168 * state.
170 * @param step The step number
171 * @param time The time
172 * @param registerRunFunction Function allowing to register a run function
174 void scheduleTask(Step step, Time time, const RegisterRunFunctionPtr& registerRunFunction) override;
176 /*! \brief Backup starting velocities
178 * This is only needed for vv, where the first (velocity) half step is only
179 * used to compute the constraint virial, but the velocities need to be reset
180 * after.
181 * TODO: There must be a more elegant solution to this!
183 void elementSetup() override;
185 //! No element teardown needed
186 void elementTeardown() override {}
188 //! @cond
189 // (doxygen doesn't like these)
190 // Classes which need access to legacy state
191 friend class DomDecHelper;
192 //! @endcond
194 private:
195 //! The total number of atoms in the system
196 int totalNumAtoms_;
197 //! The position writeout frequency
198 int nstxout_;
199 //! The velocity writeout frequency
200 int nstvout_;
201 //! The force writeout frequency
202 int nstfout_;
203 //! The compressed position writeout frequency
204 int nstxout_compressed_;
206 //! The local number of atoms
207 int localNAtoms_;
208 //! The position vector
209 PaddedHostVector<RVec> x_;
210 //! The position vector of the previous step
211 PaddedHostVector<RVec> previousX_;
212 //! The velocity vector
213 PaddedHostVector<RVec> v_;
214 //! The force vector
215 PaddedHostVector<RVec> f_;
216 //! The box matrix
217 matrix box_;
218 //! The box matrix of the previous step
219 matrix previousBox_;
220 //! The DD partitioning count for legacy t_state compatibility
221 int ddpCount_;
223 //! Move x_ to previousX_
224 void copyPosition();
225 //! OMP helper to move x_ to previousX_
226 void copyPosition(int start, int end);
228 // Access to legacy state
229 //! Get a deep copy of the current state in legacy format
230 std::unique_ptr<t_state> localState();
231 //! Update the current state with a state in legacy format
232 void setLocalState(std::unique_ptr<t_state> state);
233 //! Get a pointer to the global state
234 t_state* globalState();
235 //! Get a force pointer
236 PaddedHostVector<gmx::RVec>* forcePointer();
238 //! Pointer to keep a backup of the state for later writeout
239 std::unique_ptr<t_state> localStateBackup_;
240 //! Step at which next writeout occurs
241 Step writeOutStep_;
242 //! Backup current state
243 void saveState();
245 //! ITrajectorySignallerClient implementation
246 SignallerCallbackPtr registerTrajectorySignallerCallback(TrajectoryEvent event) override;
248 //! ITrajectoryWriterClient implementation
249 ITrajectoryWriterCallbackPtr registerTrajectoryWriterCallback(TrajectoryEvent event) override;
251 //! ICheckpointHelperClient implementation
252 void writeCheckpoint(t_state* localState, t_state* globalState) override;
254 //! ILastStepSignallerClient implementation (used for final output only)
255 SignallerCallbackPtr registerLastStepCallback() override;
257 //! Callback writing the state to file
258 void write(gmx_mdoutf* outf, Step step, Time time);
260 //! Whether we're doing VV and need to reset velocities after the first half step
261 bool vvResetVelocities_;
262 //! Velocities backup for VV
263 PaddedHostVector<RVec> velocityBackup_;
264 //! Function resetting the velocities
265 void resetVelocities();
267 //! Pointer to the free energy perturbation element (for trajectory writing only)
268 FreeEnergyPerturbationElement* freeEnergyPerturbationElement_;
270 //! Whether planned total number of steps was reached (used for final output only)
271 bool isRegularSimulationEnd_;
272 //! The signalled last step (used for final output only)
273 Step lastStep_;
275 //! Whether system can have molecules distributed over PBC boundaries (used for final output only)
276 const bool canMoleculesBeDistributedOverPBC_;
277 //! Whether system has molecules self-interacting through PBC (used for final output only)
278 const bool systemHasPeriodicMolecules_;
279 //! The PBC type (used for final output only)
280 const PbcType pbcType_;
281 //! Pointer to the topology (used for final output only)
282 const TopologyHolder* topologyHolder_;
283 //! The (planned) last step - determines whether final configuration is written (used for final output only)
284 const Step lastPlannedStep_;
285 //! Whether final configuration was chosen in mdrun options (used for final output only)
286 const bool writeFinalConfiguration_;
287 //! The filename of the final configuration file (used for final output only)
288 const std::string finalConfigurationFilename_;
290 // Access to ISimulator data
291 //! Handles logging.
292 FILE* fplog_;
293 //! Handles communication.
294 const t_commrec* cr_;
295 //! Full simulation state (only non-nullptr on master rank).
296 t_state* globalState_;
298 //! No trajectory writer setup needed
299 void trajectoryWriterSetup(gmx_mdoutf gmx_unused* outf) override {}
300 //! Trajectory writer teardown - write final coordinates
301 void trajectoryWriterTeardown(gmx_mdoutf* outf) override;
304 } // namespace gmx
306 #endif // GMX_MODULARSIMULATOR_STATEPROPAGATORDATA_H