2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2016,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
38 * Implements gmx::CpuInfo.
40 * We need to be able to compile this file in stand-alone mode to use basic
41 * CPU feature detection to set the SIMD acceleration and similar things in
42 * CMake, while we still want to use more features that enable topology
43 * detection when config.h is present.
45 * We solve this by skipping the advanced stuff when the preprocessor
46 * macro GMX_CPUINFO_STANDALONE is defined. In this case you likely also need to
47 * define GMX_X86_GCC_INLINE_ASM if you are on x86; without inline assembly
48 * support it is not possible to perform the actual detection on Linux/Mac.
49 * Since these macros are specific to this file, they do not use the GMX prefix.
51 * The remaining defines (GMX_NATIVE_WINDOWS,HAVE_UNISTD_H,HAVE_SCHED_H,
52 * HAVE_SYSCONF, HAVE_SCHED_AFFINITY) are only used to determine the topology on
53 * 86, and for this we rely on including config.h.
55 * \author Erik Lindahl <erik.lindahl@gmail.com>
56 * \ingroup module_hardware
59 #ifndef GMX_CPUINFO_STANDALONE
65 #ifndef GMX_CPUINFO_STANDALONE
68 # define GMX_NATIVE_WINDOWS 0
72 # include <intrin.h> // __cpuid()
75 #if GMX_NATIVE_WINDOWS
76 # include <windows.h> // sysinfo(), necessary for topology stuff
80 # include <sched.h> // sched_getaffinity(), sched_setaffinity()
83 # include <unistd.h> // sysconf()
96 #ifdef GMX_CPUINFO_STANDALONE
99 # include "gromacs/utility/basedefinitions.h"
108 /*! \cond internal */
110 /******************************************************************************
112 * Utility functions to make this file independent of the GROMACS library *
114 ******************************************************************************/
116 /*! \brief Remove initial and trailing whitespace from string
118 * \param s Pointer to string where whitespace will be removed
121 trimString(std::string
* s
)
124 s
->erase(s
->begin(), std::find_if(s
->begin(), s
->end(), [](char &c
) -> bool { return !std::isspace(c
); }));
126 s
->erase(std::find_if(s
->rbegin(), s
->rend(), [](char &c
) -> bool { return !std::isspace(c
); }).base(), s
->end());
130 /******************************************************************************
132 * x86 detection functions *
134 ******************************************************************************/
136 /*! \brief execute x86 cpuid instructions with custom level and extended level
138 * \param level The main cpuid level (input argument for eax register)
139 * \param ecxval Extended level (input argument for ecx register)
140 * \param eax Output in eax register
141 * \param ebx Output in ebx register
142 * \param ecx Output in ecx register
143 * \param edx Output in edx register
145 * \return 0 on success, or non-zero if the instruction could not execute.
148 executeX86CpuID(unsigned int gmx_unused level
,
149 unsigned int gmx_unused ecxval
,
155 #if defined __i386__ || defined __i386 || defined _X86_ || defined _M_IX86 || \
156 defined __x86_64__ || defined __amd64__ || defined _M_X64 || defined _M_AMD64
158 # if defined __GNUC__ || GMX_X86_GCC_INLINE_ASM
160 // any compiler that understands gcc inline assembly
166 # if (defined __i386__ || defined __i386 || defined _X86_ || defined _M_IX86) && defined(__PIC__)
167 // Avoid clobbering the global offset table in 32-bit pic code (ebx register)
168 __asm__
__volatile__ ("xchgl %%ebx, %1 \n\t"
170 "xchgl %%ebx, %1 \n\t"
171 : "+a" (*eax
), "+r" (*ebx
), "+c" (*ecx
), "+d" (*edx
));
173 // i386 without PIC, or x86-64. Things are easy and we can clobber any reg we want
174 __asm__
__volatile__ ("cpuid \n\t"
175 : "+a" (*eax
), "+b" (*ebx
), "+c" (*ecx
), "+d" (*edx
));
179 # elif defined _MSC_VER
181 // MSVC (and icc on windows) on ia32 or x86-64
183 __cpuidex(cpuInfo
, level
, ecxval
);
184 *eax
= static_cast<unsigned int>(cpuInfo
[0]);
185 *ebx
= static_cast<unsigned int>(cpuInfo
[1]);
186 *ecx
= static_cast<unsigned int>(cpuInfo
[2]);
187 *edx
= static_cast<unsigned int>(cpuInfo
[3]);
192 // We are on x86, but without compiler support for cpuid if we get here
199 # endif // check for inline asm on x86
214 /*! \brief Detect x86 vendors by using the cpuid assembly instructions
216 * If support for the cpuid instruction is present, we check for Intel
219 * \return gmx::CpuInfo::Vendor::Intel, gmx::CpuInfo::Vendor::Amd. If neither
220 * Intel nor Amd can be identified, or if the code fails to execute,
221 * gmx::CpuInfo::Vendor::Unknown is returned.
226 unsigned int eax
, ebx
, ecx
, edx
;
227 CpuInfo::Vendor v
= CpuInfo::Vendor::Unknown
;
229 if (executeX86CpuID(0x0, 0, &eax
, &ebx
, &ecx
, &edx
) == 0)
231 if (ebx
== 0x756e6547 && ecx
== 0x6c65746e && edx
== 0x49656e69)
233 v
= CpuInfo::Vendor::Intel
; // ebx=='uneG', ecx=='letn', edx=='Ieni'
235 else if (ebx
== 0x68747541 && ecx
== 0x444d4163 && edx
== 0x69746e65)
237 v
= CpuInfo::Vendor::Amd
; // ebx=='htuA', ecx=='DMAc', edx=='itne'
243 /*! \brief Simple utility function to set/clear feature in a set
245 * \param featureSet Pointer to the feature set to update
246 * \param feature The specific feature to set/clear
247 * \param registerValue Register value (returned from cpuid)
248 * \param bit Bit to check in registerValue. The feature will be
249 * added to the featureSet if this bit is set.
251 * \note Nothing is done if the bit is not set. In particular, this will not
252 * erase anything if the feature already exists in the set.
255 setFeatureFromBit(std::set
<CpuInfo::Feature
> * featureSet
,
256 CpuInfo::Feature feature
,
257 unsigned int registerValue
,
260 if (registerValue
& (1 << bit
))
262 featureSet
->insert(feature
);
266 /*! \brief Process x86 cpuinfo features that are common to Intel and AMD CPUs
268 * \param[out] brand String where to write the x86 brand string
269 * \param[out] family Major version of processor
270 * \param[out] model Middle version of processor
271 * \param[out] stepping Minor version of processor
272 * \param[out] features Feature set where supported features are inserted
275 detectX86Features(std::string
* brand
,
279 std::set
<CpuInfo::Feature
> * features
)
281 unsigned int eax
, ebx
, ecx
, edx
;
283 // Return if we cannot execute any levels
284 if (executeX86CpuID(0x0, 0, &eax
, &ebx
, &ecx
, &edx
) != 0)
288 unsigned int maxStdLevel
= eax
;
290 if (maxStdLevel
>= 0x1)
292 executeX86CpuID(0x1, 0, &eax
, &ebx
, &ecx
, &edx
);
294 *family
= ((eax
& 0x0ff00000) >> 20) + ((eax
& 0x00000f00) >> 8);
295 *model
= ((eax
& 0x000f0000) >> 12) + ((eax
& 0x000000f0) >> 4);
296 *stepping
= (eax
& 0x0000000f);
298 setFeatureFromBit(features
, CpuInfo::Feature::X86_Sse3
, ecx
, 0 );
299 setFeatureFromBit(features
, CpuInfo::Feature::X86_Pclmuldq
, ecx
, 1 );
300 setFeatureFromBit(features
, CpuInfo::Feature::X86_Ssse3
, ecx
, 9 );
301 setFeatureFromBit(features
, CpuInfo::Feature::X86_Fma
, ecx
, 12 );
302 setFeatureFromBit(features
, CpuInfo::Feature::X86_Cx16
, ecx
, 13 );
303 setFeatureFromBit(features
, CpuInfo::Feature::X86_Pdcm
, ecx
, 15 );
304 setFeatureFromBit(features
, CpuInfo::Feature::X86_Pcid
, ecx
, 17 );
305 setFeatureFromBit(features
, CpuInfo::Feature::X86_Sse4_1
, ecx
, 19 );
306 setFeatureFromBit(features
, CpuInfo::Feature::X86_Sse4_2
, ecx
, 20 );
307 setFeatureFromBit(features
, CpuInfo::Feature::X86_X2Apic
, ecx
, 21 );
308 setFeatureFromBit(features
, CpuInfo::Feature::X86_Popcnt
, ecx
, 23 );
309 setFeatureFromBit(features
, CpuInfo::Feature::X86_Tdt
, ecx
, 24 );
310 setFeatureFromBit(features
, CpuInfo::Feature::X86_Aes
, ecx
, 25 );
311 setFeatureFromBit(features
, CpuInfo::Feature::X86_Avx
, ecx
, 28 );
312 setFeatureFromBit(features
, CpuInfo::Feature::X86_F16C
, ecx
, 29 );
313 setFeatureFromBit(features
, CpuInfo::Feature::X86_Rdrnd
, ecx
, 30 );
315 setFeatureFromBit(features
, CpuInfo::Feature::X86_Pse
, edx
, 3 );
316 setFeatureFromBit(features
, CpuInfo::Feature::X86_Msr
, edx
, 5 );
317 setFeatureFromBit(features
, CpuInfo::Feature::X86_Cx8
, edx
, 8 );
318 setFeatureFromBit(features
, CpuInfo::Feature::X86_Apic
, edx
, 9 );
319 setFeatureFromBit(features
, CpuInfo::Feature::X86_Cmov
, edx
, 15 );
320 setFeatureFromBit(features
, CpuInfo::Feature::X86_Clfsh
, edx
, 19 );
321 setFeatureFromBit(features
, CpuInfo::Feature::X86_Mmx
, edx
, 23 );
322 setFeatureFromBit(features
, CpuInfo::Feature::X86_Sse2
, edx
, 26 );
323 setFeatureFromBit(features
, CpuInfo::Feature::X86_Htt
, edx
, 28 );
326 if (maxStdLevel
>= 0x7)
328 executeX86CpuID(0x7, 0, &eax
, &ebx
, &ecx
, &edx
);
330 setFeatureFromBit(features
, CpuInfo::Feature::X86_Hle
, ebx
, 4 );
331 setFeatureFromBit(features
, CpuInfo::Feature::X86_Avx2
, ebx
, 5 );
332 setFeatureFromBit(features
, CpuInfo::Feature::X86_Rtm
, ebx
, 11 );
333 setFeatureFromBit(features
, CpuInfo::Feature::X86_Avx512F
, ebx
, 16 );
334 setFeatureFromBit(features
, CpuInfo::Feature::X86_Avx512PF
, ebx
, 26 );
335 setFeatureFromBit(features
, CpuInfo::Feature::X86_Avx512ER
, ebx
, 27 );
336 setFeatureFromBit(features
, CpuInfo::Feature::X86_Avx512CD
, ebx
, 28 );
337 setFeatureFromBit(features
, CpuInfo::Feature::X86_Sha
, ebx
, 29 );
338 setFeatureFromBit(features
, CpuInfo::Feature::X86_Avx512BW
, ebx
, 30 );
339 setFeatureFromBit(features
, CpuInfo::Feature::X86_Avx512VL
, ebx
, 31 );
342 // Check whether Hyper-threading is really possible to enable in the hardware,
343 // not just technically supported by this generation of processors
344 if (features
->count(CpuInfo::Feature::X86_Htt
) && maxStdLevel
>= 0x4)
346 executeX86CpuID(0x1, 0, &eax
, &ebx
, &ecx
, &edx
);
347 unsigned int maxLogicalCores
= (ebx
>> 16) & 0x0ff;
348 executeX86CpuID(0x4, 0, &eax
, &ebx
, &ecx
, &edx
);
349 unsigned int maxPhysicalCores
= ((eax
>> 26) & 0x3f) + 1;
350 if (maxLogicalCores
/maxPhysicalCores
< 2)
352 features
->erase(CpuInfo::Feature::X86_Htt
);
356 if (executeX86CpuID(0x80000000, 0, &eax
, &ebx
, &ecx
, &edx
) != 0)
358 // No point in continuing if we don't support any extended levels
361 unsigned int maxExtLevel
= eax
;
363 if (maxExtLevel
>= 0x80000001)
365 executeX86CpuID(0x80000001, 0, &eax
, &ebx
, &ecx
, &edx
);
367 setFeatureFromBit(features
, CpuInfo::Feature::X86_Lahf
, ecx
, 0 );
368 setFeatureFromBit(features
, CpuInfo::Feature::X86_Sse4A
, ecx
, 6 );
369 setFeatureFromBit(features
, CpuInfo::Feature::X86_MisalignSse
, ecx
, 7 );
370 setFeatureFromBit(features
, CpuInfo::Feature::X86_Xop
, ecx
, 11 );
371 setFeatureFromBit(features
, CpuInfo::Feature::X86_Fma4
, ecx
, 16 );
372 setFeatureFromBit(features
, CpuInfo::Feature::X86_PDPE1GB
, edx
, 26 );
373 setFeatureFromBit(features
, CpuInfo::Feature::X86_Rdtscp
, edx
, 27 );
376 if (maxExtLevel
>= 0x80000005)
378 // Get the x86 CPU brand string (3 levels, 16 bytes in each)
380 for (unsigned int level
= 0x80000002; level
< 0x80000005; level
++)
382 executeX86CpuID(level
, 0, &eax
, &ebx
, &ecx
, &edx
);
383 // Add eax, ebx, ecx, edx contents as 4 chars each to the brand string
384 brand
->append(reinterpret_cast<const char *>(&eax
), sizeof(eax
));
385 brand
->append(reinterpret_cast<const char *>(&ebx
), sizeof(ebx
));
386 brand
->append(reinterpret_cast<const char *>(&ecx
), sizeof(ecx
));
387 brand
->append(reinterpret_cast<const char *>(&edx
), sizeof(edx
));
392 if (maxExtLevel
>= 0x80000007)
394 executeX86CpuID(0x80000007, 0, &eax
, &ebx
, &ecx
, &edx
);
396 setFeatureFromBit(features
, CpuInfo::Feature::X86_NonstopTsc
, edx
, 8 );
401 /*! \brief Return a vector with x86 APIC IDs for all threads
403 * \param haveX2Apic True if the processors supports x2APIC, otherwise vanilla APIC.
405 * \returns A new std::vector of unsigned integer APIC IDs, one for each
406 * logical processor in the system.
408 const std::vector
<unsigned int>
409 detectX86ApicIDs(bool gmx_unused haveX2Apic
)
411 std::vector
<unsigned int> apicID
;
413 // We cannot just ask for all APIC IDs, but must force execution on each
414 // hardware thread and extract the APIC id there.
415 #if HAVE_SCHED_AFFINITY && defined HAVE_SYSCONF
416 unsigned int eax
, ebx
, ecx
, edx
;
417 unsigned int nApic
= sysconf(_SC_NPROCESSORS_ONLN
);
418 cpu_set_t saveCpuSet
;
420 sched_getaffinity(0, sizeof(cpu_set_t
), &saveCpuSet
);
422 for (unsigned int i
= 0; i
< nApic
; i
++)
425 sched_setaffinity(0, sizeof(cpu_set_t
), &cpuSet
);
428 executeX86CpuID(0xb, 0, &eax
, &ebx
, &ecx
, &edx
);
429 apicID
.push_back(edx
);
433 executeX86CpuID(0x1, 0, &eax
, &ebx
, &ecx
, &edx
);
434 apicID
.push_back(ebx
>> 24);
438 sched_setaffinity(0, sizeof(cpu_set_t
), &saveCpuSet
);
439 #elif GMX_NATIVE_WINDOWS
440 unsigned int eax
, ebx
, ecx
, edx
;
442 GetSystemInfo( &sysinfo
);
443 unsigned int nApic
= sysinfo
.dwNumberOfProcessors
;
444 unsigned int saveAffinity
= SetThreadAffinityMask(GetCurrentThread(), 1);
445 for (DWORD_PTR i
= 0; i
< nApic
; i
++)
447 SetThreadAffinityMask(GetCurrentThread(), (((DWORD_PTR
)1)<<i
));
451 executeX86CpuID(0xb, 0, &eax
, &ebx
, &ecx
, &edx
);
452 apicID
.push_back(edx
);
456 executeX86CpuID(0x1, 0, &eax
, &ebx
, &ecx
, &edx
);
457 apicID
.push_back(ebx
>> 24);
460 SetThreadAffinityMask(GetCurrentThread(), saveAffinity
);
466 /*! \brief Utility to renumber indices extracted from APIC IDs
468 * \param v Vector with unsigned integer indices
470 * This routine returns the number of unique different elements found in the vector,
471 * and renumbers these starting from 0. For example, the vector {0,1,2,8,9,10,8,9,10,0,1,2}
472 * will be rewritten to {0,1,2,3,4,5,3,4,5,0,1,2}, and it returns 6 for the
473 * number of unique elements.
476 renumberIndex(std::vector
<unsigned int> * v
)
478 std::vector
<unsigned int> sortedV (*v
);
479 std::sort(sortedV
.begin(), sortedV
.end());
481 std::vector
<unsigned int> uniqueSortedV (sortedV
);
482 auto it
= std::unique(uniqueSortedV
.begin(), uniqueSortedV
.end());
483 uniqueSortedV
.resize( std::distance(uniqueSortedV
.begin(), it
) );
485 for (std::size_t i
= 0; i
< uniqueSortedV
.size(); i
++)
487 unsigned int val
= uniqueSortedV
[i
];
488 std::replace_if(v
->begin(), v
->end(), [val
](unsigned int &c
) -> bool { return c
== val
; }, static_cast<unsigned int>(i
));
493 /*! \brief Try to detect basic CPU topology information using x86 cpuid
495 * If x2APIC support is present, this is our first choice, otherwise we
496 * attempt to use old vanilla APIC.
498 * \return A new vector of entries with socket, core, hwthread information
499 * for each logical processor.
501 std::vector
<CpuInfo::LogicalProcessor
>
502 detectX86LogicalProcessors()
508 unsigned int maxStdLevel
;
509 unsigned int maxExtLevel
;
513 std::vector
<CpuInfo::LogicalProcessor
> logicalProcessors
;
515 // Find largest standard & extended level input values allowed
516 executeX86CpuID(0x0, 0, &eax
, &ebx
, &ecx
, &edx
);
518 executeX86CpuID(0x80000000, 0, &eax
, &ebx
, &ecx
, &edx
);
521 if (maxStdLevel
>= 0x1)
523 executeX86CpuID(0x1, 0, &eax
, &ebx
, &ecx
, &edx
);
524 haveX2Apic
= (ecx
& (1 << 21)) && maxStdLevel
>= 0xb;
525 haveApic
= (edx
& (1 << 9)) && maxExtLevel
>= 0x80000008;
533 if (haveX2Apic
|| haveApic
)
535 unsigned int hwThreadBits
;
536 unsigned int coreBits
;
537 // Get bits for cores and hardware threads
540 executeX86CpuID(0xb, 0, &eax
, &ebx
, &ecx
, &edx
);
541 hwThreadBits
= eax
& 0x1f;
542 executeX86CpuID(0xb, 1, &eax
, &ebx
, &ecx
, &edx
);
543 coreBits
= (eax
& 0x1f) - hwThreadBits
;
547 // AMD without x2APIC does not support SMT - there are no hwthread bits in apic ID
549 // Get number of core bits in apic ID - try modern extended method first
550 executeX86CpuID(0x80000008, 0, &eax
, &ebx
, &ecx
, &edx
);
551 coreBits
= (ecx
>> 12) & 0xf;
554 // Legacy method for old single/dual core AMD CPUs
556 while (i
>> coreBits
)
563 std::vector
<unsigned int> apicID
= detectX86ApicIDs(haveX2Apic
);
567 // APIC IDs can be buggy, and it is always a mess. Typically more bits are
568 // reserved than needed, and the numbers might not increment by 1 even in
569 // a single socket or core. Extract, renumber, and check that things make sense.
570 unsigned int hwThreadMask
= (1 << hwThreadBits
) - 1;
571 unsigned int coreMask
= (1 << coreBits
) - 1;
572 std::vector
<unsigned int> hwThreadRanks
;
573 std::vector
<unsigned int> coreRanks
;
574 std::vector
<unsigned int> socketRanks
;
576 for (auto a
: apicID
)
578 hwThreadRanks
.push_back( static_cast<int>( a
& hwThreadMask
) );
579 coreRanks
.push_back( static_cast<int>( ( a
>> hwThreadBits
) & coreMask
) );
580 socketRanks
.push_back( static_cast<int>( a
>> ( coreBits
+ hwThreadBits
) ) );
583 renumberIndex(&hwThreadRanks
);
584 renumberIndex(&coreRanks
);
585 renumberIndex(&socketRanks
);
587 unsigned int hwThreadRankSize
= 1 + *std::max_element(hwThreadRanks
.begin(), hwThreadRanks
.end());
588 unsigned int coreRankSize
= 1 + *std::max_element(coreRanks
.begin(), coreRanks
.end());
589 unsigned int socketRankSize
= 1 + *std::max_element(socketRanks
.begin(), socketRanks
.end());
591 if (socketRankSize
* coreRankSize
* hwThreadRankSize
== apicID
.size() )
593 // Alright, everything looks consistent, so put it in the result
594 for (std::size_t i
= 0; i
< apicID
.size(); i
++)
596 // While the internal APIC IDs are always unsigned integers, we also cast to
597 // plain integers for the externally exposed vectors, since that will make
598 // it possible to use '-1' for invalid entries in the future.
599 logicalProcessors
.push_back( { int(socketRanks
[i
]), int(coreRanks
[i
]), int(hwThreadRanks
[i
]) } );
604 return logicalProcessors
; // Will only have contents if everything worked
608 /******************************************************************************
610 * Generic Linux detection by parsing /proc/cpuinfo *
612 ******************************************************************************/
614 /*! \brief Parse /proc/cpuinfo into a simple string map
616 * This routine will read the contents of /proc/cpuinfo, and for each
617 * line that is not empty we will assign the (trimmed) string to the right of
618 * the colon as a key, and the left-hand side as the value in the map.
619 * For multi-processor systems where lines are repeated the latter lines will
620 * overwrite the first occurrence.
622 * \return New map with the contents. If the file is not available, the returned
625 const std::map
<std::string
, std::string
>
628 std::ifstream
procCpuInfo("/proc/cpuinfo");
630 std::map
<std::string
, std::string
> cpuInfo
;
632 while (std::getline(procCpuInfo
, line
))
636 std::stringstream
iss(line
);
639 std::getline(iss
, key
, ':'); // part before colon
640 std::getline(iss
, val
); // part after colon
643 // put it in the map. This will overwrite previous processors, but we don't care.
651 /*! \brief Try to detect vendor from /proc/cpuinfo
653 * \param cpuInfo Map returned from parseProcCpuinfo()
655 * This routine tries to match a few common labels in /proc/cpuinfo to see if
656 * they begin with the name of a standard vendor. If the file cannot be read
657 * or if no match is found, we return gmx::CpuInfo::Vendor::Unknown.
660 detectProcCpuInfoVendor(const std::map
<std::string
, std::string
> &cpuInfo
)
662 const std::map
<std::string
, CpuInfo::Vendor
> testVendors
=
664 { "GenuineIntel", CpuInfo::Vendor::Intel
},
665 { "Intel", CpuInfo::Vendor::Intel
},
666 { "AuthenticAmd", CpuInfo::Vendor::Amd
},
667 { "AMD", CpuInfo::Vendor::Amd
},
668 { "ARM", CpuInfo::Vendor::Arm
},
669 { "AArch64", CpuInfo::Vendor::Arm
},
670 { "Fujitsu", CpuInfo::Vendor::Fujitsu
},
671 { "IBM", CpuInfo::Vendor::Ibm
},
672 { "POWER", CpuInfo::Vendor::Ibm
}
675 // For each label in /proc/cpuinfo, compare the value to the name in the
676 // testNames map above, and if it's a match return the vendor.
677 for (auto &l
: { "vendor_id", "vendor", "manufacture", "model", "processor", "cpu" })
679 if (cpuInfo
.count(l
))
681 // there was a line with this left-hand side in /proc/cpuinfo
682 const std::string
&s1
= cpuInfo
.at(l
);
684 for (auto &t
: testVendors
)
686 const std::string
&s2
= t
.first
;
688 // If the entire name we are testing (s2) matches the first part of
689 // the string after the colon in /proc/cpuinfo (s1) we found our vendor
690 if (std::equal(s2
.begin(), s2
.end(), s1
.begin(),
691 [](const char &x
, const char &y
) -> bool { return tolower(x
) == tolower(y
); }))
698 return CpuInfo::Vendor::Unknown
;
702 /*! \brief Detect IBM processor name and features from /proc/cpuinfo
704 * \param cpuInfo Map returned from parseProcCpuinfo()
705 * \param[out] brand String where to write the brand string
706 * \param[out] features Feature set where supported features are inserted
708 * This routine tries to match a few common labels in /proc/cpuinfo to see if
709 * we can find the processor name and features. It is likely fragile.
712 detectProcCpuInfoIbm(const std::map
<std::string
, std::string
> &cpuInfo
,
714 std::set
<CpuInfo::Feature
> * features
)
716 // Get brand string from 'cpu' label if present, otherwise 'Processor'
717 if (cpuInfo
.count("cpu"))
719 *brand
= cpuInfo
.at("cpu");
721 else if (cpuInfo
.count("Processor"))
723 *brand
= cpuInfo
.at("Processor");
726 if (brand
->find("A2") != std::string::npos
)
728 // If the processor identification contains "A2", this is BlueGene/Q with QPX
729 features
->insert(CpuInfo::Feature::Ibm_Qpx
);
732 for (auto &l
: { "model name", "model", "Processor", "cpu" })
734 if (cpuInfo
.count(l
))
736 std::string s1
= cpuInfo
.at(l
);
737 std::transform(s1
.begin(), s1
.end(), s1
.begin(), ::tolower
);
739 if (s1
.find("altivec") != std::string::npos
)
741 features
->insert(CpuInfo::Feature::Ibm_Vmx
);
742 // If this is a power6, we only have VMX. All later processors have VSX.
743 if (s1
.find("power6") == std::string::npos
)
745 features
->insert(CpuInfo::Feature::Ibm_Vsx
);
753 /*! \brief Detect ARM processor name and features from /proc/cpuinfo
755 * \param cpuInfo Map returned from parseProcCpuinfo()
756 * \param[out] brand String where to write the brand string
757 * \param[out] family Major version of processor
758 * \param[out] model Middle version of processor
759 * \param[out] stepping Minor version of processor
760 * \param[out] features Feature set where supported features are inserted
762 * This routine tries to match a few common labels in /proc/cpuinfo to see if
763 * we can find the processor name and features. It is likely fragile.
766 detectProcCpuInfoArm(const std::map
<std::string
, std::string
> &cpuInfo
,
771 std::set
<CpuInfo::Feature
> * features
)
773 if (cpuInfo
.count("Processor"))
775 *brand
= cpuInfo
.at("Processor");
777 if (cpuInfo
.count("CPU architecture"))
779 *family
= std::strtol(cpuInfo
.at("CPU architecture").c_str(), nullptr, 10);
780 // For some 64-bit CPUs it appears to say 'AArch64' instead
781 if (*family
== 0 && cpuInfo
.at("CPU architecture").find("AArch64") != std::string::npos
)
783 *family
= 8; // fragile - no idea how a future ARMv9 will be represented in this case
786 if (cpuInfo
.count("CPU variant"))
788 *model
= std::strtol(cpuInfo
.at("CPU variant").c_str(), nullptr, 16);
790 if (cpuInfo
.count("CPU revision"))
792 *stepping
= std::strtol(cpuInfo
.at("CPU revision").c_str(), nullptr, 10);
795 if (cpuInfo
.count("Features"))
797 const std::string
&s
= cpuInfo
.at("Features");
798 if (s
.find("neon") != std::string::npos
)
800 features
->insert(CpuInfo::Feature::Arm_Neon
);
802 if (s
.find("asimd") != std::string::npos
)
804 // At least Jetson TX1 runs a 32-bit environment by default, although
805 // the kernel is 64-bits, and reports asimd feature flags. We cannot
806 // use Neon-asimd in this case, so make sure we are on a 64-bit platform.
807 if (sizeof(void *) == 8)
809 features
->insert(CpuInfo::Feature::Arm_NeonAsimd
);
816 /*! \brief Try to detect vendor, cpu and features from /proc/cpuinfo
818 * \param[out] vendor Detected hardware vendor
819 * \param[out] brand String where to write the brand string
820 * \param[out] family Major version of processor
821 * \param[out] model Middle version of processor
822 * \param[out] stepping Minor version of processor
823 * \param[out] features Feature set where supported features are inserted
825 * This routine reads the /proc/cpuinfo file into a map and calls subroutines
826 * that attempt to parse by matching keys and values to known strings. It is
827 * much more fragile than our x86 detection, but it does not depend on
828 * specific system calls, intrinsics or assembly instructions.
831 detectProcCpuInfo(CpuInfo::Vendor
* vendor
,
836 std::set
<CpuInfo::Feature
> * features
)
838 std::map
<std::string
, std::string
> cpuInfo
= parseProcCpuInfo();
840 if (*vendor
== CpuInfo::Vendor::Unknown
)
842 *vendor
= detectProcCpuInfoVendor(cpuInfo
);
845 // Unfortunately there is no standard for contents in /proc/cpuinfo. We cannot
846 // indiscriminately look for e.g. 'cpu' since it could be either name or an index.
847 // To handle this slightly better we use one subroutine per vendor.
850 case CpuInfo::Vendor::Ibm
:
851 detectProcCpuInfoIbm(cpuInfo
, brand
, features
);
854 case CpuInfo::Vendor::Arm
:
855 detectProcCpuInfoArm(cpuInfo
, brand
, family
, model
, stepping
, features
);
859 // We only have a single check for fujitsu for now
861 features
->insert(CpuInfo::Feature::Fujitsu_HpcAce
);
867 } // namespace anonymous
871 CpuInfo
CpuInfo::detect()
875 #if defined __i386__ || defined __i386 || defined _X86_ || defined _M_IX86 || \
876 defined __x86_64__ || defined __amd64__ || defined _M_X64 || defined _M_AMD64
878 result
.vendor_
= detectX86Vendor();
880 if (result
.vendor_
== CpuInfo::Vendor::Intel
)
882 result
.features_
.insert(CpuInfo::Feature::X86_Intel
);
884 else if (result
.vendor_
== CpuInfo::Vendor::Amd
)
886 result
.features_
.insert(CpuInfo::Feature::X86_Amd
);
888 detectX86Features(&result
.brandString_
, &result
.family_
, &result
.model_
,
889 &result
.stepping_
, &result
.features_
);
890 result
.logicalProcessors_
= detectX86LogicalProcessors();
893 # if defined __arm__ || defined __arm || defined _M_ARM || defined __aarch64__
894 result
.vendor_
= CpuInfo::Vendor::Arm
;
895 # elif defined __powerpc__ || defined __ppc__ || defined __PPC__
896 result
.vendor_
= CpuInfo::Vendor::Ibm
;
899 # if defined __aarch64__ || ( defined _M_ARM && _M_ARM >= 8 )
900 result
.features_
.insert(Feature::Arm_Neon
); // ARMv8 always has Neon
901 result
.features_
.insert(Feature::Arm_NeonAsimd
); // ARMv8 always has Neon-asimd
904 // On Linux we might be able to find information in /proc/cpuinfo. If vendor or brand
905 // is set to a known value this routine will not overwrite it.
906 detectProcCpuInfo(&result
.vendor_
, &result
.brandString_
, &result
.family_
,
907 &result
.model_
, &result
.stepping_
, &result
.features_
);
911 if (!result
.logicalProcessors_
.empty())
913 result
.supportLevel_
= CpuInfo::SupportLevel::LogicalProcessorInfo
;
915 else if (!result
.features_
.empty())
917 result
.supportLevel_
= CpuInfo::SupportLevel::Features
;
919 else if (result
.vendor_
!= CpuInfo::Vendor::Unknown
920 || result
.brandString_
!= "Unknown CPU brand")
922 result
.supportLevel_
= CpuInfo::SupportLevel::Name
;
926 result
.supportLevel_
= CpuInfo::SupportLevel::None
;
934 : vendor_(CpuInfo::Vendor::Unknown
), brandString_("Unknown CPU brand"),
935 family_(0), model_(0), stepping_(0)
940 const std::map
<CpuInfo::Vendor
, std::string
>
941 CpuInfo::s_vendorStrings_
=
943 { CpuInfo::Vendor::Unknown
, "Unknown vendor" },
944 { CpuInfo::Vendor::Intel
, "Intel" },
945 { CpuInfo::Vendor::Amd
, "AMD" },
946 { CpuInfo::Vendor::Fujitsu
, "Fujitsu" },
947 { CpuInfo::Vendor::Ibm
, "IBM" },
948 { CpuInfo::Vendor::Arm
, "ARM" }
952 const std::map
<CpuInfo::Feature
, std::string
>
953 CpuInfo::s_featureStrings_
=
955 { CpuInfo::Feature::X86_Aes
, "aes" },
956 { CpuInfo::Feature::X86_Amd
, "amd" },
957 { CpuInfo::Feature::X86_Apic
, "apic" },
958 { CpuInfo::Feature::X86_Avx
, "avx" },
959 { CpuInfo::Feature::X86_Avx2
, "avx2" },
960 { CpuInfo::Feature::X86_Avx512F
, "avx512f" },
961 { CpuInfo::Feature::X86_Avx512PF
, "avx512pf" },
962 { CpuInfo::Feature::X86_Avx512ER
, "avx512er" },
963 { CpuInfo::Feature::X86_Avx512CD
, "avx512cd" },
964 { CpuInfo::Feature::X86_Avx512BW
, "avx512bw" },
965 { CpuInfo::Feature::X86_Avx512VL
, "avx512vl" },
966 { CpuInfo::Feature::X86_Clfsh
, "clfsh" },
967 { CpuInfo::Feature::X86_Cmov
, "cmov" },
968 { CpuInfo::Feature::X86_Cx8
, "cx8" },
969 { CpuInfo::Feature::X86_Cx16
, "cx16" },
970 { CpuInfo::Feature::X86_F16C
, "f16c" },
971 { CpuInfo::Feature::X86_Fma
, "fma" },
972 { CpuInfo::Feature::X86_Fma4
, "fma4" },
973 { CpuInfo::Feature::X86_Hle
, "hle" },
974 { CpuInfo::Feature::X86_Htt
, "htt" },
975 { CpuInfo::Feature::X86_Intel
, "intel" },
976 { CpuInfo::Feature::X86_Lahf
, "lahf" },
977 { CpuInfo::Feature::X86_MisalignSse
, "misalignsse" },
978 { CpuInfo::Feature::X86_Mmx
, "mmx" },
979 { CpuInfo::Feature::X86_Msr
, "msr" },
980 { CpuInfo::Feature::X86_NonstopTsc
, "nonstop_tsc" },
981 { CpuInfo::Feature::X86_Pcid
, "pcid" },
982 { CpuInfo::Feature::X86_Pclmuldq
, "pclmuldq" },
983 { CpuInfo::Feature::X86_Pdcm
, "pdcm" },
984 { CpuInfo::Feature::X86_PDPE1GB
, "pdpe1gb" },
985 { CpuInfo::Feature::X86_Popcnt
, "popcnt" },
986 { CpuInfo::Feature::X86_Pse
, "pse" },
987 { CpuInfo::Feature::X86_Rdrnd
, "rdrnd" },
988 { CpuInfo::Feature::X86_Rdtscp
, "rdtscp" },
989 { CpuInfo::Feature::X86_Rtm
, "rtm" },
990 { CpuInfo::Feature::X86_Sha
, "sha" },
991 { CpuInfo::Feature::X86_Sse2
, "sse2" },
992 { CpuInfo::Feature::X86_Sse3
, "sse3" },
993 { CpuInfo::Feature::X86_Sse4A
, "sse4a" },
994 { CpuInfo::Feature::X86_Sse4_1
, "sse4.1" },
995 { CpuInfo::Feature::X86_Sse4_2
, "sse4.2" },
996 { CpuInfo::Feature::X86_Ssse3
, "ssse3" },
997 { CpuInfo::Feature::X86_Tdt
, "tdt" },
998 { CpuInfo::Feature::X86_X2Apic
, "x2apic" },
999 { CpuInfo::Feature::X86_Xop
, "xop" },
1000 { CpuInfo::Feature::Arm_Neon
, "neon" },
1001 { CpuInfo::Feature::Arm_NeonAsimd
, "neon_asimd" },
1002 { CpuInfo::Feature::Ibm_Qpx
, "qpx" },
1003 { CpuInfo::Feature::Ibm_Vmx
, "vmx" },
1004 { CpuInfo::Feature::Ibm_Vsx
, "vsx" },
1005 { CpuInfo::Feature::Fujitsu_HpcAce
, "hpc-ace" }
1010 cpuIsX86Nehalem(const CpuInfo
&cpuInfo
)
1012 return (cpuInfo
.vendor() == gmx::CpuInfo::Vendor::Intel
&&
1013 cpuInfo
.family() == 6 &&
1014 (cpuInfo
.model() == 0x2E || cpuInfo
.model() == 0x1A ||
1015 cpuInfo
.model() == 0x1E || cpuInfo
.model() == 0x2F ||
1016 cpuInfo
.model() == 0x2C || cpuInfo
.model() == 0x25) );
1021 #ifdef GMX_CPUINFO_STANDALONE
1023 main(int argc
, char **argv
)
1028 "Usage:\n\n%s [flags]\n\n"
1029 "Available flags:\n"
1030 "-vendor Print CPU vendor.\n"
1031 "-brand Print CPU brand string.\n"
1032 "-family Print CPU family version.\n"
1033 "-model Print CPU model version.\n"
1034 "-stepping Print CPU stepping version.\n"
1035 "-features Print CPU feature flags.\n",
1040 std::string
arg(argv
[1]);
1041 gmx::CpuInfo
cpuInfo(gmx::CpuInfo::detect());
1043 if (arg
== "-vendor")
1045 printf("%s\n", cpuInfo
.vendorString().c_str());
1047 else if (arg
== "-brand")
1049 printf("%s\n", cpuInfo
.brandString().c_str());
1051 else if (arg
== "-family")
1053 printf("%d\n", cpuInfo
.family());
1055 else if (arg
== "-model")
1057 printf("%d\n", cpuInfo
.model());
1059 else if (arg
== "-stepping")
1061 printf("%d\n", cpuInfo
.stepping());
1063 else if (arg
== "-features")
1065 for (auto &f
: cpuInfo
.featureSet() )
1067 printf(" %s", cpuInfo
.featureString(f
).c_str());
1069 printf(" \n"); // extra space so we can grep output for " <feature> " in CMake
1071 else if (arg
== "-topology")
1073 // Undocumented debug option, usually not present in standalone version
1074 for (auto &t
: cpuInfo
.logicalProcessors() )
1076 printf("%3u %3u %3u\n", t
.socketRankInMachine
, t
.coreRankInSocket
, t
.hwThreadRankInCore
);