128-bit AVX2 SIMD for AMD Ryzen
[gromacs.git] / src / gromacs / hardware / cpuinfo.cpp
blob4975918caae8b7faed2a0bd5871a7ce3206f7c94
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2016,2017, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 /*! \internal \file
37 * \brief
38 * Implements gmx::CpuInfo.
40 * We need to be able to compile this file in stand-alone mode to use basic
41 * CPU feature detection to set the SIMD acceleration and similar things in
42 * CMake, while we still want to use more features that enable topology
43 * detection when config.h is present.
45 * We solve this by skipping the advanced stuff when the preprocessor
46 * macro GMX_CPUINFO_STANDALONE is defined. In this case you likely also need to
47 * define GMX_X86_GCC_INLINE_ASM if you are on x86; without inline assembly
48 * support it is not possible to perform the actual detection on Linux/Mac.
49 * Since these macros are specific to this file, they do not use the GMX prefix.
51 * The remaining defines (GMX_NATIVE_WINDOWS,HAVE_UNISTD_H,HAVE_SCHED_H,
52 * HAVE_SYSCONF, HAVE_SCHED_AFFINITY) are only used to determine the topology on
53 * 86, and for this we rely on including config.h.
55 * \author Erik Lindahl <erik.lindahl@gmail.com>
56 * \ingroup module_hardware
59 #ifndef GMX_CPUINFO_STANDALONE
60 # include "gmxpre.h"
61 #endif
63 #include "cpuinfo.h"
65 #ifndef GMX_CPUINFO_STANDALONE
66 # include "config.h"
67 #else
68 # define GMX_NATIVE_WINDOWS 0
69 #endif
71 #if defined _MSC_VER
72 # include <intrin.h> // __cpuid()
73 #endif
75 #if GMX_NATIVE_WINDOWS
76 # include <windows.h> // sysinfo(), necessary for topology stuff
77 #endif
79 #ifdef HAVE_SCHED_H
80 # include <sched.h> // sched_getaffinity(), sched_setaffinity()
81 #endif
82 #ifdef HAVE_UNISTD_H
83 # include <unistd.h> // sysconf()
84 #endif
86 #include <cctype>
87 #include <cstdlib>
89 #include <algorithm>
90 #include <fstream>
91 #include <map>
92 #include <set>
93 #include <sstream>
94 #include <string>
96 #ifdef GMX_CPUINFO_STANDALONE
97 # define gmx_unused
98 #else
99 # include "gromacs/utility/basedefinitions.h"
100 #endif
102 namespace gmx
105 namespace
108 /*! \cond internal */
110 /******************************************************************************
112 * Utility functions to make this file independent of the GROMACS library *
114 ******************************************************************************/
116 /*! \brief Remove initial and trailing whitespace from string
118 * \param s Pointer to string where whitespace will be removed
120 void
121 trimString(std::string * s)
123 // heading
124 s->erase(s->begin(), std::find_if(s->begin(), s->end(), [](char &c) -> bool { return !std::isspace(c); }));
125 // trailing
126 s->erase(std::find_if(s->rbegin(), s->rend(), [](char &c) -> bool { return !std::isspace(c); }).base(), s->end());
130 /******************************************************************************
132 * x86 detection functions *
134 ******************************************************************************/
136 /*! \brief execute x86 cpuid instructions with custom level and extended level
138 * \param level The main cpuid level (input argument for eax register)
139 * \param ecxval Extended level (input argument for ecx register)
140 * \param eax Output in eax register
141 * \param ebx Output in ebx register
142 * \param ecx Output in ecx register
143 * \param edx Output in edx register
145 * \return 0 on success, or non-zero if the instruction could not execute.
148 executeX86CpuID(unsigned int gmx_unused level,
149 unsigned int gmx_unused ecxval,
150 unsigned int * eax,
151 unsigned int * ebx,
152 unsigned int * ecx,
153 unsigned int * edx)
155 #if defined __i386__ || defined __i386 || defined _X86_ || defined _M_IX86 || \
156 defined __x86_64__ || defined __amd64__ || defined _M_X64 || defined _M_AMD64
158 # if defined __GNUC__ || GMX_X86_GCC_INLINE_ASM
160 // any compiler that understands gcc inline assembly
161 *eax = level;
162 *ecx = ecxval;
163 *ebx = 0;
164 *edx = 0;
166 # if (defined __i386__ || defined __i386 || defined _X86_ || defined _M_IX86) && defined(__PIC__)
167 // Avoid clobbering the global offset table in 32-bit pic code (ebx register)
168 __asm__ __volatile__ ("xchgl %%ebx, %1 \n\t"
169 "cpuid \n\t"
170 "xchgl %%ebx, %1 \n\t"
171 : "+a" (*eax), "+r" (*ebx), "+c" (*ecx), "+d" (*edx));
172 # else
173 // i386 without PIC, or x86-64. Things are easy and we can clobber any reg we want
174 __asm__ __volatile__ ("cpuid \n\t"
175 : "+a" (*eax), "+b" (*ebx), "+c" (*ecx), "+d" (*edx));
176 # endif
177 return 0;
179 # elif defined _MSC_VER
181 // MSVC (and icc on windows) on ia32 or x86-64
182 int cpuInfo[4];
183 __cpuidex(cpuInfo, level, ecxval);
184 *eax = static_cast<unsigned int>(cpuInfo[0]);
185 *ebx = static_cast<unsigned int>(cpuInfo[1]);
186 *ecx = static_cast<unsigned int>(cpuInfo[2]);
187 *edx = static_cast<unsigned int>(cpuInfo[3]);
188 return 0;
190 # else
192 // We are on x86, but without compiler support for cpuid if we get here
193 *eax = 0;
194 *ebx = 0;
195 *ecx = 0;
196 *edx = 0;
197 return 1;
199 # endif // check for inline asm on x86
201 #else
203 // We are not on x86
204 *eax = 0;
205 *ebx = 0;
206 *ecx = 0;
207 *edx = 0;
208 return 1;
210 #endif // x86
214 /*! \brief Detect x86 vendors by using the cpuid assembly instructions
216 * If support for the cpuid instruction is present, we check for Intel
217 * or AMD vendors.
219 * \return gmx::CpuInfo::Vendor::Intel, gmx::CpuInfo::Vendor::Amd. If neither
220 * Intel nor Amd can be identified, or if the code fails to execute,
221 * gmx::CpuInfo::Vendor::Unknown is returned.
223 CpuInfo::Vendor
224 detectX86Vendor()
226 unsigned int eax, ebx, ecx, edx;
227 CpuInfo::Vendor v = CpuInfo::Vendor::Unknown;
229 if (executeX86CpuID(0x0, 0, &eax, &ebx, &ecx, &edx) == 0)
231 if (ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69)
233 v = CpuInfo::Vendor::Intel; // ebx=='uneG', ecx=='letn', edx=='Ieni'
235 else if (ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65)
237 v = CpuInfo::Vendor::Amd; // ebx=='htuA', ecx=='DMAc', edx=='itne'
240 return v;
243 /*! \brief Simple utility function to set/clear feature in a set
245 * \param featureSet Pointer to the feature set to update
246 * \param feature The specific feature to set/clear
247 * \param registerValue Register value (returned from cpuid)
248 * \param bit Bit to check in registerValue. The feature will be
249 * added to the featureSet if this bit is set.
251 * \note Nothing is done if the bit is not set. In particular, this will not
252 * erase anything if the feature already exists in the set.
254 void
255 setFeatureFromBit(std::set<CpuInfo::Feature> * featureSet,
256 CpuInfo::Feature feature,
257 unsigned int registerValue,
258 unsigned char bit)
260 if (registerValue & (1 << bit))
262 featureSet->insert(feature);
266 /*! \brief Process x86 cpuinfo features that are common to Intel and AMD CPUs
268 * \param[out] brand String where to write the x86 brand string
269 * \param[out] family Major version of processor
270 * \param[out] model Middle version of processor
271 * \param[out] stepping Minor version of processor
272 * \param[out] features Feature set where supported features are inserted
274 void
275 detectX86Features(std::string * brand,
276 int * family,
277 int * model,
278 int * stepping,
279 std::set<CpuInfo::Feature> * features)
281 unsigned int eax, ebx, ecx, edx;
283 // Return if we cannot execute any levels
284 if (executeX86CpuID(0x0, 0, &eax, &ebx, &ecx, &edx) != 0)
286 return;
288 unsigned int maxStdLevel = eax;
290 if (maxStdLevel >= 0x1)
292 executeX86CpuID(0x1, 0, &eax, &ebx, &ecx, &edx);
294 *family = ((eax & 0x0ff00000) >> 20) + ((eax & 0x00000f00) >> 8);
295 *model = ((eax & 0x000f0000) >> 12) + ((eax & 0x000000f0) >> 4);
296 *stepping = (eax & 0x0000000f);
298 setFeatureFromBit(features, CpuInfo::Feature::X86_Sse3, ecx, 0 );
299 setFeatureFromBit(features, CpuInfo::Feature::X86_Pclmuldq, ecx, 1 );
300 setFeatureFromBit(features, CpuInfo::Feature::X86_Ssse3, ecx, 9 );
301 setFeatureFromBit(features, CpuInfo::Feature::X86_Fma, ecx, 12 );
302 setFeatureFromBit(features, CpuInfo::Feature::X86_Cx16, ecx, 13 );
303 setFeatureFromBit(features, CpuInfo::Feature::X86_Pdcm, ecx, 15 );
304 setFeatureFromBit(features, CpuInfo::Feature::X86_Pcid, ecx, 17 );
305 setFeatureFromBit(features, CpuInfo::Feature::X86_Sse4_1, ecx, 19 );
306 setFeatureFromBit(features, CpuInfo::Feature::X86_Sse4_2, ecx, 20 );
307 setFeatureFromBit(features, CpuInfo::Feature::X86_X2Apic, ecx, 21 );
308 setFeatureFromBit(features, CpuInfo::Feature::X86_Popcnt, ecx, 23 );
309 setFeatureFromBit(features, CpuInfo::Feature::X86_Tdt, ecx, 24 );
310 setFeatureFromBit(features, CpuInfo::Feature::X86_Aes, ecx, 25 );
311 setFeatureFromBit(features, CpuInfo::Feature::X86_Avx, ecx, 28 );
312 setFeatureFromBit(features, CpuInfo::Feature::X86_F16C, ecx, 29 );
313 setFeatureFromBit(features, CpuInfo::Feature::X86_Rdrnd, ecx, 30 );
315 setFeatureFromBit(features, CpuInfo::Feature::X86_Pse, edx, 3 );
316 setFeatureFromBit(features, CpuInfo::Feature::X86_Msr, edx, 5 );
317 setFeatureFromBit(features, CpuInfo::Feature::X86_Cx8, edx, 8 );
318 setFeatureFromBit(features, CpuInfo::Feature::X86_Apic, edx, 9 );
319 setFeatureFromBit(features, CpuInfo::Feature::X86_Cmov, edx, 15 );
320 setFeatureFromBit(features, CpuInfo::Feature::X86_Clfsh, edx, 19 );
321 setFeatureFromBit(features, CpuInfo::Feature::X86_Mmx, edx, 23 );
322 setFeatureFromBit(features, CpuInfo::Feature::X86_Sse2, edx, 26 );
323 setFeatureFromBit(features, CpuInfo::Feature::X86_Htt, edx, 28 );
326 if (maxStdLevel >= 0x7)
328 executeX86CpuID(0x7, 0, &eax, &ebx, &ecx, &edx);
330 setFeatureFromBit(features, CpuInfo::Feature::X86_Hle, ebx, 4 );
331 setFeatureFromBit(features, CpuInfo::Feature::X86_Avx2, ebx, 5 );
332 setFeatureFromBit(features, CpuInfo::Feature::X86_Rtm, ebx, 11 );
333 setFeatureFromBit(features, CpuInfo::Feature::X86_Avx512F, ebx, 16 );
334 setFeatureFromBit(features, CpuInfo::Feature::X86_Avx512PF, ebx, 26 );
335 setFeatureFromBit(features, CpuInfo::Feature::X86_Avx512ER, ebx, 27 );
336 setFeatureFromBit(features, CpuInfo::Feature::X86_Avx512CD, ebx, 28 );
337 setFeatureFromBit(features, CpuInfo::Feature::X86_Sha, ebx, 29 );
338 setFeatureFromBit(features, CpuInfo::Feature::X86_Avx512BW, ebx, 30 );
339 setFeatureFromBit(features, CpuInfo::Feature::X86_Avx512VL, ebx, 31 );
342 // Check whether Hyper-threading is really possible to enable in the hardware,
343 // not just technically supported by this generation of processors
344 if (features->count(CpuInfo::Feature::X86_Htt) && maxStdLevel >= 0x4)
346 executeX86CpuID(0x1, 0, &eax, &ebx, &ecx, &edx);
347 unsigned int maxLogicalCores = (ebx >> 16) & 0x0ff;
348 executeX86CpuID(0x4, 0, &eax, &ebx, &ecx, &edx);
349 unsigned int maxPhysicalCores = ((eax >> 26) & 0x3f) + 1;
350 if (maxLogicalCores/maxPhysicalCores < 2)
352 features->erase(CpuInfo::Feature::X86_Htt);
356 if (executeX86CpuID(0x80000000, 0, &eax, &ebx, &ecx, &edx) != 0)
358 // No point in continuing if we don't support any extended levels
359 return;
361 unsigned int maxExtLevel = eax;
363 if (maxExtLevel >= 0x80000001)
365 executeX86CpuID(0x80000001, 0, &eax, &ebx, &ecx, &edx);
367 setFeatureFromBit(features, CpuInfo::Feature::X86_Lahf, ecx, 0 );
368 setFeatureFromBit(features, CpuInfo::Feature::X86_Sse4A, ecx, 6 );
369 setFeatureFromBit(features, CpuInfo::Feature::X86_MisalignSse, ecx, 7 );
370 setFeatureFromBit(features, CpuInfo::Feature::X86_Xop, ecx, 11 );
371 setFeatureFromBit(features, CpuInfo::Feature::X86_Fma4, ecx, 16 );
372 setFeatureFromBit(features, CpuInfo::Feature::X86_PDPE1GB, edx, 26 );
373 setFeatureFromBit(features, CpuInfo::Feature::X86_Rdtscp, edx, 27 );
376 if (maxExtLevel >= 0x80000005)
378 // Get the x86 CPU brand string (3 levels, 16 bytes in each)
379 brand->clear();
380 for (unsigned int level = 0x80000002; level < 0x80000005; level++)
382 executeX86CpuID(level, 0, &eax, &ebx, &ecx, &edx);
383 // Add eax, ebx, ecx, edx contents as 4 chars each to the brand string
384 brand->append(reinterpret_cast<const char *>(&eax), sizeof(eax));
385 brand->append(reinterpret_cast<const char *>(&ebx), sizeof(ebx));
386 brand->append(reinterpret_cast<const char *>(&ecx), sizeof(ecx));
387 brand->append(reinterpret_cast<const char *>(&edx), sizeof(edx));
389 trimString(brand);
392 if (maxExtLevel >= 0x80000007)
394 executeX86CpuID(0x80000007, 0, &eax, &ebx, &ecx, &edx);
396 setFeatureFromBit(features, CpuInfo::Feature::X86_NonstopTsc, edx, 8 );
401 /*! \brief Return a vector with x86 APIC IDs for all threads
403 * \param haveX2Apic True if the processors supports x2APIC, otherwise vanilla APIC.
405 * \returns A new std::vector of unsigned integer APIC IDs, one for each
406 * logical processor in the system.
408 const std::vector<unsigned int>
409 detectX86ApicIDs(bool gmx_unused haveX2Apic)
411 std::vector<unsigned int> apicID;
413 // We cannot just ask for all APIC IDs, but must force execution on each
414 // hardware thread and extract the APIC id there.
415 #if HAVE_SCHED_AFFINITY && defined HAVE_SYSCONF
416 unsigned int eax, ebx, ecx, edx;
417 unsigned int nApic = sysconf(_SC_NPROCESSORS_ONLN);
418 cpu_set_t saveCpuSet;
419 cpu_set_t cpuSet;
420 sched_getaffinity(0, sizeof(cpu_set_t), &saveCpuSet);
421 CPU_ZERO(&cpuSet);
422 for (unsigned int i = 0; i < nApic; i++)
424 CPU_SET(i, &cpuSet);
425 sched_setaffinity(0, sizeof(cpu_set_t), &cpuSet);
426 if (haveX2Apic)
428 executeX86CpuID(0xb, 0, &eax, &ebx, &ecx, &edx);
429 apicID.push_back(edx);
431 else
433 executeX86CpuID(0x1, 0, &eax, &ebx, &ecx, &edx);
434 apicID.push_back(ebx >> 24);
436 CPU_CLR(i, &cpuSet);
438 sched_setaffinity(0, sizeof(cpu_set_t), &saveCpuSet);
439 #elif GMX_NATIVE_WINDOWS
440 unsigned int eax, ebx, ecx, edx;
441 SYSTEM_INFO sysinfo;
442 GetSystemInfo( &sysinfo );
443 unsigned int nApic = sysinfo.dwNumberOfProcessors;
444 unsigned int saveAffinity = SetThreadAffinityMask(GetCurrentThread(), 1);
445 for (DWORD_PTR i = 0; i < nApic; i++)
447 SetThreadAffinityMask(GetCurrentThread(), (((DWORD_PTR)1)<<i));
448 Sleep(0);
449 if (haveX2Apic)
451 executeX86CpuID(0xb, 0, &eax, &ebx, &ecx, &edx);
452 apicID.push_back(edx);
454 else
456 executeX86CpuID(0x1, 0, &eax, &ebx, &ecx, &edx);
457 apicID.push_back(ebx >> 24);
460 SetThreadAffinityMask(GetCurrentThread(), saveAffinity);
461 #endif
462 return apicID;
466 /*! \brief Utility to renumber indices extracted from APIC IDs
468 * \param v Vector with unsigned integer indices
470 * This routine returns the number of unique different elements found in the vector,
471 * and renumbers these starting from 0. For example, the vector {0,1,2,8,9,10,8,9,10,0,1,2}
472 * will be rewritten to {0,1,2,3,4,5,3,4,5,0,1,2}, and it returns 6 for the
473 * number of unique elements.
475 void
476 renumberIndex(std::vector<unsigned int> * v)
478 std::vector<unsigned int> sortedV (*v);
479 std::sort(sortedV.begin(), sortedV.end());
481 std::vector<unsigned int> uniqueSortedV (sortedV);
482 auto it = std::unique(uniqueSortedV.begin(), uniqueSortedV.end());
483 uniqueSortedV.resize( std::distance(uniqueSortedV.begin(), it) );
485 for (std::size_t i = 0; i < uniqueSortedV.size(); i++)
487 unsigned int val = uniqueSortedV[i];
488 std::replace_if(v->begin(), v->end(), [val](unsigned int &c) -> bool { return c == val; }, static_cast<unsigned int>(i));
493 /*! \brief Try to detect basic CPU topology information using x86 cpuid
495 * If x2APIC support is present, this is our first choice, otherwise we
496 * attempt to use old vanilla APIC.
498 * \return A new vector of entries with socket, core, hwthread information
499 * for each logical processor.
501 std::vector<CpuInfo::LogicalProcessor>
502 detectX86LogicalProcessors()
504 unsigned int eax;
505 unsigned int ebx;
506 unsigned int ecx;
507 unsigned int edx;
508 unsigned int maxStdLevel;
509 unsigned int maxExtLevel;
510 bool haveApic;
511 bool haveX2Apic;
513 std::vector<CpuInfo::LogicalProcessor> logicalProcessors;
515 // Find largest standard & extended level input values allowed
516 executeX86CpuID(0x0, 0, &eax, &ebx, &ecx, &edx);
517 maxStdLevel = eax;
518 executeX86CpuID(0x80000000, 0, &eax, &ebx, &ecx, &edx);
519 maxExtLevel = eax;
521 if (maxStdLevel >= 0x1)
523 executeX86CpuID(0x1, 0, &eax, &ebx, &ecx, &edx);
524 haveX2Apic = (ecx & (1 << 21)) && maxStdLevel >= 0xb;
525 haveApic = (edx & (1 << 9)) && maxExtLevel >= 0x80000008;
527 else
529 haveX2Apic = false,
530 haveApic = false;
533 if (haveX2Apic || haveApic)
535 unsigned int hwThreadBits;
536 unsigned int coreBits;
537 // Get bits for cores and hardware threads
538 if (haveX2Apic)
540 executeX86CpuID(0xb, 0, &eax, &ebx, &ecx, &edx);
541 hwThreadBits = eax & 0x1f;
542 executeX86CpuID(0xb, 1, &eax, &ebx, &ecx, &edx);
543 coreBits = (eax & 0x1f) - hwThreadBits;
545 else // haveApic
547 // AMD without x2APIC does not support SMT - there are no hwthread bits in apic ID
548 hwThreadBits = 0;
549 // Get number of core bits in apic ID - try modern extended method first
550 executeX86CpuID(0x80000008, 0, &eax, &ebx, &ecx, &edx);
551 coreBits = (ecx >> 12) & 0xf;
552 if (coreBits == 0)
554 // Legacy method for old single/dual core AMD CPUs
555 int i = ecx & 0xf;
556 while (i >> coreBits)
558 coreBits++;
563 std::vector<unsigned int> apicID = detectX86ApicIDs(haveX2Apic);
565 if (!apicID.empty())
567 // APIC IDs can be buggy, and it is always a mess. Typically more bits are
568 // reserved than needed, and the numbers might not increment by 1 even in
569 // a single socket or core. Extract, renumber, and check that things make sense.
570 unsigned int hwThreadMask = (1 << hwThreadBits) - 1;
571 unsigned int coreMask = (1 << coreBits) - 1;
572 std::vector<unsigned int> hwThreadRanks;
573 std::vector<unsigned int> coreRanks;
574 std::vector<unsigned int> socketRanks;
576 for (auto a : apicID)
578 hwThreadRanks.push_back( static_cast<int>( a & hwThreadMask ) );
579 coreRanks.push_back( static_cast<int>( ( a >> hwThreadBits ) & coreMask ) );
580 socketRanks.push_back( static_cast<int>( a >> ( coreBits + hwThreadBits ) ) );
583 renumberIndex(&hwThreadRanks);
584 renumberIndex(&coreRanks);
585 renumberIndex(&socketRanks);
587 unsigned int hwThreadRankSize = 1 + *std::max_element(hwThreadRanks.begin(), hwThreadRanks.end());
588 unsigned int coreRankSize = 1 + *std::max_element(coreRanks.begin(), coreRanks.end());
589 unsigned int socketRankSize = 1 + *std::max_element(socketRanks.begin(), socketRanks.end());
591 if (socketRankSize * coreRankSize * hwThreadRankSize == apicID.size() )
593 // Alright, everything looks consistent, so put it in the result
594 for (std::size_t i = 0; i < apicID.size(); i++)
596 // While the internal APIC IDs are always unsigned integers, we also cast to
597 // plain integers for the externally exposed vectors, since that will make
598 // it possible to use '-1' for invalid entries in the future.
599 logicalProcessors.push_back( { int(socketRanks[i]), int(coreRanks[i]), int(hwThreadRanks[i]) } );
604 return logicalProcessors; // Will only have contents if everything worked
608 /******************************************************************************
610 * Generic Linux detection by parsing /proc/cpuinfo *
612 ******************************************************************************/
614 /*! \brief Parse /proc/cpuinfo into a simple string map
616 * This routine will read the contents of /proc/cpuinfo, and for each
617 * line that is not empty we will assign the (trimmed) string to the right of
618 * the colon as a key, and the left-hand side as the value in the map.
619 * For multi-processor systems where lines are repeated the latter lines will
620 * overwrite the first occurrence.
622 * \return New map with the contents. If the file is not available, the returned
623 * map will be empty.
625 const std::map<std::string, std::string>
626 parseProcCpuInfo()
628 std::ifstream procCpuInfo("/proc/cpuinfo");
629 std::string line;
630 std::map<std::string, std::string> cpuInfo;
632 while (std::getline(procCpuInfo, line))
634 if (!line.empty())
636 std::stringstream iss(line);
637 std::string key;
638 std::string val;
639 std::getline(iss, key, ':'); // part before colon
640 std::getline(iss, val); // part after colon
641 trimString(&key);
642 trimString(&val);
643 // put it in the map. This will overwrite previous processors, but we don't care.
644 cpuInfo[key] = val;
647 return cpuInfo;
651 /*! \brief Try to detect vendor from /proc/cpuinfo
653 * \param cpuInfo Map returned from parseProcCpuinfo()
655 * This routine tries to match a few common labels in /proc/cpuinfo to see if
656 * they begin with the name of a standard vendor. If the file cannot be read
657 * or if no match is found, we return gmx::CpuInfo::Vendor::Unknown.
659 CpuInfo::Vendor
660 detectProcCpuInfoVendor(const std::map<std::string, std::string> &cpuInfo)
662 const std::map<std::string, CpuInfo::Vendor> testVendors =
664 { "GenuineIntel", CpuInfo::Vendor::Intel },
665 { "Intel", CpuInfo::Vendor::Intel },
666 { "AuthenticAmd", CpuInfo::Vendor::Amd },
667 { "AMD", CpuInfo::Vendor::Amd },
668 { "ARM", CpuInfo::Vendor::Arm },
669 { "AArch64", CpuInfo::Vendor::Arm },
670 { "Fujitsu", CpuInfo::Vendor::Fujitsu },
671 { "IBM", CpuInfo::Vendor::Ibm },
672 { "POWER", CpuInfo::Vendor::Ibm }
675 // For each label in /proc/cpuinfo, compare the value to the name in the
676 // testNames map above, and if it's a match return the vendor.
677 for (auto &l : { "vendor_id", "vendor", "manufacture", "model", "processor", "cpu" })
679 if (cpuInfo.count(l))
681 // there was a line with this left-hand side in /proc/cpuinfo
682 const std::string &s1 = cpuInfo.at(l);
684 for (auto &t : testVendors)
686 const std::string &s2 = t.first;
688 // If the entire name we are testing (s2) matches the first part of
689 // the string after the colon in /proc/cpuinfo (s1) we found our vendor
690 if (std::equal(s2.begin(), s2.end(), s1.begin(),
691 [](const char &x, const char &y) -> bool { return tolower(x) == tolower(y); }))
693 return t.second;
698 return CpuInfo::Vendor::Unknown;
702 /*! \brief Detect IBM processor name and features from /proc/cpuinfo
704 * \param cpuInfo Map returned from parseProcCpuinfo()
705 * \param[out] brand String where to write the brand string
706 * \param[out] features Feature set where supported features are inserted
708 * This routine tries to match a few common labels in /proc/cpuinfo to see if
709 * we can find the processor name and features. It is likely fragile.
711 void
712 detectProcCpuInfoIbm(const std::map<std::string, std::string> &cpuInfo,
713 std::string * brand,
714 std::set<CpuInfo::Feature> * features)
716 // Get brand string from 'cpu' label if present, otherwise 'Processor'
717 if (cpuInfo.count("cpu"))
719 *brand = cpuInfo.at("cpu");
721 else if (cpuInfo.count("Processor"))
723 *brand = cpuInfo.at("Processor");
726 if (brand->find("A2") != std::string::npos)
728 // If the processor identification contains "A2", this is BlueGene/Q with QPX
729 features->insert(CpuInfo::Feature::Ibm_Qpx);
732 for (auto &l : { "model name", "model", "Processor", "cpu" })
734 if (cpuInfo.count(l))
736 std::string s1 = cpuInfo.at(l);
737 std::transform(s1.begin(), s1.end(), s1.begin(), ::tolower);
739 if (s1.find("altivec") != std::string::npos)
741 features->insert(CpuInfo::Feature::Ibm_Vmx);
742 // If this is a power6, we only have VMX. All later processors have VSX.
743 if (s1.find("power6") == std::string::npos)
745 features->insert(CpuInfo::Feature::Ibm_Vsx);
753 /*! \brief Detect ARM processor name and features from /proc/cpuinfo
755 * \param cpuInfo Map returned from parseProcCpuinfo()
756 * \param[out] brand String where to write the brand string
757 * \param[out] family Major version of processor
758 * \param[out] model Middle version of processor
759 * \param[out] stepping Minor version of processor
760 * \param[out] features Feature set where supported features are inserted
762 * This routine tries to match a few common labels in /proc/cpuinfo to see if
763 * we can find the processor name and features. It is likely fragile.
765 void
766 detectProcCpuInfoArm(const std::map<std::string, std::string> &cpuInfo,
767 std::string * brand,
768 int * family,
769 int * model,
770 int * stepping,
771 std::set<CpuInfo::Feature> * features)
773 if (cpuInfo.count("Processor"))
775 *brand = cpuInfo.at("Processor");
777 if (cpuInfo.count("CPU architecture"))
779 *family = std::strtol(cpuInfo.at("CPU architecture").c_str(), nullptr, 10);
780 // For some 64-bit CPUs it appears to say 'AArch64' instead
781 if (*family == 0 && cpuInfo.at("CPU architecture").find("AArch64") != std::string::npos)
783 *family = 8; // fragile - no idea how a future ARMv9 will be represented in this case
786 if (cpuInfo.count("CPU variant"))
788 *model = std::strtol(cpuInfo.at("CPU variant").c_str(), nullptr, 16);
790 if (cpuInfo.count("CPU revision"))
792 *stepping = std::strtol(cpuInfo.at("CPU revision").c_str(), nullptr, 10);
795 if (cpuInfo.count("Features"))
797 const std::string &s = cpuInfo.at("Features");
798 if (s.find("neon") != std::string::npos)
800 features->insert(CpuInfo::Feature::Arm_Neon);
802 if (s.find("asimd") != std::string::npos)
804 // At least Jetson TX1 runs a 32-bit environment by default, although
805 // the kernel is 64-bits, and reports asimd feature flags. We cannot
806 // use Neon-asimd in this case, so make sure we are on a 64-bit platform.
807 if (sizeof(void *) == 8)
809 features->insert(CpuInfo::Feature::Arm_NeonAsimd);
816 /*! \brief Try to detect vendor, cpu and features from /proc/cpuinfo
818 * \param[out] vendor Detected hardware vendor
819 * \param[out] brand String where to write the brand string
820 * \param[out] family Major version of processor
821 * \param[out] model Middle version of processor
822 * \param[out] stepping Minor version of processor
823 * \param[out] features Feature set where supported features are inserted
825 * This routine reads the /proc/cpuinfo file into a map and calls subroutines
826 * that attempt to parse by matching keys and values to known strings. It is
827 * much more fragile than our x86 detection, but it does not depend on
828 * specific system calls, intrinsics or assembly instructions.
830 void
831 detectProcCpuInfo(CpuInfo::Vendor * vendor,
832 std::string * brand,
833 int * family,
834 int * model,
835 int * stepping,
836 std::set<CpuInfo::Feature> * features)
838 std::map<std::string, std::string> cpuInfo = parseProcCpuInfo();
840 if (*vendor == CpuInfo::Vendor::Unknown)
842 *vendor = detectProcCpuInfoVendor(cpuInfo);
845 // Unfortunately there is no standard for contents in /proc/cpuinfo. We cannot
846 // indiscriminately look for e.g. 'cpu' since it could be either name or an index.
847 // To handle this slightly better we use one subroutine per vendor.
848 switch (*vendor)
850 case CpuInfo::Vendor::Ibm:
851 detectProcCpuInfoIbm(cpuInfo, brand, features);
852 break;
854 case CpuInfo::Vendor::Arm:
855 detectProcCpuInfoArm(cpuInfo, brand, family, model, stepping, features);
856 break;
858 default:
859 // We only have a single check for fujitsu for now
860 #ifdef __HPC_ACE__
861 features->insert(CpuInfo::Feature::Fujitsu_HpcAce);
862 #endif
863 break;
866 /*! \endcond */
867 } // namespace anonymous
870 // static
871 CpuInfo CpuInfo::detect()
873 CpuInfo result;
875 #if defined __i386__ || defined __i386 || defined _X86_ || defined _M_IX86 || \
876 defined __x86_64__ || defined __amd64__ || defined _M_X64 || defined _M_AMD64
878 result.vendor_ = detectX86Vendor();
880 if (result.vendor_ == CpuInfo::Vendor::Intel)
882 result.features_.insert(CpuInfo::Feature::X86_Intel);
884 else if (result.vendor_ == CpuInfo::Vendor::Amd)
886 result.features_.insert(CpuInfo::Feature::X86_Amd);
888 detectX86Features(&result.brandString_, &result.family_, &result.model_,
889 &result.stepping_, &result.features_);
890 result.logicalProcessors_ = detectX86LogicalProcessors();
891 #else // not x86
893 # if defined __arm__ || defined __arm || defined _M_ARM || defined __aarch64__
894 result.vendor_ = CpuInfo::Vendor::Arm;
895 # elif defined __powerpc__ || defined __ppc__ || defined __PPC__
896 result.vendor_ = CpuInfo::Vendor::Ibm;
897 # endif
899 # if defined __aarch64__ || ( defined _M_ARM && _M_ARM >= 8 )
900 result.features_.insert(Feature::Arm_Neon); // ARMv8 always has Neon
901 result.features_.insert(Feature::Arm_NeonAsimd); // ARMv8 always has Neon-asimd
902 # endif
904 // On Linux we might be able to find information in /proc/cpuinfo. If vendor or brand
905 // is set to a known value this routine will not overwrite it.
906 detectProcCpuInfo(&result.vendor_, &result.brandString_, &result.family_,
907 &result.model_, &result.stepping_, &result.features_);
909 #endif // x86 or not
911 if (!result.logicalProcessors_.empty())
913 result.supportLevel_ = CpuInfo::SupportLevel::LogicalProcessorInfo;
915 else if (!result.features_.empty())
917 result.supportLevel_ = CpuInfo::SupportLevel::Features;
919 else if (result.vendor_ != CpuInfo::Vendor::Unknown
920 || result.brandString_ != "Unknown CPU brand")
922 result.supportLevel_ = CpuInfo::SupportLevel::Name;
924 else
926 result.supportLevel_ = CpuInfo::SupportLevel::None;
929 return result;
933 CpuInfo::CpuInfo()
934 : vendor_(CpuInfo::Vendor::Unknown), brandString_("Unknown CPU brand"),
935 family_(0), model_(0), stepping_(0)
940 const std::map<CpuInfo::Vendor, std::string>
941 CpuInfo::s_vendorStrings_ =
943 { CpuInfo::Vendor::Unknown, "Unknown vendor" },
944 { CpuInfo::Vendor::Intel, "Intel" },
945 { CpuInfo::Vendor::Amd, "AMD" },
946 { CpuInfo::Vendor::Fujitsu, "Fujitsu" },
947 { CpuInfo::Vendor::Ibm, "IBM" },
948 { CpuInfo::Vendor::Arm, "ARM" }
952 const std::map<CpuInfo::Feature, std::string>
953 CpuInfo::s_featureStrings_ =
955 { CpuInfo::Feature::X86_Aes, "aes" },
956 { CpuInfo::Feature::X86_Amd, "amd" },
957 { CpuInfo::Feature::X86_Apic, "apic" },
958 { CpuInfo::Feature::X86_Avx, "avx" },
959 { CpuInfo::Feature::X86_Avx2, "avx2" },
960 { CpuInfo::Feature::X86_Avx512F, "avx512f" },
961 { CpuInfo::Feature::X86_Avx512PF, "avx512pf" },
962 { CpuInfo::Feature::X86_Avx512ER, "avx512er" },
963 { CpuInfo::Feature::X86_Avx512CD, "avx512cd" },
964 { CpuInfo::Feature::X86_Avx512BW, "avx512bw" },
965 { CpuInfo::Feature::X86_Avx512VL, "avx512vl" },
966 { CpuInfo::Feature::X86_Clfsh, "clfsh" },
967 { CpuInfo::Feature::X86_Cmov, "cmov" },
968 { CpuInfo::Feature::X86_Cx8, "cx8" },
969 { CpuInfo::Feature::X86_Cx16, "cx16" },
970 { CpuInfo::Feature::X86_F16C, "f16c" },
971 { CpuInfo::Feature::X86_Fma, "fma" },
972 { CpuInfo::Feature::X86_Fma4, "fma4" },
973 { CpuInfo::Feature::X86_Hle, "hle" },
974 { CpuInfo::Feature::X86_Htt, "htt" },
975 { CpuInfo::Feature::X86_Intel, "intel" },
976 { CpuInfo::Feature::X86_Lahf, "lahf" },
977 { CpuInfo::Feature::X86_MisalignSse, "misalignsse" },
978 { CpuInfo::Feature::X86_Mmx, "mmx" },
979 { CpuInfo::Feature::X86_Msr, "msr" },
980 { CpuInfo::Feature::X86_NonstopTsc, "nonstop_tsc" },
981 { CpuInfo::Feature::X86_Pcid, "pcid" },
982 { CpuInfo::Feature::X86_Pclmuldq, "pclmuldq" },
983 { CpuInfo::Feature::X86_Pdcm, "pdcm" },
984 { CpuInfo::Feature::X86_PDPE1GB, "pdpe1gb" },
985 { CpuInfo::Feature::X86_Popcnt, "popcnt" },
986 { CpuInfo::Feature::X86_Pse, "pse" },
987 { CpuInfo::Feature::X86_Rdrnd, "rdrnd" },
988 { CpuInfo::Feature::X86_Rdtscp, "rdtscp" },
989 { CpuInfo::Feature::X86_Rtm, "rtm" },
990 { CpuInfo::Feature::X86_Sha, "sha" },
991 { CpuInfo::Feature::X86_Sse2, "sse2" },
992 { CpuInfo::Feature::X86_Sse3, "sse3" },
993 { CpuInfo::Feature::X86_Sse4A, "sse4a" },
994 { CpuInfo::Feature::X86_Sse4_1, "sse4.1" },
995 { CpuInfo::Feature::X86_Sse4_2, "sse4.2" },
996 { CpuInfo::Feature::X86_Ssse3, "ssse3" },
997 { CpuInfo::Feature::X86_Tdt, "tdt" },
998 { CpuInfo::Feature::X86_X2Apic, "x2apic" },
999 { CpuInfo::Feature::X86_Xop, "xop" },
1000 { CpuInfo::Feature::Arm_Neon, "neon" },
1001 { CpuInfo::Feature::Arm_NeonAsimd, "neon_asimd" },
1002 { CpuInfo::Feature::Ibm_Qpx, "qpx" },
1003 { CpuInfo::Feature::Ibm_Vmx, "vmx" },
1004 { CpuInfo::Feature::Ibm_Vsx, "vsx" },
1005 { CpuInfo::Feature::Fujitsu_HpcAce, "hpc-ace" }
1009 bool
1010 cpuIsX86Nehalem(const CpuInfo &cpuInfo)
1012 return (cpuInfo.vendor() == gmx::CpuInfo::Vendor::Intel &&
1013 cpuInfo.family() == 6 &&
1014 (cpuInfo.model() == 0x2E || cpuInfo.model() == 0x1A ||
1015 cpuInfo.model() == 0x1E || cpuInfo.model() == 0x2F ||
1016 cpuInfo.model() == 0x2C || cpuInfo.model() == 0x25) );
1019 } // namespace gmx
1021 #ifdef GMX_CPUINFO_STANDALONE
1023 main(int argc, char **argv)
1025 if (argc < 2)
1027 fprintf(stdout,
1028 "Usage:\n\n%s [flags]\n\n"
1029 "Available flags:\n"
1030 "-vendor Print CPU vendor.\n"
1031 "-brand Print CPU brand string.\n"
1032 "-family Print CPU family version.\n"
1033 "-model Print CPU model version.\n"
1034 "-stepping Print CPU stepping version.\n"
1035 "-features Print CPU feature flags.\n",
1036 argv[0]);
1037 exit(1);
1040 std::string arg(argv[1]);
1041 gmx::CpuInfo cpuInfo(gmx::CpuInfo::detect());
1043 if (arg == "-vendor")
1045 printf("%s\n", cpuInfo.vendorString().c_str());
1047 else if (arg == "-brand")
1049 printf("%s\n", cpuInfo.brandString().c_str());
1051 else if (arg == "-family")
1053 printf("%d\n", cpuInfo.family());
1055 else if (arg == "-model")
1057 printf("%d\n", cpuInfo.model());
1059 else if (arg == "-stepping")
1061 printf("%d\n", cpuInfo.stepping());
1063 else if (arg == "-features")
1065 for (auto &f : cpuInfo.featureSet() )
1067 printf(" %s", cpuInfo.featureString(f).c_str());
1069 printf(" \n"); // extra space so we can grep output for " <feature> " in CMake
1071 else if (arg == "-topology")
1073 // Undocumented debug option, usually not present in standalone version
1074 for (auto &t : cpuInfo.logicalProcessors() )
1076 printf("%3u %3u %3u\n", t.socketRankInMachine, t.coreRankInSocket, t.hwThreadRankInCore);
1079 return 0;
1081 #endif