2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
43 #include "gromacs/commandline/pargs.h"
44 #include "gromacs/commandline/viewit.h"
45 #include "gromacs/correlationfunctions/autocorr.h"
46 #include "gromacs/correlationfunctions/expfit.h"
47 #include "gromacs/correlationfunctions/integrate.h"
48 #include "gromacs/fileio/xvgr.h"
49 #include "gromacs/gmxana/gmx_ana.h"
50 #include "gromacs/gmxana/gstat.h"
51 #include "gromacs/linearalgebra/matrix.h"
52 #include "gromacs/math/functions.h"
53 #include "gromacs/math/utilities.h"
54 #include "gromacs/math/vec.h"
55 #include "gromacs/statistics/statistics.h"
56 #include "gromacs/utility/arraysize.h"
57 #include "gromacs/utility/fatalerror.h"
58 #include "gromacs/utility/futil.h"
59 #include "gromacs/utility/pleasecite.h"
60 #include "gromacs/utility/smalloc.h"
61 #include "gromacs/utility/snprintf.h"
63 /* must correspond to char *avbar_opt[] declared in main() */
65 avbarSEL
, avbarNONE
, avbarSTDDEV
, avbarERROR
, avbar90
, avbarNR
68 static void power_fit(int n
, int nset
, real
**val
, real
*t
)
70 real
*x
, *y
, quality
, a
, b
, r
;
78 for (i
= 0; i
< n
; i
++)
82 x
[i
] = std::log(t
[i
]);
88 fprintf(stdout
, "First time is not larger than 0, using index number as time for power fit\n");
89 for (i
= 0; i
< n
; i
++)
91 x
[i
] = std::log1p(static_cast<real
>(i
));
95 for (s
= 0; s
< nset
; s
++)
97 for (i
= 0; i
< n
&& val
[s
][i
] >= 0; i
++)
99 y
[i
] = std::log(val
[s
][i
]);
103 fprintf(stdout
, "Will power fit up to point %d, since it is not larger than 0\n", i
);
105 lsq_y_ax_b(i
, x
, y
, &a
, &b
, &r
, &quality
);
106 fprintf(stdout
, "Power fit set %3d: error %.3f a %g b %g\n",
107 s
+1, quality
, a
, std::exp(b
));
114 static real
cosine_content(int nhp
, int n
, const real
*y
)
115 /* Assumes n equidistant points */
117 double fac
, cosyint
, yyint
;
125 fac
= M_PI
*nhp
/(n
-1);
129 for (i
= 0; i
< n
; i
++)
131 cosyint
+= std::cos(fac
*i
)*y
[i
];
135 return 2*cosyint
*cosyint
/(n
*yyint
);
138 static void plot_coscont(const char *ccfile
, int n
, int nset
, real
**val
,
139 const gmx_output_env_t
*oenv
)
145 fp
= xvgropen(ccfile
, "Cosine content", "set / half periods", "cosine content",
148 for (s
= 0; s
< nset
; s
++)
150 cc
= cosine_content(s
+1, n
, val
[s
]);
151 fprintf(fp
, " %d %g\n", s
+1, cc
);
152 fprintf(stdout
, "Cosine content of set %d with %.1f periods: %g\n",
155 fprintf(stdout
, "\n");
160 static void regression_analysis(int n
, gmx_bool bXYdy
,
161 real
*x
, int nset
, real
**val
)
163 real S
, chi2
, a
, b
, da
, db
, r
= 0;
166 if (bXYdy
|| (nset
== 1))
168 printf("Fitting data to a function f(x) = ax + b\n");
169 printf("Minimizing residual chi2 = Sum_i w_i [f(x_i) - y_i]2\n");
170 printf("Error estimates will be given if w_i (sigma) values are given\n");
171 printf("(use option -xydy).\n\n");
174 if ((ok
= lsq_y_ax_b_error(n
, x
, val
[0], val
[1], &a
, &b
, &da
, &db
, &r
, &S
)) != estatsOK
)
176 gmx_fatal(FARGS
, "Error fitting the data: %s",
177 gmx_stats_message(ok
));
182 if ((ok
= lsq_y_ax_b(n
, x
, val
[0], &a
, &b
, &r
, &S
)) != estatsOK
)
184 gmx_fatal(FARGS
, "Error fitting the data: %s",
185 gmx_stats_message(ok
));
188 chi2
= gmx::square((n
-2)*S
);
189 printf("Chi2 = %g\n", chi2
);
190 printf("S (Sqrt(Chi2/(n-2)) = %g\n", S
);
191 printf("Correlation coefficient = %.1f%%\n", 100*r
);
195 printf("a = %g +/- %g\n", a
, da
);
196 printf("b = %g +/- %g\n", b
, db
);
200 printf("a = %g\n", a
);
201 printf("b = %g\n", b
);
206 double chi2
, *a
, **xx
, *y
;
211 for (j
= 0; (j
< nset
-1); j
++)
215 for (i
= 0; (i
< n
); i
++)
218 for (j
= 1; (j
< nset
); j
++)
220 xx
[j
-1][i
] = val
[j
][i
];
224 chi2
= multi_regression(nullptr, n
, y
, nset
-1, xx
, a
);
225 printf("Fitting %d data points in %d sets\n", n
, nset
-1);
226 printf("chi2 = %g\n", chi2
);
228 for (i
= 0; (i
< nset
-1); i
++)
240 static void histogram(const char *distfile
, real binwidth
, int n
, int nset
, real
**val
,
241 const gmx_output_env_t
*oenv
)
245 double minval
, maxval
;
251 for (s
= 0; s
< nset
; s
++)
253 for (i
= 0; i
< n
; i
++)
255 if (val
[s
][i
] < minval
)
259 else if (val
[s
][i
] > maxval
)
266 minval
= binwidth
*std::floor(minval
/binwidth
);
267 maxval
= binwidth
*std::ceil(maxval
/binwidth
);
274 nbin
= gmx::roundToInt(((maxval
- minval
)/binwidth
) + 1);
275 fprintf(stderr
, "Making distributions with %d bins\n", nbin
);
277 fp
= xvgropen(distfile
, "Distribution", "", "", oenv
);
278 for (s
= 0; s
< nset
; s
++)
280 for (i
= 0; i
< nbin
; i
++)
284 for (i
= 0; i
< n
; i
++)
286 histo
[gmx::roundToInt((val
[s
][i
] - minval
)/binwidth
)]++;
288 for (i
= 0; i
< nbin
; i
++)
290 fprintf(fp
, " %g %g\n", minval
+i
*binwidth
, static_cast<double>(histo
[i
])/(n
*binwidth
));
294 fprintf(fp
, "%s\n", output_env_get_print_xvgr_codes(oenv
) ? "&" : "");
300 static int real_comp(const void *a
, const void *b
)
302 real dif
= *reinterpret_cast<const real
*>(a
) - *reinterpret_cast<const real
*>(b
);
318 static void average(const char *avfile
, int avbar_opt
,
319 int n
, int nset
, real
**val
, real
*t
)
326 fp
= gmx_ffopen(avfile
, "w");
327 if ((avbar_opt
== avbarERROR
) && (nset
== 1))
329 avbar_opt
= avbarNONE
;
331 if (avbar_opt
!= avbarNONE
)
333 if (avbar_opt
== avbar90
)
336 fprintf(fp
, "@TYPE xydydy\n");
337 edge
= gmx::roundToInt(nset
*0.05);
338 fprintf(stdout
, "Errorbars: discarding %d points on both sides: %d%%"
339 " interval\n", edge
, gmx::roundToInt(100.*(nset
-2*edge
)/nset
));
343 fprintf(fp
, "@TYPE xydy\n");
347 for (i
= 0; i
< n
; i
++)
350 for (s
= 0; s
< nset
; s
++)
355 fprintf(fp
, " %g %g", t
[i
], av
);
357 if (avbar_opt
!= avbarNONE
)
359 if (avbar_opt
== avbar90
)
361 for (s
= 0; s
< nset
; s
++)
365 qsort(tmp
, nset
, sizeof(tmp
[0]), real_comp
);
366 fprintf(fp
, " %g %g", tmp
[nset
-1-edge
]-av
, av
-tmp
[edge
]);
370 for (s
= 0; s
< nset
; s
++)
372 var
+= gmx::square(val
[s
][i
]-av
);
374 if (avbar_opt
== avbarSTDDEV
)
376 err
= std::sqrt(var
/nset
);
380 err
= std::sqrt(var
/(nset
*(nset
-1)));
382 fprintf(fp
, " %g", err
);
389 if (avbar_opt
== avbar90
)
395 /*! \brief Compute final error estimate.
397 * See Eqn A17, Hess, JCP 116 (2002) 209-217 for details.
399 static real
optimal_error_estimate(double sigma
, const double fitparm
[], real tTotal
)
401 // When sigma is zero, the fitparm data can be uninitialized
406 double ss
= fitparm
[1]*fitparm
[0]+(1-fitparm
[1])*fitparm
[2];
407 if ((tTotal
<= 0) || (ss
<= 0))
409 fprintf(stderr
, "Problem in error estimate: T = %g, ss = %g\n",
414 return sigma
*std::sqrt(2*ss
/tTotal
);
417 static void estimate_error(const char *eefile
, int nb_min
, int resol
, int n
,
418 int nset
, double *av
, double *sig
, real
**val
, real dt
,
419 gmx_bool bFitAc
, gmx_bool bSingleExpFit
, gmx_bool bAllowNegLTCorr
,
420 const gmx_output_env_t
*oenv
)
423 int bs
, prev_bs
, nbs
, nb
;
428 real
*tbs
, *ybs
, rtmp
, dens
, *fitsig
, twooe
, tau1_est
, tau_sig
;
430 real ee
, a
, tau1
, tau2
;
434 fprintf(stdout
, "The number of points is smaller than 4, can not make an error estimate\n");
439 fp
= xvgropen(eefile
, "Error estimates",
440 "Block size (time)", "Error estimate", oenv
);
441 if (output_env_get_print_xvgr_codes(oenv
))
444 "@ subtitle \"using block averaging, total time %g (%d points)\"\n",
448 xvgr_legend(fp
, 2*nset
, leg
, oenv
);
451 spacing
= std::pow(2.0, 1.0/resol
);
455 for (s
= 0; s
< nset
; s
++)
462 bs
= n
/static_cast<int>(nbr
);
467 for (i
= 0; i
< nb
; i
++)
470 for (j
= 0; j
< bs
; j
++)
472 blav
+= val
[s
][bs
*i
+j
];
474 var
+= gmx::square(av
[s
] - blav
/bs
);
483 ybs
[nbs
] = var
/(nb
*(nb
-1.0))*(n
*dt
)/(sig
[s
]*sig
[s
]);
502 for (i
= 0; i
< nbs
/2; i
++)
505 tbs
[i
] = tbs
[nbs
-1-i
];
508 ybs
[i
] = ybs
[nbs
-1-i
];
511 /* The initial slope of the normalized ybs^2 is 1.
512 * For a single exponential autocorrelation: ybs(tau1) = 2/e tau1
513 * From this we take our initial guess for tau1.
515 twooe
= 2.0/std::exp(1.0);
522 while (i
< nbs
- 1 &&
523 (ybs
[i
] > ybs
[i
+1] || ybs
[i
] > twooe
*tau1_est
));
527 fprintf(stdout
, "Data set %d has strange time correlations:\n"
528 "the std. error using single points is larger than that of blocks of 2 points\n"
529 "The error estimate might be inaccurate, check the fit\n",
531 /* Use the total time as tau for the fitting weights */
532 tau_sig
= (n
- 1)*dt
;
541 fprintf(debug
, "set %d tau1 estimate %f\n", s
+1, tau1_est
);
544 /* Generate more or less appropriate sigma's,
545 * also taking the density of points into account.
547 for (i
= 0; i
< nbs
; i
++)
551 dens
= tbs
[1]/tbs
[0] - 1;
555 dens
= tbs
[nbs
-1]/tbs
[nbs
-2] - 1;
559 dens
= 0.5*(tbs
[i
+1]/tbs
[i
-1] - 1);
561 fitsig
[i
] = std::sqrt((tau_sig
+ tbs
[i
])/dens
);
566 fitparm
[0] = tau1_est
;
568 /* We set the initial guess for tau2
569 * to halfway between tau1_est and the total time (on log scale).
571 fitparm
[2] = std::sqrt(tau1_est
*(n
-1)*dt
);
572 do_lmfit(nbs
, ybs
, fitsig
, 0, tbs
, 0, dt
*n
, oenv
,
573 bDebugMode(), effnERREST
, fitparm
, 0,
576 if (bSingleExpFit
|| fitparm
[0] < 0 || fitparm
[2] < 0 || fitparm
[1] < 0
577 || (fitparm
[1] > 1 && !bAllowNegLTCorr
) || fitparm
[2] > (n
-1)*dt
)
581 if (fitparm
[2] > (n
-1)*dt
)
584 "Warning: tau2 is longer than the length of the data (%g)\n"
585 " the statistics might be bad\n",
590 fprintf(stdout
, "a fitted parameter is negative\n");
592 fprintf(stdout
, "invalid fit: e.e. %g a %g tau1 %g tau2 %g\n",
593 optimal_error_estimate(sig
[s
], fitparm
, n
*dt
),
594 fitparm
[1], fitparm
[0], fitparm
[2]);
595 /* Do a fit with tau2 fixed at the total time.
596 * One could also choose any other large value for tau2.
598 fitparm
[0] = tau1_est
;
600 fitparm
[2] = (n
-1)*dt
;
601 fprintf(stdout
, "Will fix tau2 at the total time: %g\n", fitparm
[2]);
602 do_lmfit(nbs
, ybs
, fitsig
, 0, tbs
, 0, dt
*n
, oenv
, bDebugMode(),
603 effnERREST
, fitparm
, 4, nullptr);
605 if (bSingleExpFit
|| fitparm
[0] < 0 || fitparm
[1] < 0
606 || (fitparm
[1] > 1 && !bAllowNegLTCorr
))
610 fprintf(stdout
, "a fitted parameter is negative\n");
611 fprintf(stdout
, "invalid fit: e.e. %g a %g tau1 %g tau2 %g\n",
612 optimal_error_estimate(sig
[s
], fitparm
, n
*dt
),
613 fitparm
[1], fitparm
[0], fitparm
[2]);
615 /* Do a single exponential fit */
616 fprintf(stderr
, "Will use a single exponential fit for set %d\n", s
+1);
617 fitparm
[0] = tau1_est
;
620 do_lmfit(nbs
, ybs
, fitsig
, 0, tbs
, 0, dt
*n
, oenv
, bDebugMode(),
621 effnERREST
, fitparm
, 6, nullptr);
624 ee
= optimal_error_estimate(sig
[s
], fitparm
, n
*dt
);
629 fprintf(stdout
, "Set %3d: err.est. %g a %g tau1 %g tau2 %g\n",
630 s
+1, ee
, a
, tau1
, tau2
);
631 if (output_env_get_xvg_format(oenv
) == exvgXMGR
)
633 fprintf(fp
, "@ legend string %d \"av %f\"\n", 2*s
, av
[s
]);
634 fprintf(fp
, "@ legend string %d \"ee %6g\"\n", 2*s
+1,
635 optimal_error_estimate(sig
[s
], fitparm
, n
*dt
));
637 else if (output_env_get_xvg_format(oenv
) == exvgXMGRACE
)
639 fprintf(fp
, "@ s%d legend \"av %f\"\n", 2*s
, av
[s
]);
640 fprintf(fp
, "@ s%d legend \"ee %6g\"\n", 2*s
+1,
641 optimal_error_estimate(sig
[s
], fitparm
, n
*dt
));
643 for (i
= 0; i
< nbs
; i
++)
645 fprintf(fp
, "%g %g %g\n", tbs
[i
], sig
[s
]*std::sqrt(ybs
[i
]/(n
*dt
)),
646 sig
[s
]*std::sqrt(fit_function(effnERREST
, fitparm
, tbs
[i
])/(n
*dt
)));
656 for (i
= 0; i
< n
; i
++)
658 ac
[i
] = val
[s
][i
] - av
[s
];
661 fitsig
[i
] = std::sqrt(static_cast<real
>(i
));
668 low_do_autocorr(nullptr, oenv
, nullptr, n
, 1, -1, &ac
,
669 dt
, eacNormal
, 1, FALSE
, TRUE
,
670 FALSE
, 0, 0, effnNONE
);
674 /* Integrate ACF only up to fitlen/2 to avoid integrating noise */
676 for (i
= 1; i
<= fitlen
/2; i
++)
682 /* Generate more or less appropriate sigma's */
683 for (i
= 0; i
<= fitlen
; i
++)
685 fitsig
[i
] = std::sqrt(acint
+ dt
*i
);
688 ac_fit
[0] = 0.5*acint
;
690 ac_fit
[2] = 10*acint
;
691 do_lmfit(n
/nb_min
, ac
, fitsig
, dt
, nullptr, 0, fitlen
*dt
, oenv
,
692 bDebugMode(), effnEXPEXP
, ac_fit
, 0, nullptr);
693 ac_fit
[3] = 1 - ac_fit
[1];
695 fprintf(stdout
, "Set %3d: ac erest %g a %g tau1 %g tau2 %g\n",
696 s
+1, optimal_error_estimate(sig
[s
], ac_fit
, n
*dt
),
697 ac_fit
[1], ac_fit
[0], ac_fit
[2]);
699 fprintf(fp
, "%s\n", output_env_get_print_xvgr_codes(oenv
) ? "&" : "");
700 for (i
= 0; i
< nbs
; i
++)
702 fprintf(fp
, "%g %g\n", tbs
[i
],
703 sig
[s
]*std::sqrt(fit_function(effnERREST
, ac_fit
, tbs
[i
]))/(n
*dt
));
710 fprintf(fp
, "%s\n", output_env_get_print_xvgr_codes(oenv
) ? "&" : "");
719 static void luzar_correl(int nn
, real
*time
, int nset
, real
**val
, real temp
,
720 gmx_bool bError
, real fit_start
)
726 please_cite(stdout
, "Spoel2006b");
728 /* Compute negative derivative k(t) = -dc(t)/dt */
732 compute_derivative(nn
, time
, val
[0], kt
);
733 for (j
= 0; (j
< nn
); j
++)
740 for (j
= 0; (j
< nn
); j
++)
742 d2
+= gmx::square(kt
[j
] - val
[3][j
]);
744 fprintf(debug
, "RMS difference in derivatives is %g\n", std::sqrt(d2
/nn
));
746 analyse_corr(nn
, time
, val
[0], val
[2], kt
, nullptr, nullptr, nullptr, fit_start
,
752 analyse_corr(nn
, time
, val
[0], val
[2], val
[4],
753 val
[1], val
[3], val
[5], fit_start
, temp
);
757 printf("Inconsistent input. I need c(t) sigma_c(t) n(t) sigma_n(t) K(t) sigma_K(t)\n");
758 printf("Not doing anything. Sorry.\n");
762 static void filter(real flen
, int n
, int nset
, real
**val
, real dt
)
765 double *filt
, sum
, vf
, fluc
, fluctot
;
767 f
= static_cast<int>(flen
/(2*dt
));
771 for (i
= 1; i
<= f
; i
++)
773 filt
[i
] = std::cos(M_PI
*dt
*i
/flen
);
776 for (i
= 0; i
<= f
; i
++)
780 fprintf(stdout
, "Will calculate the fluctuation over %d points\n", n
-2*f
);
781 fprintf(stdout
, " using a filter of length %g of %d points\n", flen
, 2*f
+1);
783 for (s
= 0; s
< nset
; s
++)
786 for (i
= f
; i
< n
-f
; i
++)
788 vf
= filt
[0]*val
[s
][i
];
789 for (j
= 1; j
<= f
; j
++)
791 vf
+= filt
[j
]*(val
[s
][i
-f
]+val
[s
][i
+f
]);
793 fluc
+= gmx::square(val
[s
][i
] - vf
);
797 fprintf(stdout
, "Set %3d filtered fluctuation: %12.6e\n", s
+1, std::sqrt(fluc
));
799 fprintf(stdout
, "Overall filtered fluctuation: %12.6e\n", std::sqrt(fluctot
/nset
));
800 fprintf(stdout
, "\n");
805 static void do_fit(FILE *out
, int n
, gmx_bool bYdy
,
806 int ny
, real
*x0
, real
**val
,
807 int npargs
, t_pargs
*ppa
, const gmx_output_env_t
*oenv
,
808 const char *fn_fitted
)
810 real
*c1
= nullptr, *sig
= nullptr;
812 real tendfit
, tbeginfit
;
813 int i
, efitfn
, nparm
;
815 efitfn
= get_acffitfn();
816 nparm
= effnNparams(efitfn
);
817 fprintf(out
, "Will fit to the following function:\n");
818 fprintf(out
, "%s\n", effnDescription(efitfn
));
824 fprintf(out
, "Using two columns as y and sigma values\n");
830 if (opt2parg_bSet("-beginfit", npargs
, ppa
))
832 tbeginfit
= opt2parg_real("-beginfit", npargs
, ppa
);
838 if (opt2parg_bSet("-endfit", npargs
, ppa
))
840 tendfit
= opt2parg_real("-endfit", npargs
, ppa
);
847 snew(fitparm
, nparm
);
859 fitparm
[1] = 0.5*c1
[0];
863 fitparm
[0] = fitparm
[2] = 0.5*c1
[0];
869 fitparm
[0] = fitparm
[2] = fitparm
[4] = 0.33*c1
[0];
876 fitparm
[0] = fitparm
[2] = fitparm
[4] = fitparm
[6] = 0.25*c1
[0];
884 fprintf(out
, "Warning: don't know how to initialize the parameters\n");
885 for (i
= 0; (i
< nparm
); i
++)
890 fprintf(out
, "Starting parameters:\n");
891 for (i
= 0; (i
< nparm
); i
++)
893 fprintf(out
, "a%-2d = %12.5e\n", i
+1, fitparm
[i
]);
895 if (do_lmfit(ny
, c1
, sig
, 0, x0
, tbeginfit
, tendfit
,
896 oenv
, bDebugMode(), efitfn
, fitparm
, 0,
899 for (i
= 0; (i
< nparm
); i
++)
901 fprintf(out
, "a%-2d = %12.5e\n", i
+1, fitparm
[i
]);
906 fprintf(out
, "No solution was found\n");
910 static void print_fitted_function(const char *fitfile
,
911 const char *fn_fitted
,
919 gmx_output_env_t
*oenv
)
921 FILE *out_fit
= gmx_ffopen(fitfile
, "w");
922 if (bXYdy
&& nset
>= 2)
924 do_fit(out_fit
, 0, TRUE
, n
, t
, val
, npargs
, ppa
, oenv
,
929 char *buf2
= nullptr;
931 if (nullptr != fn_fitted
)
933 buflen
= std::strlen(fn_fitted
)+32;
935 std::strncpy(buf2
, fn_fitted
, buflen
);
936 buf2
[std::strlen(buf2
)-4] = '\0';
938 for (s
= 0; s
< nset
; s
++)
941 if (nullptr != fn_fitted
)
944 snprintf(buf
, n
, "%s_%d.xvg", buf2
, s
);
946 do_fit(out_fit
, s
, FALSE
, n
, t
, val
, npargs
, ppa
, oenv
, buf
);
951 gmx_ffclose(out_fit
);
954 int gmx_analyze(int argc
, char *argv
[])
956 static const char *desc
[] = {
957 "[THISMODULE] reads an ASCII file and analyzes data sets.",
958 "A line in the input file may start with a time",
959 "(see option [TT]-time[tt]) and any number of [IT]y[it]-values may follow.",
960 "Multiple sets can also be",
961 "read when they are separated by & (option [TT]-n[tt]);",
962 "in this case only one [IT]y[it]-value is read from each line.",
963 "All lines starting with # and @ are skipped.",
964 "All analyses can also be done for the derivative of a set",
965 "(option [TT]-d[tt]).[PAR]",
967 "All options, except for [TT]-av[tt] and [TT]-power[tt], assume that the",
968 "points are equidistant in time.[PAR]",
970 "[THISMODULE] always shows the average and standard deviation of each",
971 "set, as well as the relative deviation of the third",
972 "and fourth cumulant from those of a Gaussian distribution with the same",
973 "standard deviation.[PAR]",
975 "Option [TT]-ac[tt] produces the autocorrelation function(s).",
976 "Be sure that the time interval between data points is",
977 "much shorter than the time scale of the autocorrelation.[PAR]",
979 "Option [TT]-cc[tt] plots the resemblance of set i with a cosine of",
980 "i/2 periods. The formula is::",
982 " [MATH]2 ([INT][FROM]0[from][TO]T[to][int] y(t) [COS]i [GRK]pi[grk] t[cos] dt)^2 / [INT][FROM]0[from][TO]T[to][int] y^2(t) dt[math]",
984 "This is useful for principal components obtained from covariance",
985 "analysis, since the principal components of random diffusion are",
986 "pure cosines.[PAR]",
988 "Option [TT]-msd[tt] produces the mean square displacement(s).[PAR]",
990 "Option [TT]-dist[tt] produces distribution plot(s).[PAR]",
992 "Option [TT]-av[tt] produces the average over the sets.",
993 "Error bars can be added with the option [TT]-errbar[tt].",
994 "The errorbars can represent the standard deviation, the error",
995 "(assuming the points are independent) or the interval containing",
996 "90% of the points, by discarding 5% of the points at the top and",
999 "Option [TT]-ee[tt] produces error estimates using block averaging.",
1000 "A set is divided in a number of blocks and averages are calculated for",
1001 "each block. The error for the total average is calculated from",
1002 "the variance between averages of the m blocks B[SUB]i[sub] as follows:",
1003 "error^2 = [SUM][sum] (B[SUB]i[sub] - [CHEVRON]B[chevron])^2 / (m*(m-1)).",
1004 "These errors are plotted as a function of the block size.",
1005 "Also an analytical block average curve is plotted, assuming",
1006 "that the autocorrelation is a sum of two exponentials.",
1007 "The analytical curve for the block average is::",
1009 " [MATH]f(t) = [GRK]sigma[grk][TT]*[tt][SQRT]2/T ( [GRK]alpha[grk] ([GRK]tau[grk][SUB]1[sub] (([EXP]-t/[GRK]tau[grk][SUB]1[sub][exp] - 1) [GRK]tau[grk][SUB]1[sub]/t + 1)) +",
1010 " (1-[GRK]alpha[grk]) ([GRK]tau[grk][SUB]2[sub] (([EXP]-t/[GRK]tau[grk][SUB]2[sub][exp] - 1) [GRK]tau[grk][SUB]2[sub]/t + 1)))[sqrt][math],",
1012 "where T is the total time.",
1013 "[GRK]alpha[grk], [GRK]tau[grk][SUB]1[sub] and [GRK]tau[grk][SUB]2[sub] are obtained by fitting f^2(t) to error^2.",
1014 "When the actual block average is very close to the analytical curve,",
1015 "the error is [MATH][GRK]sigma[grk][TT]*[tt][SQRT]2/T (a [GRK]tau[grk][SUB]1[sub] + (1-a) [GRK]tau[grk][SUB]2[sub])[sqrt][math].",
1016 "The complete derivation is given in",
1017 "B. Hess, J. Chem. Phys. 116:209-217, 2002.[PAR]",
1019 "Option [TT]-filter[tt] prints the RMS high-frequency fluctuation",
1020 "of each set and over all sets with respect to a filtered average.",
1021 "The filter is proportional to cos([GRK]pi[grk] t/len) where t goes from -len/2",
1022 "to len/2. len is supplied with the option [TT]-filter[tt].",
1023 "This filter reduces oscillations with period len/2 and len by a factor",
1024 "of 0.79 and 0.33 respectively.[PAR]",
1026 "Option [TT]-g[tt] fits the data to the function given with option",
1027 "[TT]-fitfn[tt].[PAR]",
1029 "Option [TT]-power[tt] fits the data to [MATH]b t^a[math], which is accomplished",
1030 "by fitting to [MATH]a t + b[math] on log-log scale. All points after the first",
1031 "zero or with a negative value are ignored.[PAR]",
1033 "Option [TT]-luzar[tt] performs a Luzar & Chandler kinetics analysis",
1034 "on output from [gmx-hbond]. The input file can be taken directly",
1035 "from [TT]gmx hbond -ac[tt], and then the same result should be produced.[PAR]",
1036 "Option [TT]-fitfn[tt] performs curve fitting to a number of different",
1037 "curves that make sense in the context of molecular dynamics, mainly",
1038 "exponential curves. More information is in the manual. To check the output",
1039 "of the fitting procedure the option [TT]-fitted[tt] will print both the",
1040 "original data and the fitted function to a new data file. The fitting",
1041 "parameters are stored as comment in the output file."
1043 static real tb
= -1, te
= -1, frac
= 0.5, filtlen
= 0, binwidth
= 0.1, aver_start
= 0;
1044 static gmx_bool bHaveT
= TRUE
, bDer
= FALSE
, bSubAv
= TRUE
, bAverCorr
= FALSE
, bXYdy
= FALSE
;
1045 static gmx_bool bEESEF
= FALSE
, bEENLC
= FALSE
, bEeFitAc
= FALSE
, bPower
= FALSE
;
1046 static gmx_bool bIntegrate
= FALSE
, bRegression
= FALSE
, bLuzar
= FALSE
;
1047 static int nsets_in
= 1, d
= 1, nb_min
= 4, resol
= 10;
1048 static real temp
= 298.15, fit_start
= 1, fit_end
= 60;
1050 /* must correspond to enum avbar* declared at beginning of file */
1051 static const char *avbar_opt
[avbarNR
+1] = {
1052 nullptr, "none", "stddev", "error", "90", nullptr
1056 { "-time", FALSE
, etBOOL
, {&bHaveT
},
1057 "Expect a time in the input" },
1058 { "-b", FALSE
, etREAL
, {&tb
},
1059 "First time to read from set" },
1060 { "-e", FALSE
, etREAL
, {&te
},
1061 "Last time to read from set" },
1062 { "-n", FALSE
, etINT
, {&nsets_in
},
1063 "Read this number of sets separated by &" },
1064 { "-d", FALSE
, etBOOL
, {&bDer
},
1065 "Use the derivative" },
1066 { "-dp", FALSE
, etINT
, {&d
},
1067 "HIDDENThe derivative is the difference over this number of points" },
1068 { "-bw", FALSE
, etREAL
, {&binwidth
},
1069 "Binwidth for the distribution" },
1070 { "-errbar", FALSE
, etENUM
, {avbar_opt
},
1071 "Error bars for [TT]-av[tt]" },
1072 { "-integrate", FALSE
, etBOOL
, {&bIntegrate
},
1073 "Integrate data function(s) numerically using trapezium rule" },
1074 { "-aver_start", FALSE
, etREAL
, {&aver_start
},
1075 "Start averaging the integral from here" },
1076 { "-xydy", FALSE
, etBOOL
, {&bXYdy
},
1077 "Interpret second data set as error in the y values for integrating" },
1078 { "-regression", FALSE
, etBOOL
, {&bRegression
},
1079 "Perform a linear regression analysis on the data. If [TT]-xydy[tt] is set a second set will be interpreted as the error bar in the Y value. Otherwise, if multiple data sets are present a multilinear regression will be performed yielding the constant A that minimize [MATH][GRK]chi[grk]^2 = (y - A[SUB]0[sub] x[SUB]0[sub] - A[SUB]1[sub] x[SUB]1[sub] - ... - A[SUB]N[sub] x[SUB]N[sub])^2[math] where now Y is the first data set in the input file and x[SUB]i[sub] the others. Do read the information at the option [TT]-time[tt]." },
1080 { "-luzar", FALSE
, etBOOL
, {&bLuzar
},
1081 "Do a Luzar and Chandler analysis on a correlation function and "
1082 "related as produced by [gmx-hbond]. When in addition the "
1083 "[TT]-xydy[tt] flag is given the second and fourth column will be "
1084 "interpreted as errors in c(t) and n(t)." },
1085 { "-temp", FALSE
, etREAL
, {&temp
},
1086 "Temperature for the Luzar hydrogen bonding kinetics analysis (K)" },
1087 { "-fitstart", FALSE
, etREAL
, {&fit_start
},
1088 "Time (ps) from which to start fitting the correlation functions in order to obtain the forward and backward rate constants for HB breaking and formation" },
1089 { "-fitend", FALSE
, etREAL
, {&fit_end
},
1090 "Time (ps) where to stop fitting the correlation functions in order to obtain the forward and backward rate constants for HB breaking and formation. Only with [TT]-gem[tt]" },
1091 { "-nbmin", FALSE
, etINT
, {&nb_min
},
1092 "HIDDENMinimum number of blocks for block averaging" },
1093 { "-resol", FALSE
, etINT
, {&resol
},
1094 "HIDDENResolution for the block averaging, block size increases with"
1095 " a factor 2^(1/resol)" },
1096 { "-eeexpfit", FALSE
, etBOOL
, {&bEESEF
},
1097 "HIDDENAlways use a single exponential fit for the error estimate" },
1098 { "-eenlc", FALSE
, etBOOL
, {&bEENLC
},
1099 "HIDDENAllow a negative long-time correlation" },
1100 { "-eefitac", FALSE
, etBOOL
, {&bEeFitAc
},
1101 "HIDDENAlso plot analytical block average using a autocorrelation fit" },
1102 { "-filter", FALSE
, etREAL
, {&filtlen
},
1103 "Print the high-frequency fluctuation after filtering with a cosine filter of this length" },
1104 { "-power", FALSE
, etBOOL
, {&bPower
},
1105 "Fit data to: b t^a" },
1106 { "-subav", FALSE
, etBOOL
, {&bSubAv
},
1107 "Subtract the average before autocorrelating" },
1108 { "-oneacf", FALSE
, etBOOL
, {&bAverCorr
},
1109 "Calculate one ACF over all sets" },
1111 #define NPA asize(pa)
1114 int n
, nlast
, s
, nset
, i
, j
= 0;
1115 real
**val
, *t
, dt
, tot
, error
;
1116 double *av
, *sig
, cum1
, cum2
, cum3
, cum4
, db
;
1117 const char *acfile
, *msdfile
, *ccfile
, *distfile
, *avfile
, *eefile
, *fitfile
;
1118 gmx_output_env_t
*oenv
;
1121 { efXVG
, "-f", "graph", ffREAD
},
1122 { efXVG
, "-ac", "autocorr", ffOPTWR
},
1123 { efXVG
, "-msd", "msd", ffOPTWR
},
1124 { efXVG
, "-cc", "coscont", ffOPTWR
},
1125 { efXVG
, "-dist", "distr", ffOPTWR
},
1126 { efXVG
, "-av", "average", ffOPTWR
},
1127 { efXVG
, "-ee", "errest", ffOPTWR
},
1128 { efXVG
, "-fitted", "fitted", ffOPTWR
},
1129 { efLOG
, "-g", "fitlog", ffOPTWR
}
1131 #define NFILE asize(fnm)
1137 ppa
= add_acf_pargs(&npargs
, pa
);
1139 if (!parse_common_args(&argc
, argv
, PCA_CAN_VIEW
,
1140 NFILE
, fnm
, npargs
, ppa
, asize(desc
), desc
, 0, nullptr, &oenv
))
1146 acfile
= opt2fn_null("-ac", NFILE
, fnm
);
1147 msdfile
= opt2fn_null("-msd", NFILE
, fnm
);
1148 ccfile
= opt2fn_null("-cc", NFILE
, fnm
);
1149 distfile
= opt2fn_null("-dist", NFILE
, fnm
);
1150 avfile
= opt2fn_null("-av", NFILE
, fnm
);
1151 eefile
= opt2fn_null("-ee", NFILE
, fnm
);
1152 if (opt2parg_bSet("-fitfn", npargs
, ppa
) && acfile
== nullptr)
1154 fitfile
= opt2fn("-g", NFILE
, fnm
);
1158 fitfile
= opt2fn_null("-g", NFILE
, fnm
);
1161 val
= read_xvg_time(opt2fn("-f", NFILE
, fnm
), bHaveT
,
1162 opt2parg_bSet("-b", npargs
, ppa
), tb
,
1163 opt2parg_bSet("-e", npargs
, ppa
), te
,
1164 nsets_in
, &nset
, &n
, &dt
, &t
);
1165 printf("Read %d sets of %d points, dt = %g\n\n", nset
, n
, dt
);
1169 printf("Calculating the derivative as (f[i+%d]-f[i])/(%d*dt)\n\n",
1172 for (s
= 0; s
< nset
; s
++)
1174 for (i
= 0; (i
< n
); i
++)
1176 val
[s
][i
] = (val
[s
][i
+d
]-val
[s
][i
])/(d
*dt
);
1185 printf("Calculating the integral using the trapezium rule\n");
1189 sum
= evaluate_integral(n
, t
, val
[0], val
[1], aver_start
, &stddev
);
1190 printf("Integral %10.3f +/- %10.5f\n", sum
, stddev
);
1194 for (s
= 0; s
< nset
; s
++)
1196 sum
= evaluate_integral(n
, t
, val
[s
], nullptr, aver_start
, &stddev
);
1197 printf("Integral %d %10.5f +/- %10.5f\n", s
+1, sum
, stddev
);
1202 if (fitfile
!= nullptr)
1204 print_fitted_function(fitfile
,
1205 opt2fn_null("-fitted", NFILE
, fnm
),
1212 printf(" std. dev. relative deviation of\n");
1213 printf(" standard --------- cumulants from those of\n");
1214 printf("set average deviation sqrt(n-1) a Gaussian distribition\n");
1215 printf(" cum. 3 cum. 4\n");
1218 for (s
= 0; (s
< nset
); s
++)
1224 for (i
= 0; (i
< n
); i
++)
1229 for (i
= 0; (i
< n
); i
++)
1231 db
= val
[s
][i
]-cum1
;
1234 cum4
+= db
*db
*db
*db
;
1240 sig
[s
] = std::sqrt(cum2
);
1243 error
= std::sqrt(cum2
/(n
-1));
1249 printf("SS%d %13.6e %12.6e %12.6e %6.3f %6.3f\n",
1250 s
+1, av
[s
], sig
[s
], error
,
1251 sig
[s
] != 0.0 ? cum3
/(sig
[s
]*sig
[s
]*sig
[s
]*std::sqrt(8/M_PI
)) : 0,
1252 sig
[s
] != 0.0 ? cum4
/(sig
[s
]*sig
[s
]*sig
[s
]*sig
[s
]*3)-1 : 0);
1256 if (filtlen
!= 0.0F
)
1258 filter(filtlen
, n
, nset
, val
, dt
);
1263 out
= xvgropen(msdfile
, "Mean square displacement",
1264 "time", "MSD (nm\\S2\\N)", oenv
);
1265 nlast
= static_cast<int>(n
*frac
);
1266 for (s
= 0; s
< nset
; s
++)
1268 for (j
= 0; j
<= nlast
; j
++)
1272 fprintf(stderr
, "\r%d", j
);
1276 for (i
= 0; i
< n
-j
; i
++)
1278 tot
+= gmx::square(val
[s
][i
]-val
[s
][i
+j
]);
1281 fprintf(out
, " %g %8g\n", dt
*j
, tot
);
1285 fprintf(out
, "%s\n", output_env_get_print_xvgr_codes(oenv
) ? "&" : "");
1289 fprintf(stderr
, "\r%d, time=%g\n", j
-1, (j
-1)*dt
);
1294 plot_coscont(ccfile
, n
, nset
, val
, oenv
);
1299 histogram(distfile
, binwidth
, n
, nset
, val
, oenv
);
1303 average(avfile
, nenum(avbar_opt
), n
, nset
, val
, t
);
1307 estimate_error(eefile
, nb_min
, resol
, n
, nset
, av
, sig
, val
, dt
,
1308 bEeFitAc
, bEESEF
, bEENLC
, oenv
);
1312 power_fit(n
, nset
, val
, t
);
1315 if (acfile
!= nullptr)
1319 for (s
= 0; s
< nset
; s
++)
1321 for (i
= 0; i
< n
; i
++)
1327 do_autocorr(acfile
, oenv
, "Autocorrelation", n
, nset
, val
, dt
,
1328 eacNormal
, bAverCorr
);
1333 regression_analysis(n
, bXYdy
, t
, nset
, val
);
1338 luzar_correl(n
, t
, nset
, val
, temp
, bXYdy
, fit_start
);
1341 view_all(oenv
, NFILE
, fnm
);