Properly finalize MPI on mdrun -version. Fixes #1313
[gromacs.git] / include / vec.h
blob376219a3dae2cadf484dcfe01f6425742b641688
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team,
6 * check out http://www.gromacs.org for more information.
7 * Copyright (c) 2012,2013, by the GROMACS development team, led by
8 * David van der Spoel, Berk Hess, Erik Lindahl, and including many
9 * others, as listed in the AUTHORS file in the top-level source
10 * directory and at http://www.gromacs.org.
12 * GROMACS is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public License
14 * as published by the Free Software Foundation; either version 2.1
15 * of the License, or (at your option) any later version.
17 * GROMACS is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with GROMACS; if not, see
24 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 * If you want to redistribute modifications to GROMACS, please
28 * consider that scientific software is very special. Version
29 * control is crucial - bugs must be traceable. We will be happy to
30 * consider code for inclusion in the official distribution, but
31 * derived work must not be called official GROMACS. Details are found
32 * in the README & COPYING files - if they are missing, get the
33 * official version at http://www.gromacs.org.
35 * To help us fund GROMACS development, we humbly ask that you cite
36 * the research papers on the package. Check out http://www.gromacs.org.
38 #ifndef _vec_h
39 #define _vec_h
42 collection of in-line ready operations:
44 lookup-table optimized scalar operations:
45 real gmx_invsqrt(real x)
46 void vecinvsqrt(real in[],real out[],int n)
47 void vecrecip(real in[],real out[],int n)
48 real sqr(real x)
49 double dsqr(double x)
51 vector operations:
52 void rvec_add(const rvec a,const rvec b,rvec c) c = a + b
53 void dvec_add(const dvec a,const dvec b,dvec c) c = a + b
54 void ivec_add(const ivec a,const ivec b,ivec c) c = a + b
55 void rvec_inc(rvec a,const rvec b) a += b
56 void dvec_inc(dvec a,const dvec b) a += b
57 void ivec_inc(ivec a,const ivec b) a += b
58 void rvec_sub(const rvec a,const rvec b,rvec c) c = a - b
59 void dvec_sub(const dvec a,const dvec b,dvec c) c = a - b
60 void rvec_dec(rvec a,rvec b) a -= b
61 void copy_rvec(const rvec a,rvec b) b = a (reals)
62 void copy_dvec(const dvec a,dvec b) b = a (reals)
63 void copy_ivec(const ivec a,ivec b) b = a (integers)
64 void ivec_sub(const ivec a,const ivec b,ivec c) c = a - b
65 void svmul(real a,rvec v1,rvec v2) v2 = a * v1
66 void dsvmul(double a,dvec v1,dvec v2) v2 = a * v1
67 void clear_rvec(rvec a) a = 0
68 void clear_dvec(dvec a) a = 0
69 void clear_ivec(rvec a) a = 0
70 void clear_rvecs(int n,rvec v[])
71 real iprod(rvec a,rvec b) = a . b (inner product)
72 double diprod(dvec a,dvec b) = a . b (inner product)
73 real iiprod(ivec a,ivec b) = a . b (integers)
74 real norm2(rvec a) = | a |^2 ( = x*y*z )
75 double dnorm2(dvec a) = | a |^2 ( = x*y*z )
76 real norm(rvec a) = | a |
77 double dnorm(dvec a) = | a |
78 void cprod(rvec a,rvec b,rvec c) c = a x b (cross product)
79 void dprod(rvec a,rvec b,rvec c) c = a x b (cross product)
80 void dprod(rvec a,rvec b,rvec c) c = a * b (direct product)
81 real cos_angle(rvec a,rvec b)
82 real cos_angle_no_table(rvec a,rvec b)
83 real distance2(rvec v1, rvec v2) = | v2 - v1 |^2
84 void unitv(rvec src,rvec dest) dest = src / |src|
85 void unitv_no_table(rvec src,rvec dest) dest = src / |src|
87 matrix (3x3) operations:
88 ! indicates that dest should not be the same as a, b or src
89 the _ur0 varieties work on matrices that have only zeros
90 in the upper right part, such as box matrices, these varieties
91 could produce less rounding errors, not due to the operations themselves,
92 but because the compiler can easier recombine the operations
93 void copy_mat(matrix a,matrix b) b = a
94 void clear_mat(matrix a) a = 0
95 void mmul(matrix a,matrix b,matrix dest) ! dest = a . b
96 void mmul_ur0(matrix a,matrix b,matrix dest) dest = a . b
97 void transpose(matrix src,matrix dest) ! dest = src*
98 void tmmul(matrix a,matrix b,matrix dest) ! dest = a* . b
99 void mtmul(matrix a,matrix b,matrix dest) ! dest = a . b*
100 real det(matrix a) = det(a)
101 void m_add(matrix a,matrix b,matrix dest) dest = a + b
102 void m_sub(matrix a,matrix b,matrix dest) dest = a - b
103 void msmul(matrix m1,real r1,matrix dest) dest = r1 * m1
104 void m_inv_ur0(matrix src,matrix dest) dest = src^-1
105 void m_inv(matrix src,matrix dest) ! dest = src^-1
106 void mvmul(matrix a,rvec src,rvec dest) ! dest = a . src
107 void mvmul_ur0(matrix a,rvec src,rvec dest) dest = a . src
108 void tmvmul_ur0(matrix a,rvec src,rvec dest) dest = a* . src
109 real trace(matrix m) = trace(m)
111 #include "visibility.h"
112 #include "types/simple.h"
113 #include "maths.h"
114 #include "typedefs.h"
115 #include "sysstuff.h"
116 #include "macros.h"
117 #include "gmx_fatal.h"
118 #include "mpelogging.h"
119 #include "physics.h"
121 #ifdef __cplusplus
122 extern "C" {
123 #elif 0
124 } /* avoid screwing up indentation */
125 #endif
128 #define EXP_LSB 0x00800000
129 #define EXP_MASK 0x7f800000
130 #define EXP_SHIFT 23
131 #define FRACT_MASK 0x007fffff
132 #define FRACT_SIZE 11 /* significant part of fraction */
133 #define FRACT_SHIFT (EXP_SHIFT-FRACT_SIZE)
134 #define EXP_ADDR(val) (((val)&EXP_MASK)>>EXP_SHIFT)
135 #define FRACT_ADDR(val) (((val)&(FRACT_MASK|EXP_LSB))>>FRACT_SHIFT)
137 #define PR_VEC(a) a[XX], a[YY], a[ZZ]
139 #ifdef GMX_SOFTWARE_INVSQRT
140 GMX_LIBGMX_EXPORT
141 extern const unsigned int * gmx_invsqrt_exptab;
142 GMX_LIBGMX_EXPORT
143 extern const unsigned int * gmx_invsqrt_fracttab;
144 #endif
147 typedef union
149 unsigned int bval;
150 float fval;
151 } t_convert;
154 #ifdef GMX_SOFTWARE_INVSQRT
155 static real gmx_software_invsqrt(real x)
157 const real half = 0.5;
158 const real three = 3.0;
159 t_convert result, bit_pattern;
160 unsigned int exp, fract;
161 real lu;
162 real y;
163 #ifdef GMX_DOUBLE
164 real y2;
165 #endif
167 bit_pattern.fval = x;
168 exp = EXP_ADDR(bit_pattern.bval);
169 fract = FRACT_ADDR(bit_pattern.bval);
170 result.bval = gmx_invsqrt_exptab[exp] | gmx_invsqrt_fracttab[fract];
171 lu = result.fval;
173 y = (half*lu*(three-((x*lu)*lu)));
174 #ifdef GMX_DOUBLE
175 y2 = (half*y*(three-((x*y)*y)));
177 return y2; /* 10 Flops */
178 #else
179 return y; /* 5 Flops */
180 #endif
182 #define gmx_invsqrt(x) gmx_software_invsqrt(x)
183 #define INVSQRT_DONE
184 #endif /* gmx_invsqrt */
186 #ifndef INVSQRT_DONE
187 # ifdef GMX_DOUBLE
188 # ifdef HAVE_RSQRT
189 # define gmx_invsqrt(x) rsqrt(x)
190 # else
191 # define gmx_invsqrt(x) (1.0/sqrt(x))
192 # endif
193 # else /* single */
194 # ifdef HAVE_RSQRTF
195 # define gmx_invsqrt(x) rsqrtf(x)
196 # elif defined HAVE_RSQRT
197 # define gmx_invsqrt(x) rsqrt(x)
198 # elif defined HAVE_SQRTF
199 # define gmx_invsqrt(x) (1.0/sqrtf(x))
200 # else
201 # define gmx_invsqrt(x) (1.0/sqrt(x))
202 # endif
203 # endif
204 #endif
207 static real sqr(real x)
209 return (x*x);
212 static gmx_inline double dsqr(double x)
214 return (x*x);
217 /* Maclaurin series for sinh(x)/x, useful for NH chains and MTTK pressure control
218 Here, we compute it to 10th order, which might be overkill, 8th is probably enough,
219 but it's not very much more expensive. */
221 static gmx_inline real series_sinhx(real x)
223 real x2 = x*x;
224 return (1 + (x2/6.0)*(1 + (x2/20.0)*(1 + (x2/42.0)*(1 + (x2/72.0)*(1 + (x2/110.0))))));
227 void vecinvsqrt(real in[], real out[], int n);
228 /* Perform out[i]=1.0/sqrt(in[i]) for n elements */
231 void vecrecip(real in[], real out[], int n);
232 /* Perform out[i]=1.0/(in[i]) for n elements */
234 /* Note: If you need a fast version of vecinvsqrt
235 * and/or vecrecip, call detectcpu() and run the SSE/3DNow/SSE2/Altivec
236 * versions if your hardware supports it.
238 * To use those routines, your memory HAS TO BE CACHE-ALIGNED.
239 * Use snew_aligned(ptr,size,32) to allocate and sfree_aligned to free.
243 static gmx_inline void rvec_add(const rvec a, const rvec b, rvec c)
245 real x, y, z;
247 x = a[XX]+b[XX];
248 y = a[YY]+b[YY];
249 z = a[ZZ]+b[ZZ];
251 c[XX] = x;
252 c[YY] = y;
253 c[ZZ] = z;
256 static gmx_inline void dvec_add(const dvec a, const dvec b, dvec c)
258 double x, y, z;
260 x = a[XX]+b[XX];
261 y = a[YY]+b[YY];
262 z = a[ZZ]+b[ZZ];
264 c[XX] = x;
265 c[YY] = y;
266 c[ZZ] = z;
269 static gmx_inline void ivec_add(const ivec a, const ivec b, ivec c)
271 int x, y, z;
273 x = a[XX]+b[XX];
274 y = a[YY]+b[YY];
275 z = a[ZZ]+b[ZZ];
277 c[XX] = x;
278 c[YY] = y;
279 c[ZZ] = z;
282 static gmx_inline void rvec_inc(rvec a, const rvec b)
284 real x, y, z;
286 x = a[XX]+b[XX];
287 y = a[YY]+b[YY];
288 z = a[ZZ]+b[ZZ];
290 a[XX] = x;
291 a[YY] = y;
292 a[ZZ] = z;
295 static gmx_inline void dvec_inc(dvec a, const dvec b)
297 double x, y, z;
299 x = a[XX]+b[XX];
300 y = a[YY]+b[YY];
301 z = a[ZZ]+b[ZZ];
303 a[XX] = x;
304 a[YY] = y;
305 a[ZZ] = z;
308 static gmx_inline void rvec_sub(const rvec a, const rvec b, rvec c)
310 real x, y, z;
312 x = a[XX]-b[XX];
313 y = a[YY]-b[YY];
314 z = a[ZZ]-b[ZZ];
316 c[XX] = x;
317 c[YY] = y;
318 c[ZZ] = z;
321 static gmx_inline void dvec_sub(const dvec a, const dvec b, dvec c)
323 double x, y, z;
325 x = a[XX]-b[XX];
326 y = a[YY]-b[YY];
327 z = a[ZZ]-b[ZZ];
329 c[XX] = x;
330 c[YY] = y;
331 c[ZZ] = z;
334 static gmx_inline void rvec_dec(rvec a, const rvec b)
336 real x, y, z;
338 x = a[XX]-b[XX];
339 y = a[YY]-b[YY];
340 z = a[ZZ]-b[ZZ];
342 a[XX] = x;
343 a[YY] = y;
344 a[ZZ] = z;
347 static gmx_inline void copy_rvec(const rvec a, rvec b)
349 b[XX] = a[XX];
350 b[YY] = a[YY];
351 b[ZZ] = a[ZZ];
354 static gmx_inline void copy_rvecn(rvec *a, rvec *b, int startn, int endn)
356 int i;
357 for (i = startn; i < endn; i++)
359 b[i][XX] = a[i][XX];
360 b[i][YY] = a[i][YY];
361 b[i][ZZ] = a[i][ZZ];
365 static gmx_inline void copy_dvec(const dvec a, dvec b)
367 b[XX] = a[XX];
368 b[YY] = a[YY];
369 b[ZZ] = a[ZZ];
372 static gmx_inline void copy_ivec(const ivec a, ivec b)
374 b[XX] = a[XX];
375 b[YY] = a[YY];
376 b[ZZ] = a[ZZ];
379 static gmx_inline void ivec_sub(const ivec a, const ivec b, ivec c)
381 int x, y, z;
383 x = a[XX]-b[XX];
384 y = a[YY]-b[YY];
385 z = a[ZZ]-b[ZZ];
387 c[XX] = x;
388 c[YY] = y;
389 c[ZZ] = z;
392 static gmx_inline void copy_mat(matrix a, matrix b)
394 copy_rvec(a[XX], b[XX]);
395 copy_rvec(a[YY], b[YY]);
396 copy_rvec(a[ZZ], b[ZZ]);
399 static gmx_inline void svmul(real a, const rvec v1, rvec v2)
401 v2[XX] = a*v1[XX];
402 v2[YY] = a*v1[YY];
403 v2[ZZ] = a*v1[ZZ];
406 static gmx_inline void dsvmul(double a, const dvec v1, dvec v2)
408 v2[XX] = a*v1[XX];
409 v2[YY] = a*v1[YY];
410 v2[ZZ] = a*v1[ZZ];
413 static gmx_inline real distance2(const rvec v1, const rvec v2)
415 return sqr(v2[XX]-v1[XX]) + sqr(v2[YY]-v1[YY]) + sqr(v2[ZZ]-v1[ZZ]);
418 static gmx_inline void clear_rvec(rvec a)
420 /* The ibm compiler has problems with inlining this
421 * when we use a const real variable
423 a[XX] = 0.0;
424 a[YY] = 0.0;
425 a[ZZ] = 0.0;
428 static gmx_inline void clear_dvec(dvec a)
430 /* The ibm compiler has problems with inlining this
431 * when we use a const real variable
433 a[XX] = 0.0;
434 a[YY] = 0.0;
435 a[ZZ] = 0.0;
438 static gmx_inline void clear_ivec(ivec a)
440 a[XX] = 0;
441 a[YY] = 0;
442 a[ZZ] = 0;
445 static gmx_inline void clear_rvecs(int n, rvec v[])
447 /* memset(v[0],0,DIM*n*sizeof(v[0][0])); */
448 int i;
450 GMX_MPE_LOG(ev_clear_rvecs_start);
452 for (i = 0; (i < n); i++)
454 clear_rvec(v[i]);
457 GMX_MPE_LOG(ev_clear_rvecs_finish);
460 static gmx_inline void clear_mat(matrix a)
462 /* memset(a[0],0,DIM*DIM*sizeof(a[0][0])); */
464 const real nul = 0.0;
466 a[XX][XX] = a[XX][YY] = a[XX][ZZ] = nul;
467 a[YY][XX] = a[YY][YY] = a[YY][ZZ] = nul;
468 a[ZZ][XX] = a[ZZ][YY] = a[ZZ][ZZ] = nul;
471 static gmx_inline real iprod(const rvec a, const rvec b)
473 return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
476 static gmx_inline double diprod(const dvec a, const dvec b)
478 return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
481 static gmx_inline int iiprod(const ivec a, const ivec b)
483 return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
486 static gmx_inline real norm2(const rvec a)
488 return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
491 static gmx_inline double dnorm2(const dvec a)
493 return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
496 /* WARNING:
497 * As dnorm() uses sqrt() (which is slow) _only_ use it if you are sure you
498 * don't need 1/dnorm(), otherwise use dnorm2()*dinvnorm(). */
499 static gmx_inline double dnorm(const dvec a)
501 return sqrt(diprod(a, a));
504 /* WARNING:
505 * As norm() uses sqrtf() (which is slow) _only_ use it if you are sure you
506 * don't need 1/norm(), otherwise use norm2()*invnorm(). */
507 static gmx_inline real norm(const rvec a)
509 /* This is ugly, but we deliberately do not define gmx_sqrt() and handle the
510 * float/double case here instead to avoid gmx_sqrt() being accidentally used. */
511 #ifdef GMX_DOUBLE
512 return dnorm(a);
513 #elif defined HAVE_SQRTF
514 return sqrtf(iprod(a, a));
515 #else
516 return sqrt(iprod(a, a));
517 #endif
520 static gmx_inline real invnorm(const rvec a)
522 return gmx_invsqrt(norm2(a));
525 static gmx_inline real dinvnorm(const dvec a)
527 return gmx_invsqrt(dnorm2(a));
530 /* WARNING:
531 * Do _not_ use these routines to calculate the angle between two vectors
532 * as acos(cos_angle(u,v)). While it might seem obvious, the acos function
533 * is very flat close to -1 and 1, which will lead to accuracy-loss.
534 * Instead, use the new gmx_angle() function directly.
536 static gmx_inline real
537 cos_angle(const rvec a, const rvec b)
540 * ax*bx + ay*by + az*bz
541 * cos-vec (a,b) = ---------------------
542 * ||a|| * ||b||
544 real cosval;
545 int m;
546 double aa, bb, ip, ipa, ipb, ipab; /* For accuracy these must be double! */
548 ip = ipa = ipb = 0.0;
549 for (m = 0; (m < DIM); m++) /* 18 */
551 aa = a[m];
552 bb = b[m];
553 ip += aa*bb;
554 ipa += aa*aa;
555 ipb += bb*bb;
557 ipab = ipa*ipb;
558 if (ipab > 0)
560 cosval = ip*gmx_invsqrt(ipab); /* 7 */
562 else
564 cosval = 1;
566 /* 25 TOTAL */
567 if (cosval > 1.0)
569 return 1.0;
571 if (cosval < -1.0)
573 return -1.0;
576 return cosval;
579 /* WARNING:
580 * Do _not_ use these routines to calculate the angle between two vectors
581 * as acos(cos_angle(u,v)). While it might seem obvious, the acos function
582 * is very flat close to -1 and 1, which will lead to accuracy-loss.
583 * Instead, use the new gmx_angle() function directly.
585 static gmx_inline real
586 cos_angle_no_table(const rvec a, const rvec b)
588 /* This version does not need the invsqrt lookup table */
589 real cosval;
590 int m;
591 double aa, bb, ip, ipa, ipb; /* For accuracy these must be double! */
593 ip = ipa = ipb = 0.0;
594 for (m = 0; (m < DIM); m++) /* 18 */
596 aa = a[m];
597 bb = b[m];
598 ip += aa*bb;
599 ipa += aa*aa;
600 ipb += bb*bb;
602 cosval = ip/sqrt(ipa*ipb); /* 12 */
603 /* 30 TOTAL */
604 if (cosval > 1.0)
606 return 1.0;
608 if (cosval < -1.0)
610 return -1.0;
613 return cosval;
617 static gmx_inline void cprod(const rvec a, const rvec b, rvec c)
619 c[XX] = a[YY]*b[ZZ]-a[ZZ]*b[YY];
620 c[YY] = a[ZZ]*b[XX]-a[XX]*b[ZZ];
621 c[ZZ] = a[XX]*b[YY]-a[YY]*b[XX];
624 static gmx_inline void dcprod(const dvec a, const dvec b, dvec c)
626 c[XX] = a[YY]*b[ZZ]-a[ZZ]*b[YY];
627 c[YY] = a[ZZ]*b[XX]-a[XX]*b[ZZ];
628 c[ZZ] = a[XX]*b[YY]-a[YY]*b[XX];
631 /* This routine calculates the angle between a & b without any loss of accuracy close to 0/PI.
632 * If you only need cos(theta), use the cos_angle() routines to save a few cycles.
633 * This routine is faster than it might appear, since atan2 is accelerated on many CPUs (e.g. x86).
635 static gmx_inline real
636 gmx_angle(const rvec a, const rvec b)
638 rvec w;
639 real wlen, s;
641 cprod(a, b, w);
643 wlen = norm(w);
644 s = iprod(a, b);
646 return atan2(wlen, s);
649 static gmx_inline void mmul_ur0(matrix a, matrix b, matrix dest)
651 dest[XX][XX] = a[XX][XX]*b[XX][XX];
652 dest[XX][YY] = 0.0;
653 dest[XX][ZZ] = 0.0;
654 dest[YY][XX] = a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX];
655 dest[YY][YY] = a[YY][YY]*b[YY][YY];
656 dest[YY][ZZ] = 0.0;
657 dest[ZZ][XX] = a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
658 dest[ZZ][YY] = a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
659 dest[ZZ][ZZ] = a[ZZ][ZZ]*b[ZZ][ZZ];
662 static gmx_inline void mmul(matrix a, matrix b, matrix dest)
664 dest[XX][XX] = a[XX][XX]*b[XX][XX]+a[XX][YY]*b[YY][XX]+a[XX][ZZ]*b[ZZ][XX];
665 dest[YY][XX] = a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[YY][ZZ]*b[ZZ][XX];
666 dest[ZZ][XX] = a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
667 dest[XX][YY] = a[XX][XX]*b[XX][YY]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[ZZ][YY];
668 dest[YY][YY] = a[YY][XX]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[ZZ][YY];
669 dest[ZZ][YY] = a[ZZ][XX]*b[XX][YY]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
670 dest[XX][ZZ] = a[XX][XX]*b[XX][ZZ]+a[XX][YY]*b[YY][ZZ]+a[XX][ZZ]*b[ZZ][ZZ];
671 dest[YY][ZZ] = a[YY][XX]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[YY][ZZ]*b[ZZ][ZZ];
672 dest[ZZ][ZZ] = a[ZZ][XX]*b[XX][ZZ]+a[ZZ][YY]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
675 static gmx_inline void transpose(matrix src, matrix dest)
677 dest[XX][XX] = src[XX][XX];
678 dest[YY][XX] = src[XX][YY];
679 dest[ZZ][XX] = src[XX][ZZ];
680 dest[XX][YY] = src[YY][XX];
681 dest[YY][YY] = src[YY][YY];
682 dest[ZZ][YY] = src[YY][ZZ];
683 dest[XX][ZZ] = src[ZZ][XX];
684 dest[YY][ZZ] = src[ZZ][YY];
685 dest[ZZ][ZZ] = src[ZZ][ZZ];
688 static gmx_inline void tmmul(matrix a, matrix b, matrix dest)
690 /* Computes dest=mmul(transpose(a),b,dest) - used in do_pr_pcoupl */
691 dest[XX][XX] = a[XX][XX]*b[XX][XX]+a[YY][XX]*b[YY][XX]+a[ZZ][XX]*b[ZZ][XX];
692 dest[XX][YY] = a[XX][XX]*b[XX][YY]+a[YY][XX]*b[YY][YY]+a[ZZ][XX]*b[ZZ][YY];
693 dest[XX][ZZ] = a[XX][XX]*b[XX][ZZ]+a[YY][XX]*b[YY][ZZ]+a[ZZ][XX]*b[ZZ][ZZ];
694 dest[YY][XX] = a[XX][YY]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[ZZ][YY]*b[ZZ][XX];
695 dest[YY][YY] = a[XX][YY]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[ZZ][YY]*b[ZZ][YY];
696 dest[YY][ZZ] = a[XX][YY]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[ZZ][YY]*b[ZZ][ZZ];
697 dest[ZZ][XX] = a[XX][ZZ]*b[XX][XX]+a[YY][ZZ]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
698 dest[ZZ][YY] = a[XX][ZZ]*b[XX][YY]+a[YY][ZZ]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
699 dest[ZZ][ZZ] = a[XX][ZZ]*b[XX][ZZ]+a[YY][ZZ]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
702 static gmx_inline void mtmul(matrix a, matrix b, matrix dest)
704 /* Computes dest=mmul(a,transpose(b),dest) - used in do_pr_pcoupl */
705 dest[XX][XX] = a[XX][XX]*b[XX][XX]+a[XX][YY]*b[XX][YY]+a[XX][ZZ]*b[XX][ZZ];
706 dest[XX][YY] = a[XX][XX]*b[YY][XX]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[YY][ZZ];
707 dest[XX][ZZ] = a[XX][XX]*b[ZZ][XX]+a[XX][YY]*b[ZZ][YY]+a[XX][ZZ]*b[ZZ][ZZ];
708 dest[YY][XX] = a[YY][XX]*b[XX][XX]+a[YY][YY]*b[XX][YY]+a[YY][ZZ]*b[XX][ZZ];
709 dest[YY][YY] = a[YY][XX]*b[YY][XX]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[YY][ZZ];
710 dest[YY][ZZ] = a[YY][XX]*b[ZZ][XX]+a[YY][YY]*b[ZZ][YY]+a[YY][ZZ]*b[ZZ][ZZ];
711 dest[ZZ][XX] = a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[XX][YY]+a[ZZ][ZZ]*b[XX][ZZ];
712 dest[ZZ][YY] = a[ZZ][XX]*b[YY][XX]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[YY][ZZ];
713 dest[ZZ][ZZ] = a[ZZ][XX]*b[ZZ][XX]+a[ZZ][YY]*b[ZZ][YY]+a[ZZ][ZZ]*b[ZZ][ZZ];
716 static gmx_inline real det(matrix a)
718 return ( a[XX][XX]*(a[YY][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[YY][ZZ])
719 -a[YY][XX]*(a[XX][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[XX][ZZ])
720 +a[ZZ][XX]*(a[XX][YY]*a[YY][ZZ]-a[YY][YY]*a[XX][ZZ]));
723 static gmx_inline void m_add(matrix a, matrix b, matrix dest)
725 dest[XX][XX] = a[XX][XX]+b[XX][XX];
726 dest[XX][YY] = a[XX][YY]+b[XX][YY];
727 dest[XX][ZZ] = a[XX][ZZ]+b[XX][ZZ];
728 dest[YY][XX] = a[YY][XX]+b[YY][XX];
729 dest[YY][YY] = a[YY][YY]+b[YY][YY];
730 dest[YY][ZZ] = a[YY][ZZ]+b[YY][ZZ];
731 dest[ZZ][XX] = a[ZZ][XX]+b[ZZ][XX];
732 dest[ZZ][YY] = a[ZZ][YY]+b[ZZ][YY];
733 dest[ZZ][ZZ] = a[ZZ][ZZ]+b[ZZ][ZZ];
736 static gmx_inline void m_sub(matrix a, matrix b, matrix dest)
738 dest[XX][XX] = a[XX][XX]-b[XX][XX];
739 dest[XX][YY] = a[XX][YY]-b[XX][YY];
740 dest[XX][ZZ] = a[XX][ZZ]-b[XX][ZZ];
741 dest[YY][XX] = a[YY][XX]-b[YY][XX];
742 dest[YY][YY] = a[YY][YY]-b[YY][YY];
743 dest[YY][ZZ] = a[YY][ZZ]-b[YY][ZZ];
744 dest[ZZ][XX] = a[ZZ][XX]-b[ZZ][XX];
745 dest[ZZ][YY] = a[ZZ][YY]-b[ZZ][YY];
746 dest[ZZ][ZZ] = a[ZZ][ZZ]-b[ZZ][ZZ];
749 static gmx_inline void msmul(matrix m1, real r1, matrix dest)
751 dest[XX][XX] = r1*m1[XX][XX];
752 dest[XX][YY] = r1*m1[XX][YY];
753 dest[XX][ZZ] = r1*m1[XX][ZZ];
754 dest[YY][XX] = r1*m1[YY][XX];
755 dest[YY][YY] = r1*m1[YY][YY];
756 dest[YY][ZZ] = r1*m1[YY][ZZ];
757 dest[ZZ][XX] = r1*m1[ZZ][XX];
758 dest[ZZ][YY] = r1*m1[ZZ][YY];
759 dest[ZZ][ZZ] = r1*m1[ZZ][ZZ];
762 static gmx_inline void m_inv_ur0(matrix src, matrix dest)
764 double tmp = src[XX][XX]*src[YY][YY]*src[ZZ][ZZ];
765 if (fabs(tmp) <= 100*GMX_REAL_MIN)
767 gmx_fatal(FARGS, "Can not invert matrix, determinant is zero");
770 dest[XX][XX] = 1/src[XX][XX];
771 dest[YY][YY] = 1/src[YY][YY];
772 dest[ZZ][ZZ] = 1/src[ZZ][ZZ];
773 dest[ZZ][XX] = (src[YY][XX]*src[ZZ][YY]*dest[YY][YY]
774 - src[ZZ][XX])*dest[XX][XX]*dest[ZZ][ZZ];
775 dest[YY][XX] = -src[YY][XX]*dest[XX][XX]*dest[YY][YY];
776 dest[ZZ][YY] = -src[ZZ][YY]*dest[YY][YY]*dest[ZZ][ZZ];
777 dest[XX][YY] = 0.0;
778 dest[XX][ZZ] = 0.0;
779 dest[YY][ZZ] = 0.0;
782 static gmx_inline void m_inv(matrix src, matrix dest)
784 const real smallreal = (real)1.0e-24;
785 const real largereal = (real)1.0e24;
786 real deter, c, fc;
788 deter = det(src);
789 c = (real)1.0/deter;
790 fc = (real)fabs(c);
792 if ((fc <= smallreal) || (fc >= largereal))
794 gmx_fatal(FARGS, "Can not invert matrix, determinant = %e", deter);
797 dest[XX][XX] = c*(src[YY][YY]*src[ZZ][ZZ]-src[ZZ][YY]*src[YY][ZZ]);
798 dest[XX][YY] = -c*(src[XX][YY]*src[ZZ][ZZ]-src[ZZ][YY]*src[XX][ZZ]);
799 dest[XX][ZZ] = c*(src[XX][YY]*src[YY][ZZ]-src[YY][YY]*src[XX][ZZ]);
800 dest[YY][XX] = -c*(src[YY][XX]*src[ZZ][ZZ]-src[ZZ][XX]*src[YY][ZZ]);
801 dest[YY][YY] = c*(src[XX][XX]*src[ZZ][ZZ]-src[ZZ][XX]*src[XX][ZZ]);
802 dest[YY][ZZ] = -c*(src[XX][XX]*src[YY][ZZ]-src[YY][XX]*src[XX][ZZ]);
803 dest[ZZ][XX] = c*(src[YY][XX]*src[ZZ][YY]-src[ZZ][XX]*src[YY][YY]);
804 dest[ZZ][YY] = -c*(src[XX][XX]*src[ZZ][YY]-src[ZZ][XX]*src[XX][YY]);
805 dest[ZZ][ZZ] = c*(src[XX][XX]*src[YY][YY]-src[YY][XX]*src[XX][YY]);
808 static gmx_inline void mvmul(matrix a, const rvec src, rvec dest)
810 dest[XX] = a[XX][XX]*src[XX]+a[XX][YY]*src[YY]+a[XX][ZZ]*src[ZZ];
811 dest[YY] = a[YY][XX]*src[XX]+a[YY][YY]*src[YY]+a[YY][ZZ]*src[ZZ];
812 dest[ZZ] = a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
815 static gmx_inline void mvmul_ur0(matrix a, const rvec src, rvec dest)
817 dest[ZZ] = a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
818 dest[YY] = a[YY][XX]*src[XX]+a[YY][YY]*src[YY];
819 dest[XX] = a[XX][XX]*src[XX];
822 static gmx_inline void tmvmul_ur0(matrix a, const rvec src, rvec dest)
824 dest[XX] = a[XX][XX]*src[XX]+a[YY][XX]*src[YY]+a[ZZ][XX]*src[ZZ];
825 dest[YY] = a[YY][YY]*src[YY]+a[ZZ][YY]*src[ZZ];
826 dest[ZZ] = a[ZZ][ZZ]*src[ZZ];
829 static gmx_inline void unitv(const rvec src, rvec dest)
831 real linv;
833 linv = gmx_invsqrt(norm2(src));
834 dest[XX] = linv*src[XX];
835 dest[YY] = linv*src[YY];
836 dest[ZZ] = linv*src[ZZ];
839 static gmx_inline void unitv_no_table(const rvec src, rvec dest)
841 real linv;
843 linv = 1.0/sqrt(norm2(src));
844 dest[XX] = linv*src[XX];
845 dest[YY] = linv*src[YY];
846 dest[ZZ] = linv*src[ZZ];
849 static void calc_lll(rvec box, rvec lll)
851 lll[XX] = 2.0*M_PI/box[XX];
852 lll[YY] = 2.0*M_PI/box[YY];
853 lll[ZZ] = 2.0*M_PI/box[ZZ];
856 static gmx_inline real trace(matrix m)
858 return (m[XX][XX]+m[YY][YY]+m[ZZ][ZZ]);
861 static gmx_inline real _divide(real a, real b, const char *file, int line)
863 if (fabs(b) <= GMX_REAL_MIN)
865 gmx_fatal(FARGS, "Dividing by zero, file %s, line %d", file, line);
867 return a/b;
870 static gmx_inline int _mod(int a, int b, char *file, int line)
872 if (b == 0)
874 gmx_fatal(FARGS, "Modulo zero, file %s, line %d", file, line);
876 return a % b;
879 /* Operations on multidimensional rvecs, used e.g. in edsam.c */
880 static void m_rveccopy(int dim, rvec *a, rvec *b)
882 /* b = a */
883 int i;
885 for (i = 0; i < dim; i++)
887 copy_rvec(a[i], b[i]);
891 /*computer matrix vectors from base vectors and angles */
892 static void matrix_convert(matrix box, rvec vec, rvec angle)
894 svmul(DEG2RAD, angle, angle);
895 box[XX][XX] = vec[XX];
896 box[YY][XX] = vec[YY]*cos(angle[ZZ]);
897 box[YY][YY] = vec[YY]*sin(angle[ZZ]);
898 box[ZZ][XX] = vec[ZZ]*cos(angle[YY]);
899 box[ZZ][YY] = vec[ZZ]
900 *(cos(angle[XX])-cos(angle[YY])*cos(angle[ZZ]))/sin(angle[ZZ]);
901 box[ZZ][ZZ] = sqrt(sqr(vec[ZZ])
902 -box[ZZ][XX]*box[ZZ][XX]-box[ZZ][YY]*box[ZZ][YY]);
905 #define divide(a, b) _divide((a), (b), __FILE__, __LINE__)
906 #define mod(a, b) _mod((a), (b), __FILE__, __LINE__)
908 #ifdef __cplusplus
910 #endif
913 #endif /* _vec_h */