2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2017,2018 by the GROMACS development team.
7 * Copyright (c) 2019,2020, by the GROMACS development team, led by
8 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9 * and including many others, as listed in the AUTHORS file in the
10 * top-level source directory and at http://www.gromacs.org.
12 * GROMACS is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public License
14 * as published by the Free Software Foundation; either version 2.1
15 * of the License, or (at your option) any later version.
17 * GROMACS is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with GROMACS; if not, see
24 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 * If you want to redistribute modifications to GROMACS, please
28 * consider that scientific software is very special. Version
29 * control is crucial - bugs must be traceable. We will be happy to
30 * consider code for inclusion in the official distribution, but
31 * derived work must not be called official GROMACS. Details are found
32 * in the README & COPYING files - if they are missing, get the
33 * official version at http://www.gromacs.org.
35 * To help us fund GROMACS development, we humbly ask that you cite
36 * the research papers on the package. Check out http://www.gromacs.org.
48 #include "gromacs/mdtypes/commrec.h"
49 #include "gromacs/mdtypes/md_enums.h"
50 #include "gromacs/utility/arraysize.h"
59 static const t_nrnb_data nbdata
[eNRNB
] = {
60 /* These are re-used for different NB kernels, since there are so many.
61 * The actual number of flops is set dynamically.
63 { "NB VdW [V&F]", 1 },
65 { "NB Elec. [V&F]", 1 },
66 { "NB Elec. [F]", 1 },
67 { "NB Elec. [W3,V&F]", 1 },
68 { "NB Elec. [W3,F]", 1 },
69 { "NB Elec. [W3-W3,V&F]", 1 },
70 { "NB Elec. [W3-W3,F]", 1 },
71 { "NB Elec. [W4,V&F]", 1 },
72 { "NB Elec. [W4,F]", 1 },
73 { "NB Elec. [W4-W4,V&F]", 1 },
74 { "NB Elec. [W4-W4,F]", 1 },
75 { "NB VdW & Elec. [V&F]", 1 },
76 { "NB VdW & Elec. [F]", 1 },
77 { "NB VdW & Elec. [W3,V&F]", 1 },
78 { "NB VdW & Elec. [W3,F]", 1 },
79 { "NB VdW & Elec. [W3-W3,V&F]", 1 },
80 { "NB VdW & Elec. [W3-W3,F]", 1 },
81 { "NB VdW & Elec. [W4,V&F]", 1 },
82 { "NB VdW & Elec. [W4,F]", 1 },
83 { "NB VdW & Elec. [W4-W4,V&F]", 1 },
84 { "NB VdW & Elec. [W4-W4,F]", 1 },
86 { "NB Generic kernel", 1 },
87 { "NB Generic charge grp kernel", 1 },
88 { "NB Free energy kernel", 1 },
90 { "Pair Search distance check", 9 }, /* nbnxn pair dist. check */
91 /* nbnxn kernel flops are based on inner-loops without exclusion checks.
92 * Plain Coulomb runs through the RF kernels, except with GPUs.
93 * invsqrt is counted as 6 flops: 1 for _mm_rsqt_ps + 5 for iteration.
94 * The flops are equal for plain-C, x86 SIMD and GPUs, except for:
95 * - plain-C kernel uses one flop more for Coulomb-only (F) than listed
96 * - x86 SIMD LJ geom-comb.rule kernels (fastest) use 2 more flops
97 * - x86 SIMD LJ LB-comb.rule kernels (fast) use 3 (8 for F+E) more flops
98 * - GPU always does exclusions, which requires 2-4 flops, but as invsqrt
99 * is always counted as 6 flops, this roughly compensates.
101 { "NxN RF Elec. + LJ [F]", 38 }, /* nbnxn kernel LJ+RF, no ener */
102 { "NxN RF Elec. + LJ [V&F]", 54 },
103 { "NxN QSTab Elec. + LJ [F]", 41 }, /* nbnxn kernel LJ+tab, no en */
104 { "NxN QSTab Elec. + LJ [V&F]", 59 },
105 { "NxN Ewald Elec. + LJ [F]", 66 }, /* nbnxn kernel LJ+Ewald, no en */
106 { "NxN Ewald Elec. + LJ [V&F]", 107 },
107 { "NxN LJ [F]", 33 }, /* nbnxn kernel LJ, no ener */
108 { "NxN LJ [V&F]", 43 },
109 { "NxN RF Electrostatics [F]", 31 }, /* nbnxn kernel RF, no ener */
110 { "NxN RF Electrostatics [V&F]", 36 },
111 { "NxN QSTab Elec. [F]", 34 }, /* nbnxn kernel tab, no ener */
112 { "NxN QSTab Elec. [V&F]", 41 },
113 { "NxN Ewald Elec. [F]", 61 }, /* nbnxn kernel Ewald, no ener */
114 { "NxN Ewald Elec. [V&F]", 84 },
115 /* The switch function flops should be added to the LJ kernels above */
116 { "NxN LJ add F-switch [F]", 12 }, /* extra cost for LJ F-switch */
117 { "NxN LJ add F-switch [V&F]", 22 },
118 { "NxN LJ add P-switch [F]", 27 }, /* extra cost for LJ P-switch */
119 { "NxN LJ add P-switch [V&F]", 20 },
120 { "NxN LJ add LJ Ewald [F]", 36 }, /* extra cost for LJ Ewald */
121 { "NxN LJ add LJ Ewald [V&F]", 33 },
122 { "1,4 nonbonded interactions", 90 },
123 { "Calc Weights", 36 },
125 { "Spread Q Bspline", 2 },
127 { "Gather F Bspline", 6 },
129 { "Convolution", 4 },
132 { "Reset In Box", 3 },
138 { "FENE Bonds", 58 },
139 { "Tab. Bonds", 62 },
140 { "Restraint Potential", 86 },
141 { "Linear Angles", 57 },
143 { "G96Angles", 150 },
144 { "Quartic Angles", 160 },
145 { "Tab. Angles", 169 },
147 { "Impropers", 208 },
148 { "RB-Dihedrals", 247 },
149 { "Four. Dihedrals", 247 },
150 { "Tab. Dihedrals", 227 },
151 { "Dist. Restr.", 200 },
152 { "Orient. Restr.", 200 },
153 { "Dihedral Restr.", 200 },
154 { "Pos. Restr.", 50 },
155 { "Flat-bottom posres", 50 },
156 { "Angle Restr.", 191 },
157 { "Angle Restr. Z", 164 },
158 { "Morse Potent.", 83 },
159 { "Cubic Bonds", 54 },
161 { "Polarization", 59 },
162 { "Anharmonic Polarization", 72 },
163 { "Water Pol.", 62 },
164 { "Thole Pol.", 296 },
167 { "Ext.ens. Update", 54 },
174 { "Constraint-V", 9 },
175 { "Shake-Init", 10 },
176 { "Constraint-Vir", 24 },
178 { "Virtual Site 1", 1 },
179 { "Virtual Site 2", 23 },
180 { "Virtual Site 2fd", 63 },
181 { "Virtual Site 3", 37 },
182 { "Virtual Site 3fd", 95 },
183 { "Virtual Site 3fad", 176 },
184 { "Virtual Site 3out", 87 },
185 { "Virtual Site 4fd", 110 },
186 { "Virtual Site 4fdn", 254 },
187 { "Virtual Site N", 15 },
188 { "CMAP", 1700 }, // Estimate!
189 { "Urey-Bradley", 183 },
190 { "Cross-Bond-Bond", 163 },
191 { "Cross-Bond-Angle", 163 }
194 static void pr_two(FILE* out
, int c
, int i
)
198 fprintf(out
, "%c0%1d", c
, i
);
202 fprintf(out
, "%c%2d", c
, i
);
206 static void pr_difftime(FILE* out
, double dt
)
208 int ndays
, nhours
, nmins
, nsecs
;
209 gmx_bool bPrint
, bPrinted
;
211 ndays
= static_cast<int>(dt
/ (24 * 3600));
212 dt
= dt
- 24 * 3600 * ndays
;
213 nhours
= static_cast<int>(dt
/ 3600);
214 dt
= dt
- 3600 * nhours
;
215 nmins
= static_cast<int>(dt
/ 60);
216 dt
= dt
- nmins
* 60;
217 nsecs
= static_cast<int>(dt
);
218 bPrint
= (ndays
> 0);
222 fprintf(out
, "%d", ndays
);
224 bPrint
= bPrint
|| (nhours
> 0);
229 pr_two(out
, 'd', nhours
);
233 fprintf(out
, "%d", nhours
);
236 bPrinted
= bPrinted
|| bPrint
;
237 bPrint
= bPrint
|| (nmins
> 0);
242 pr_two(out
, 'h', nmins
);
246 fprintf(out
, "%d", nmins
);
249 bPrinted
= bPrinted
|| bPrint
;
252 pr_two(out
, ':', nsecs
);
256 fprintf(out
, "%ds", nsecs
);
261 void clear_nrnb(t_nrnb
* nrnb
)
265 for (i
= 0; (i
< eNRNB
); i
++)
271 void add_nrnb(t_nrnb
* dest
, t_nrnb
* s1
, t_nrnb
* s2
)
275 for (i
= 0; (i
< eNRNB
); i
++)
277 dest
->n
[i
] = s1
->n
[i
] + s2
->n
[i
];
281 void print_nrnb(FILE* out
, t_nrnb
* nrnb
)
285 for (i
= 0; (i
< eNRNB
); i
++)
289 fprintf(out
, " %-26s %10.0f.\n", nbdata
[i
].name
, nrnb
->n
[i
]);
294 void _inc_nrnb(t_nrnb
* nrnb
, int enr
, int inc
, char gmx_unused
* file
, int gmx_unused line
)
298 printf("nrnb %15s(%2d) incremented with %8d from file %s line %d\n", nbdata
[enr
].name
, enr
, inc
,
303 /* Returns in enr is the index of a full nbnxn VdW kernel */
304 static gmx_bool
nrnb_is_nbnxn_vdw_kernel(int enr
)
306 return (enr
>= eNR_NBNXN_LJ_RF
&& enr
<= eNR_NBNXN_LJ_E
);
309 /* Returns in enr is the index of an nbnxn kernel addition (LJ modification) */
310 static gmx_bool
nrnb_is_nbnxn_kernel_addition(int enr
)
312 return (enr
>= eNR_NBNXN_ADD_LJ_FSW
&& enr
<= eNR_NBNXN_ADD_LJ_EWALD_E
);
315 void print_flop(FILE* out
, t_nrnb
* nrnb
, double* nbfs
, double* mflop
)
318 double mni
, frac
, tfrac
, tflop
;
320 "-----------------------------------------------------------------------------";
323 for (i
= 0; (i
< eNR_NBKERNEL_TOTAL_NR
); i
++)
325 if (std::strstr(nbdata
[i
].name
, "W3-W3") != nullptr)
327 *nbfs
+= 9e-6 * nrnb
->n
[i
];
329 else if (std::strstr(nbdata
[i
].name
, "W3") != nullptr)
331 *nbfs
+= 3e-6 * nrnb
->n
[i
];
333 else if (std::strstr(nbdata
[i
].name
, "W4-W4") != nullptr)
335 *nbfs
+= 10e-6 * nrnb
->n
[i
];
337 else if (std::strstr(nbdata
[i
].name
, "W4") != nullptr)
339 *nbfs
+= 4e-6 * nrnb
->n
[i
];
343 *nbfs
+= 1e-6 * nrnb
->n
[i
];
347 for (i
= 0; (i
< eNRNB
); i
++)
349 tflop
+= 1e-6 * nrnb
->n
[i
] * nbdata
[i
].flop
;
354 fprintf(out
, "No MEGA Flopsen this time\n");
359 fprintf(out
, "\n\tM E G A - F L O P S A C C O U N T I N G\n\n");
364 fprintf(out
, " NB=Group-cutoff nonbonded kernels NxN=N-by-N cluster Verlet kernels\n");
365 fprintf(out
, " RF=Reaction-Field VdW=Van der Waals QSTab=quadratic-spline table\n");
366 fprintf(out
, " W3=SPC/TIP3p W4=TIP4p (single or pairs)\n");
367 fprintf(out
, " V&F=Potential and force V=Potential only F=Force only\n\n");
369 fprintf(out
, " %-32s %16s %15s %7s\n", "Computing:", "M-Number", "M-Flops", "% Flops");
370 fprintf(out
, "%s\n", myline
);
374 for (i
= 0; (i
< eNRNB
); i
++)
376 mni
= 1e-6 * nrnb
->n
[i
];
377 /* Skip empty entries and nbnxn additional flops,
378 * which have been added to the kernel entry.
380 if (mni
> 0 && !nrnb_is_nbnxn_kernel_addition(i
))
384 flop
= nbdata
[i
].flop
;
385 if (nrnb_is_nbnxn_vdw_kernel(i
))
387 /* Possibly add the cost of an LJ switch/Ewald function */
388 for (j
= eNR_NBNXN_ADD_LJ_FSW
; j
<= eNR_NBNXN_ADD_LJ_EWALD
; j
+= 2)
392 /* Select the force or energy flop count */
393 e_kernel_add
= j
+ ((i
- eNR_NBNXN_LJ_RF
) % 2);
395 if (nrnb
->n
[e_kernel_add
] > 0)
397 flop
+= nbdata
[e_kernel_add
].flop
;
401 *mflop
+= mni
* flop
;
402 frac
= 100.0 * mni
* flop
/ tflop
;
406 fprintf(out
, " %-32s %16.6f %15.3f %6.1f\n", nbdata
[i
].name
, mni
, mni
* flop
, frac
);
412 fprintf(out
, "%s\n", myline
);
413 fprintf(out
, " %-32s %16s %15.3f %6.1f\n", "Total", "", *mflop
, tfrac
);
414 fprintf(out
, "%s\n\n", myline
);
416 if (nrnb
->n
[eNR_NBKERNEL_GENERIC
] > 0)
419 "WARNING: Using the slow generic C kernel. This is fine if you are\n"
420 "comparing different implementations or MD software. Routine\n"
421 "simulations should use a different non-bonded setup for much better\n"
427 void print_perf(FILE* out
,
428 double time_per_thread
,
429 double time_per_node
,
435 double wallclocktime
;
439 if (time_per_node
> 0)
441 fprintf(out
, "%12s %12s %12s %10s\n", "", "Core t (s)", "Wall t (s)", "(%)");
442 fprintf(out
, "%12s %12.3f %12.3f %10.1f\n", "Time:", time_per_thread
, time_per_node
,
443 100.0 * time_per_thread
/ time_per_node
);
444 /* only print day-hour-sec format if time_per_node is more than 30 min */
445 if (time_per_node
> 30 * 60)
447 fprintf(out
, "%12s %12s", "", "");
448 pr_difftime(out
, time_per_node
);
452 mflop
= mflop
/ time_per_node
;
453 wallclocktime
= nsteps
* delta_t
;
455 if (getenv("GMX_DETAILED_PERF_STATS") == nullptr)
457 fprintf(out
, "%12s %12s %12s\n", "", "(ns/day)", "(hour/ns)");
458 fprintf(out
, "%12s %12.3f %12.3f\n", "Performance:", wallclocktime
* 24 * 3.6 / time_per_node
,
459 1000 * time_per_node
/ (3600 * wallclocktime
));
463 fprintf(out
, "%12s %12s %12s %12s %12s\n", "", "(Mnbf/s)",
464 (mflop
> 1000) ? "(GFlops)" : "(MFlops)", "(ns/day)", "(hour/ns)");
465 fprintf(out
, "%12s %12.3f %12.3f %12.3f %12.3f\n", "Performance:", nbfs
/ time_per_node
,
466 (mflop
> 1000) ? (mflop
/ 1000) : mflop
, wallclocktime
* 24 * 3.6 / time_per_node
,
467 1000 * time_per_node
/ (3600 * wallclocktime
));
472 if (getenv("GMX_DETAILED_PERF_STATS") == nullptr)
474 fprintf(out
, "%12s %14s\n", "", "(steps/hour)");
475 fprintf(out
, "%12s %14.1f\n", "Performance:", nsteps
* 3600.0 / time_per_node
);
479 fprintf(out
, "%12s %12s %12s %14s\n", "", "(Mnbf/s)",
480 (mflop
> 1000) ? "(GFlops)" : "(MFlops)", "(steps/hour)");
481 fprintf(out
, "%12s %12.3f %12.3f %14.1f\n", "Performance:", nbfs
/ time_per_node
,
482 (mflop
> 1000) ? (mflop
/ 1000) : mflop
, nsteps
* 3600.0 / time_per_node
);
488 int cost_nrnb(int enr
)
490 return nbdata
[enr
].flop
;
493 const char* nrnb_str(int enr
)
495 return nbdata
[enr
].name
;
498 static const int force_index
[] = {
499 eNR_BONDS
, eNR_ANGLES
, eNR_PROPER
, eNR_IMPROPER
, eNR_RB
,
500 eNR_DISRES
, eNR_ORIRES
, eNR_POSRES
, eNR_FBPOSRES
, eNR_NS
,
502 #define NFORCE_INDEX asize(force_index)
504 static const int constr_index
[] = { eNR_SHAKE
, eNR_SHAKE_RIJ
, eNR_SETTLE
, eNR_UPDATE
,
505 eNR_PCOUPL
, eNR_CONSTR_VIR
, eNR_CONSTR_V
};
506 #define NCONSTR_INDEX asize(constr_index)
508 static double pr_av(FILE* log
, t_commrec
* cr
, double fav
, const double ftot
[], const char* title
)
516 fav
/= cr
->nnodes
- cr
->npmenodes
;
517 fprintf(log
, "\n %-26s", title
);
518 for (i
= 0; (i
< cr
->nnodes
); i
++)
520 dperc
= (100.0 * ftot
[i
]) / fav
;
521 unb
= std::max(unb
, dperc
);
522 perc
= static_cast<int>(dperc
);
523 fprintf(log
, "%3d ", perc
);
527 perc
= static_cast<int>(10000.0 / unb
);
528 fprintf(log
, "%6d%%\n\n", perc
);
532 fprintf(log
, "\n\n");
538 void pr_load(FILE* log
, t_commrec
* cr
, t_nrnb nrnb
[])
542 std::vector
<double> ftot(cr
->nnodes
);
543 std::vector
<double> stot(cr
->nnodes
);
544 for (int i
= 0; (i
< cr
->nnodes
); i
++)
546 add_nrnb(&av
, &av
, &(nrnb
[i
]));
547 /* Cost due to forces */
548 for (int j
= 0; (j
< eNR_NBKERNEL_TOTAL_NR
); j
++)
550 ftot
[i
] += nrnb
[i
].n
[j
] * cost_nrnb(j
);
552 for (int j
= 0; (j
< NFORCE_INDEX
); j
++)
554 ftot
[i
] += nrnb
[i
].n
[force_index
[j
]] * cost_nrnb(force_index
[j
]);
557 for (int j
= 0; (j
< NCONSTR_INDEX
); j
++)
559 stot
[i
] += nrnb
[i
].n
[constr_index
[j
]] * cost_nrnb(constr_index
[j
]);
562 for (int j
= 0; (j
< eNRNB
); j
++)
564 av
.n
[j
] = av
.n
[j
] / static_cast<double>(cr
->nnodes
- cr
->npmenodes
);
567 fprintf(log
, "\nDetailed load balancing info in percentage of average\n");
569 fprintf(log
, " Type RANK:");
570 for (int i
= 0; (i
< cr
->nnodes
); i
++)
572 fprintf(log
, "%3d ", i
);
574 fprintf(log
, "Scaling\n");
575 fprintf(log
, "---------------------------");
576 for (int i
= 0; (i
< cr
->nnodes
); i
++)
578 fprintf(log
, "----");
580 fprintf(log
, "-------\n");
582 for (int j
= 0; (j
< eNRNB
); j
++)
589 fprintf(log
, " %-26s", nrnb_str(j
));
590 for (int i
= 0; (i
< cr
->nnodes
); i
++)
592 dperc
= (100.0 * nrnb
[i
].n
[j
]) / av
.n
[j
];
593 unb
= std::max(unb
, dperc
);
594 perc
= static_cast<int>(dperc
);
595 fprintf(log
, "%3d ", perc
);
599 perc
= static_cast<int>(10000.0 / unb
);
600 fprintf(log
, "%6d%%\n", perc
);
610 for (int i
= 0; (i
< cr
->nnodes
); i
++)
615 double uf
= pr_av(log
, cr
, fav
, ftot
.data(), "Total Force");
616 double us
= pr_av(log
, cr
, sav
, stot
.data(), "Total Constr.");
618 double unb
= (uf
* fav
+ us
* sav
) / (fav
+ sav
);
622 fprintf(log
, "\nTotal Scaling: %.0f%% of max performance\n\n", unb
);