clang-tidy modernize
[gromacs.git] / src / gromacs / mdlib / shellfc.cpp
blobe4b54384c5ba642101ca418cc2f3ac543704f45c
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2008, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "shellfc.h"
41 #include <cmath>
42 #include <cstdint>
43 #include <cstdlib>
44 #include <cstring>
46 #include <algorithm>
47 #include <array>
49 #include "gromacs/domdec/dlbtiming.h"
50 #include "gromacs/domdec/domdec.h"
51 #include "gromacs/domdec/domdec_struct.h"
52 #include "gromacs/gmxlib/chargegroup.h"
53 #include "gromacs/gmxlib/network.h"
54 #include "gromacs/math/functions.h"
55 #include "gromacs/math/units.h"
56 #include "gromacs/math/vec.h"
57 #include "gromacs/math/vecdump.h"
58 #include "gromacs/mdlib/constr.h"
59 #include "gromacs/mdlib/force.h"
60 #include "gromacs/mdlib/force_flags.h"
61 #include "gromacs/mdlib/mdrun.h"
62 #include "gromacs/mdlib/sim_util.h"
63 #include "gromacs/mdlib/vsite.h"
64 #include "gromacs/mdtypes/commrec.h"
65 #include "gromacs/mdtypes/forcerec.h"
66 #include "gromacs/mdtypes/inputrec.h"
67 #include "gromacs/mdtypes/md_enums.h"
68 #include "gromacs/mdtypes/state.h"
69 #include "gromacs/pbcutil/mshift.h"
70 #include "gromacs/pbcutil/pbc.h"
71 #include "gromacs/topology/ifunc.h"
72 #include "gromacs/topology/mtop_lookup.h"
73 #include "gromacs/topology/mtop_util.h"
74 #include "gromacs/utility/arrayref.h"
75 #include "gromacs/utility/arraysize.h"
76 #include "gromacs/utility/cstringutil.h"
77 #include "gromacs/utility/fatalerror.h"
78 #include "gromacs/utility/smalloc.h"
80 typedef struct {
81 int nnucl;
82 int shell; /* The shell id */
83 int nucl1, nucl2, nucl3; /* The nuclei connected to the shell */
84 /* gmx_bool bInterCG; */ /* Coupled to nuclei outside cg? */
85 real k; /* force constant */
86 real k_1; /* 1 over force constant */
87 rvec xold;
88 rvec fold;
89 rvec step;
90 } t_shell;
92 struct gmx_shellfc_t {
93 /* Shell counts, indices, parameters and working data */
94 int nshell_gl; /* The number of shells in the system */
95 t_shell *shell_gl; /* All the shells (for DD only) */
96 int *shell_index_gl; /* Global shell index (for DD only) */
97 gmx_bool bInterCG; /* Are there inter charge-group shells? */
98 int nshell; /* The number of local shells */
99 t_shell *shell; /* The local shells */
100 int shell_nalloc; /* The allocation size of shell */
101 gmx_bool bPredict; /* Predict shell positions */
102 gmx_bool bRequireInit; /* Require initialization of shell positions */
103 int nflexcon; /* The number of flexible constraints */
105 /* Temporary arrays, should be fixed size 2 when fully converted to C++ */
106 PaddedRVecVector *x; /* Array for iterative minimization */
107 PaddedRVecVector *f; /* Array for iterative minimization */
109 /* Flexible constraint working data */
110 rvec *acc_dir; /* Acceleration direction for flexcon */
111 rvec *x_old; /* Old coordinates for flexcon */
112 int flex_nalloc; /* The allocation size of acc_dir and x_old */
113 rvec *adir_xnold; /* Work space for init_adir */
114 rvec *adir_xnew; /* Work space for init_adir */
115 int adir_nalloc; /* Work space for init_adir */
116 std::int64_t numForceEvaluations; /* Total number of force evaluations */
117 int numConvergedIterations; /* Total number of iterations that converged */
121 static void pr_shell(FILE *fplog, int ns, t_shell s[])
123 int i;
125 fprintf(fplog, "SHELL DATA\n");
126 fprintf(fplog, "%5s %8s %5s %5s %5s\n",
127 "Shell", "Force k", "Nucl1", "Nucl2", "Nucl3");
128 for (i = 0; (i < ns); i++)
130 fprintf(fplog, "%5d %8.3f %5d", s[i].shell, 1.0/s[i].k_1, s[i].nucl1);
131 if (s[i].nnucl == 2)
133 fprintf(fplog, " %5d\n", s[i].nucl2);
135 else if (s[i].nnucl == 3)
137 fprintf(fplog, " %5d %5d\n", s[i].nucl2, s[i].nucl3);
139 else
141 fprintf(fplog, "\n");
146 /* TODO The remain call of this function passes non-NULL mass and NULL
147 * mtop, so this routine can be simplified.
149 * The other code path supported doing prediction before the MD loop
150 * started, but even when called, the prediction was always
151 * over-written by a subsequent call in the MD loop, so has been
152 * removed. */
153 static void predict_shells(FILE *fplog, rvec x[], rvec v[], real dt,
154 int ns, t_shell s[],
155 const real mass[], gmx_mtop_t *mtop, gmx_bool bInit)
157 int i, m, s1, n1, n2, n3;
158 real dt_1, fudge, tm, m1, m2, m3;
159 rvec *ptr;
161 /* We introduce a fudge factor for performance reasons: with this choice
162 * the initial force on the shells is about a factor of two lower than
163 * without
165 fudge = 1.0;
167 if (bInit)
169 if (fplog)
171 fprintf(fplog, "RELAX: Using prediction for initial shell placement\n");
173 ptr = x;
174 dt_1 = 1;
176 else
178 ptr = v;
179 dt_1 = fudge*dt;
182 int molb = 0;
183 for (i = 0; (i < ns); i++)
185 s1 = s[i].shell;
186 if (bInit)
188 clear_rvec(x[s1]);
190 switch (s[i].nnucl)
192 case 1:
193 n1 = s[i].nucl1;
194 for (m = 0; (m < DIM); m++)
196 x[s1][m] += ptr[n1][m]*dt_1;
198 break;
199 case 2:
200 n1 = s[i].nucl1;
201 n2 = s[i].nucl2;
202 if (mass)
204 m1 = mass[n1];
205 m2 = mass[n2];
207 else
209 /* Not the correct masses with FE, but it is just a prediction... */
210 m1 = mtopGetAtomMass(mtop, n1, &molb);
211 m2 = mtopGetAtomMass(mtop, n2, &molb);
213 tm = dt_1/(m1+m2);
214 for (m = 0; (m < DIM); m++)
216 x[s1][m] += (m1*ptr[n1][m]+m2*ptr[n2][m])*tm;
218 break;
219 case 3:
220 n1 = s[i].nucl1;
221 n2 = s[i].nucl2;
222 n3 = s[i].nucl3;
223 if (mass)
225 m1 = mass[n1];
226 m2 = mass[n2];
227 m3 = mass[n3];
229 else
231 /* Not the correct masses with FE, but it is just a prediction... */
232 m1 = mtopGetAtomMass(mtop, n1, &molb);
233 m2 = mtopGetAtomMass(mtop, n2, &molb);
234 m3 = mtopGetAtomMass(mtop, n3, &molb);
236 tm = dt_1/(m1+m2+m3);
237 for (m = 0; (m < DIM); m++)
239 x[s1][m] += (m1*ptr[n1][m]+m2*ptr[n2][m]+m3*ptr[n3][m])*tm;
241 break;
242 default:
243 gmx_fatal(FARGS, "Shell %d has %d nuclei!", i, s[i].nnucl);
248 /*! \brief Count the different particle types in a system
250 * Routine prints a warning to stderr in case an unknown particle type
251 * is encountered.
252 * \param[in] fplog Print what we have found if not NULL
253 * \param[in] mtop Molecular topology.
254 * \returns Array holding the number of particles of a type
256 static std::array<int, eptNR> countPtypes(FILE *fplog,
257 const gmx_mtop_t *mtop)
259 std::array<int, eptNR> nptype = { { 0 } };
260 /* Count number of shells, and find their indices */
261 for (int i = 0; (i < eptNR); i++)
263 nptype[i] = 0;
266 gmx_mtop_atomloop_block_t aloopb = gmx_mtop_atomloop_block_init(mtop);
267 int nmol;
268 const t_atom *atom;
269 while (gmx_mtop_atomloop_block_next(aloopb, &atom, &nmol))
271 switch (atom->ptype)
273 case eptAtom:
274 case eptVSite:
275 case eptShell:
276 nptype[atom->ptype] += nmol;
277 break;
278 default:
279 fprintf(stderr, "Warning unsupported particle type %d in countPtypes",
280 static_cast<int>(atom->ptype));
283 if (fplog)
285 /* Print the number of each particle type */
286 int n = 0;
287 for (const auto &i : nptype)
289 if (i != 0)
291 fprintf(fplog, "There are: %d %ss\n", i, ptype_str[n]);
293 n++;
296 return nptype;
299 gmx_shellfc_t *init_shell_flexcon(FILE *fplog,
300 const gmx_mtop_t *mtop, int nflexcon,
301 int nstcalcenergy,
302 bool usingDomainDecomposition)
304 gmx_shellfc_t *shfc;
305 t_shell *shell;
306 int *shell_index = nullptr, *at2cg;
307 const t_atom *atom;
309 int ns, nshell, nsi;
310 int i, j, type, a_offset, cg, mol, ftype, nra;
311 real qS, alpha;
312 int aS, aN = 0; /* Shell and nucleus */
313 int bondtypes[] = { F_BONDS, F_HARMONIC, F_CUBICBONDS, F_POLARIZATION, F_ANHARM_POL, F_WATER_POL };
314 #define NBT asize(bondtypes)
315 t_iatom *ia;
316 gmx_mtop_atomloop_all_t aloop;
317 const gmx_ffparams_t *ffparams;
319 std::array<int, eptNR> n = countPtypes(fplog, mtop);
320 nshell = n[eptShell];
322 if (nshell == 0 && nflexcon == 0)
324 /* We're not doing shells or flexible constraints */
325 return nullptr;
328 snew(shfc, 1);
329 shfc->x = new PaddedRVecVector[2] {};
330 shfc->f = new PaddedRVecVector[2] {};
331 shfc->nflexcon = nflexcon;
333 if (nshell == 0)
335 /* Only flexible constraints, no shells.
336 * Note that make_local_shells() does not need to be called.
338 shfc->nshell = 0;
339 shfc->bPredict = FALSE;
341 return shfc;
344 if (nstcalcenergy != 1)
346 gmx_fatal(FARGS, "You have nstcalcenergy set to a value (%d) that is different from 1.\nThis is not supported in combination with shell particles.\nPlease make a new tpr file.", nstcalcenergy);
348 if (usingDomainDecomposition)
350 gmx_fatal(FARGS, "Shell particles are not implemented with domain decomposition, use a single rank");
353 /* We have shells: fill the shell data structure */
355 /* Global system sized array, this should be avoided */
356 snew(shell_index, mtop->natoms);
358 aloop = gmx_mtop_atomloop_all_init(mtop);
359 nshell = 0;
360 while (gmx_mtop_atomloop_all_next(aloop, &i, &atom))
362 if (atom->ptype == eptShell)
364 shell_index[i] = nshell++;
368 snew(shell, nshell);
370 /* Initiate the shell structures */
371 for (i = 0; (i < nshell); i++)
373 shell[i].shell = -1;
374 shell[i].nnucl = 0;
375 shell[i].nucl1 = -1;
376 shell[i].nucl2 = -1;
377 shell[i].nucl3 = -1;
378 /* shell[i].bInterCG=FALSE; */
379 shell[i].k_1 = 0;
380 shell[i].k = 0;
383 ffparams = &mtop->ffparams;
385 /* Now fill the structures */
386 shfc->bInterCG = FALSE;
387 ns = 0;
388 a_offset = 0;
389 for (size_t mb = 0; mb < mtop->molblock.size(); mb++)
391 const gmx_molblock_t *molb = &mtop->molblock[mb];
392 const gmx_moltype_t *molt = &mtop->moltype[molb->type];
393 const t_block *cgs = &molt->cgs;
395 snew(at2cg, molt->atoms.nr);
396 for (cg = 0; cg < cgs->nr; cg++)
398 for (i = cgs->index[cg]; i < cgs->index[cg+1]; i++)
400 at2cg[i] = cg;
404 atom = molt->atoms.atom;
405 for (mol = 0; mol < molb->nmol; mol++)
407 for (j = 0; (j < NBT); j++)
409 ia = molt->ilist[bondtypes[j]].iatoms;
410 for (i = 0; (i < molt->ilist[bondtypes[j]].nr); )
412 type = ia[0];
413 ftype = ffparams->functype[type];
414 nra = interaction_function[ftype].nratoms;
416 /* Check whether we have a bond with a shell */
417 aS = -1;
419 switch (bondtypes[j])
421 case F_BONDS:
422 case F_HARMONIC:
423 case F_CUBICBONDS:
424 case F_POLARIZATION:
425 case F_ANHARM_POL:
426 if (atom[ia[1]].ptype == eptShell)
428 aS = ia[1];
429 aN = ia[2];
431 else if (atom[ia[2]].ptype == eptShell)
433 aS = ia[2];
434 aN = ia[1];
436 break;
437 case F_WATER_POL:
438 aN = ia[4]; /* Dummy */
439 aS = ia[5]; /* Shell */
440 break;
441 default:
442 gmx_fatal(FARGS, "Death Horror: %s, %d", __FILE__, __LINE__);
445 if (aS != -1)
447 qS = atom[aS].q;
449 /* Check whether one of the particles is a shell... */
450 nsi = shell_index[a_offset+aS];
451 if ((nsi < 0) || (nsi >= nshell))
453 gmx_fatal(FARGS, "nsi is %d should be within 0 - %d. aS = %d",
454 nsi, nshell, aS);
456 if (shell[nsi].shell == -1)
458 shell[nsi].shell = a_offset + aS;
459 ns++;
461 else if (shell[nsi].shell != a_offset+aS)
463 gmx_fatal(FARGS, "Weird stuff in %s, %d", __FILE__, __LINE__);
466 if (shell[nsi].nucl1 == -1)
468 shell[nsi].nucl1 = a_offset + aN;
470 else if (shell[nsi].nucl2 == -1)
472 shell[nsi].nucl2 = a_offset + aN;
474 else if (shell[nsi].nucl3 == -1)
476 shell[nsi].nucl3 = a_offset + aN;
478 else
480 if (fplog)
482 pr_shell(fplog, ns, shell);
484 gmx_fatal(FARGS, "Can not handle more than three bonds per shell\n");
486 if (at2cg[aS] != at2cg[aN])
488 /* shell[nsi].bInterCG = TRUE; */
489 shfc->bInterCG = TRUE;
492 switch (bondtypes[j])
494 case F_BONDS:
495 case F_HARMONIC:
496 shell[nsi].k += ffparams->iparams[type].harmonic.krA;
497 break;
498 case F_CUBICBONDS:
499 shell[nsi].k += ffparams->iparams[type].cubic.kb;
500 break;
501 case F_POLARIZATION:
502 case F_ANHARM_POL:
503 if (!gmx_within_tol(qS, atom[aS].qB, GMX_REAL_EPS*10))
505 gmx_fatal(FARGS, "polarize can not be used with qA(%e) != qB(%e) for atom %d of molecule block %lu", qS, atom[aS].qB, aS+1, mb+1);
507 shell[nsi].k += gmx::square(qS)*ONE_4PI_EPS0/
508 ffparams->iparams[type].polarize.alpha;
509 break;
510 case F_WATER_POL:
511 if (!gmx_within_tol(qS, atom[aS].qB, GMX_REAL_EPS*10))
513 gmx_fatal(FARGS, "water_pol can not be used with qA(%e) != qB(%e) for atom %d of molecule block %lu", qS, atom[aS].qB, aS+1, mb+1);
515 alpha = (ffparams->iparams[type].wpol.al_x+
516 ffparams->iparams[type].wpol.al_y+
517 ffparams->iparams[type].wpol.al_z)/3.0;
518 shell[nsi].k += gmx::square(qS)*ONE_4PI_EPS0/alpha;
519 break;
520 default:
521 gmx_fatal(FARGS, "Death Horror: %s, %d", __FILE__, __LINE__);
523 shell[nsi].nnucl++;
525 ia += nra+1;
526 i += nra+1;
529 a_offset += molt->atoms.nr;
531 /* Done with this molecule type */
532 sfree(at2cg);
535 /* Verify whether it's all correct */
536 if (ns != nshell)
538 gmx_fatal(FARGS, "Something weird with shells. They may not be bonded to something");
541 for (i = 0; (i < ns); i++)
543 shell[i].k_1 = 1.0/shell[i].k;
546 if (debug)
548 pr_shell(debug, ns, shell);
552 shfc->nshell_gl = ns;
553 shfc->shell_gl = shell;
554 shfc->shell_index_gl = shell_index;
556 shfc->bPredict = (getenv("GMX_NOPREDICT") == nullptr);
557 shfc->bRequireInit = FALSE;
558 if (!shfc->bPredict)
560 if (fplog)
562 fprintf(fplog, "\nWill never predict shell positions\n");
565 else
567 shfc->bRequireInit = (getenv("GMX_REQUIRE_SHELL_INIT") != nullptr);
568 if (shfc->bRequireInit && fplog)
570 fprintf(fplog, "\nWill always initiate shell positions\n");
574 if (shfc->bPredict)
576 if (shfc->bInterCG)
578 if (fplog)
580 fprintf(fplog, "\nNOTE: there all shells that are connected to particles outside thier own charge group, will not predict shells positions during the run\n\n");
582 /* Prediction improves performance, so we should implement either:
583 * 1. communication for the atoms needed for prediction
584 * 2. prediction using the velocities of shells; currently the
585 * shell velocities are zeroed, it's a bit tricky to keep
586 * track of the shell displacements and thus the velocity.
588 shfc->bPredict = FALSE;
592 return shfc;
595 void make_local_shells(const t_commrec *cr,
596 const t_mdatoms *md,
597 gmx_shellfc_t *shfc)
599 t_shell *shell;
600 int a0, a1, *ind, nshell, i;
601 gmx_domdec_t *dd = nullptr;
603 if (DOMAINDECOMP(cr))
605 dd = cr->dd;
606 a0 = 0;
607 a1 = dd_numHomeAtoms(*dd);
609 else
611 /* Single node: we need all shells, just copy the pointer */
612 shfc->nshell = shfc->nshell_gl;
613 shfc->shell = shfc->shell_gl;
615 return;
618 ind = shfc->shell_index_gl;
620 nshell = 0;
621 shell = shfc->shell;
622 for (i = a0; i < a1; i++)
624 if (md->ptype[i] == eptShell)
626 if (nshell+1 > shfc->shell_nalloc)
628 shfc->shell_nalloc = over_alloc_dd(nshell+1);
629 srenew(shell, shfc->shell_nalloc);
631 if (dd)
633 shell[nshell] = shfc->shell_gl[ind[dd->globalAtomIndices[i]]];
635 else
637 shell[nshell] = shfc->shell_gl[ind[i]];
640 /* With inter-cg shells we can no do shell prediction,
641 * so we do not need the nuclei numbers.
643 if (!shfc->bInterCG)
645 shell[nshell].nucl1 = i + shell[nshell].nucl1 - shell[nshell].shell;
646 if (shell[nshell].nnucl > 1)
648 shell[nshell].nucl2 = i + shell[nshell].nucl2 - shell[nshell].shell;
650 if (shell[nshell].nnucl > 2)
652 shell[nshell].nucl3 = i + shell[nshell].nucl3 - shell[nshell].shell;
655 shell[nshell].shell = i;
656 nshell++;
660 shfc->nshell = nshell;
661 shfc->shell = shell;
664 static void do_1pos(rvec xnew, const rvec xold, const rvec f, real step)
666 real xo, yo, zo;
667 real dx, dy, dz;
669 xo = xold[XX];
670 yo = xold[YY];
671 zo = xold[ZZ];
673 dx = f[XX]*step;
674 dy = f[YY]*step;
675 dz = f[ZZ]*step;
677 xnew[XX] = xo+dx;
678 xnew[YY] = yo+dy;
679 xnew[ZZ] = zo+dz;
682 static void do_1pos3(rvec xnew, const rvec xold, const rvec f, const rvec step)
684 real xo, yo, zo;
685 real dx, dy, dz;
687 xo = xold[XX];
688 yo = xold[YY];
689 zo = xold[ZZ];
691 dx = f[XX]*step[XX];
692 dy = f[YY]*step[YY];
693 dz = f[ZZ]*step[ZZ];
695 xnew[XX] = xo+dx;
696 xnew[YY] = yo+dy;
697 xnew[ZZ] = zo+dz;
700 static void directional_sd(gmx::ArrayRef<const gmx::RVec> xold,
701 gmx::ArrayRef<gmx::RVec> xnew,
702 const rvec acc_dir[], int homenr, real step)
704 const rvec *xo = as_rvec_array(xold.data());
705 rvec *xn = as_rvec_array(xnew.data());
707 for (int i = 0; i < homenr; i++)
709 do_1pos(xn[i], xo[i], acc_dir[i], step);
713 static void shell_pos_sd(gmx::ArrayRef<const gmx::RVec> xcur,
714 gmx::ArrayRef<gmx::RVec> xnew,
715 gmx::ArrayRef<const gmx::RVec> f,
716 int ns, t_shell s[], int count)
718 const real step_scale_min = 0.8,
719 step_scale_increment = 0.2,
720 step_scale_max = 1.2,
721 step_scale_multiple = (step_scale_max - step_scale_min) / step_scale_increment;
722 int i, shell, d;
723 real dx, df, k_est;
724 const real zero = 0;
725 #ifdef PRINT_STEP
726 real step_min, step_max;
728 step_min = 1e30;
729 step_max = 0;
730 #endif
731 for (i = 0; (i < ns); i++)
733 shell = s[i].shell;
734 if (count == 1)
736 for (d = 0; d < DIM; d++)
738 s[i].step[d] = s[i].k_1;
739 #ifdef PRINT_STEP
740 step_min = std::min(step_min, s[i].step[d]);
741 step_max = std::max(step_max, s[i].step[d]);
742 #endif
745 else
747 for (d = 0; d < DIM; d++)
749 dx = xcur[shell][d] - s[i].xold[d];
750 df = f[shell][d] - s[i].fold[d];
751 /* -dx/df gets used to generate an interpolated value, but would
752 * cause a NaN if df were binary-equal to zero. Values close to
753 * zero won't cause problems (because of the min() and max()), so
754 * just testing for binary inequality is OK. */
755 if (zero != df)
757 k_est = -dx/df;
758 /* Scale the step size by a factor interpolated from
759 * step_scale_min to step_scale_max, as k_est goes from 0 to
760 * step_scale_multiple * s[i].step[d] */
761 s[i].step[d] =
762 step_scale_min * s[i].step[d] +
763 step_scale_increment * std::min(step_scale_multiple * s[i].step[d], std::max(k_est, zero));
765 else
767 /* Here 0 == df */
768 if (gmx_numzero(dx)) /* 0 == dx */
770 /* Likely this will never happen, but if it does just
771 * don't scale the step. */
773 else /* 0 != dx */
775 s[i].step[d] *= step_scale_max;
778 #ifdef PRINT_STEP
779 step_min = std::min(step_min, s[i].step[d]);
780 step_max = std::max(step_max, s[i].step[d]);
781 #endif
784 copy_rvec(xcur [shell], s[i].xold);
785 copy_rvec(f[shell], s[i].fold);
787 do_1pos3(xnew[shell], xcur[shell], f[shell], s[i].step);
789 if (gmx_debug_at)
791 fprintf(debug, "shell[%d] = %d\n", i, shell);
792 pr_rvec(debug, 0, "fshell", f[shell], DIM, TRUE);
793 pr_rvec(debug, 0, "xold", xcur[shell], DIM, TRUE);
794 pr_rvec(debug, 0, "step", s[i].step, DIM, TRUE);
795 pr_rvec(debug, 0, "xnew", xnew[shell], DIM, TRUE);
798 #ifdef PRINT_STEP
799 printf("step %.3e %.3e\n", step_min, step_max);
800 #endif
803 static void decrease_step_size(int nshell, t_shell s[])
805 int i;
807 for (i = 0; i < nshell; i++)
809 svmul(0.8, s[i].step, s[i].step);
813 static void print_epot(FILE *fp, int64_t mdstep, int count, real epot, real df,
814 int ndir, real sf_dir)
816 char buf[22];
818 fprintf(fp, "MDStep=%5s/%2d EPot: %12.8e, rmsF: %6.2e",
819 gmx_step_str(mdstep, buf), count, epot, df);
820 if (ndir)
822 fprintf(fp, ", dir. rmsF: %6.2e\n", std::sqrt(sf_dir/ndir));
824 else
826 fprintf(fp, "\n");
831 static real rms_force(const t_commrec *cr, gmx::ArrayRef<const gmx::RVec> force, int ns, t_shell s[],
832 int ndir, real *sf_dir, real *Epot)
834 double buf[4];
835 const rvec *f = as_rvec_array(force.data());
837 buf[0] = *sf_dir;
838 for (int i = 0; i < ns; i++)
840 int shell = s[i].shell;
841 buf[0] += norm2(f[shell]);
843 int ntot = ns;
845 if (PAR(cr))
847 buf[1] = ntot;
848 buf[2] = *sf_dir;
849 buf[3] = *Epot;
850 gmx_sumd(4, buf, cr);
851 ntot = static_cast<int>(buf[1] + 0.5);
852 *sf_dir = buf[2];
853 *Epot = buf[3];
855 ntot += ndir;
857 return (ntot ? std::sqrt(buf[0]/ntot) : 0);
860 static void check_pbc(FILE *fp, gmx::ArrayRef<gmx::RVec> x, int shell)
862 int m, now;
864 now = shell-4;
865 for (m = 0; (m < DIM); m++)
867 if (std::fabs(x[shell][m]-x[now][m]) > 0.3)
869 pr_rvecs(fp, 0, "SHELL-X", as_rvec_array(x.data())+now, 5);
870 break;
875 static void dump_shells(FILE *fp, gmx::ArrayRef<gmx::RVec> x, gmx::ArrayRef<gmx::RVec> f, real ftol, int ns, t_shell s[])
877 int i, shell;
878 real ft2, ff2;
880 ft2 = gmx::square(ftol);
882 for (i = 0; (i < ns); i++)
884 shell = s[i].shell;
885 ff2 = iprod(f[shell], f[shell]);
886 if (ff2 > ft2)
888 fprintf(fp, "SHELL %5d, force %10.5f %10.5f %10.5f, |f| %10.5f\n",
889 shell, f[shell][XX], f[shell][YY], f[shell][ZZ], std::sqrt(ff2));
891 check_pbc(fp, x, shell);
895 static void init_adir(gmx_shellfc_t *shfc,
896 gmx::Constraints *constr,
897 const t_inputrec *ir,
898 const t_commrec *cr,
899 int dd_ac1,
900 int64_t step,
901 const t_mdatoms *md,
902 int end,
903 rvec *x_old,
904 rvec *x_init,
905 rvec *x,
906 rvec *f,
907 rvec *acc_dir,
908 matrix box,
909 gmx::ArrayRef<const real> lambda,
910 real *dvdlambda)
912 rvec *xnold, *xnew;
913 double dt, w_dt;
914 int n, d;
915 unsigned short *ptype;
917 if (DOMAINDECOMP(cr))
919 n = dd_ac1;
921 else
923 n = end;
925 if (n > shfc->adir_nalloc)
927 shfc->adir_nalloc = over_alloc_dd(n);
928 srenew(shfc->adir_xnold, shfc->adir_nalloc);
929 srenew(shfc->adir_xnew, shfc->adir_nalloc);
931 xnold = shfc->adir_xnold;
932 xnew = shfc->adir_xnew;
934 ptype = md->ptype;
936 dt = ir->delta_t;
938 /* Does NOT work with freeze or acceleration groups (yet) */
939 for (n = 0; n < end; n++)
941 w_dt = md->invmass[n]*dt;
943 for (d = 0; d < DIM; d++)
945 if ((ptype[n] != eptVSite) && (ptype[n] != eptShell))
947 xnold[n][d] = x[n][d] - (x_init[n][d] - x_old[n][d]);
948 xnew[n][d] = 2*x[n][d] - x_old[n][d] + f[n][d]*w_dt*dt;
950 else
952 xnold[n][d] = x[n][d];
953 xnew[n][d] = x[n][d];
957 constr->apply(FALSE, FALSE, step, 0, 1.0,
958 x, xnold, nullptr, box,
959 lambda[efptBONDED], &(dvdlambda[efptBONDED]),
960 nullptr, nullptr, gmx::ConstraintVariable::Positions);
961 constr->apply(FALSE, FALSE, step, 0, 1.0,
962 x, xnew, nullptr, box,
963 lambda[efptBONDED], &(dvdlambda[efptBONDED]),
964 nullptr, nullptr, gmx::ConstraintVariable::Positions);
966 for (n = 0; n < end; n++)
968 for (d = 0; d < DIM; d++)
970 xnew[n][d] =
971 -(2*x[n][d]-xnold[n][d]-xnew[n][d])/gmx::square(dt)
972 - f[n][d]*md->invmass[n];
974 clear_rvec(acc_dir[n]);
977 /* Project the acceleration on the old bond directions */
978 constr->apply(FALSE, FALSE, step, 0, 1.0,
979 x_old, xnew, acc_dir, box,
980 lambda[efptBONDED], &(dvdlambda[efptBONDED]),
981 nullptr, nullptr, gmx::ConstraintVariable::Deriv_FlexCon);
984 void relax_shell_flexcon(FILE *fplog,
985 const t_commrec *cr,
986 const gmx_multisim_t *ms,
987 gmx_bool bVerbose,
988 gmx_enfrot *enforcedRotation,
989 int64_t mdstep,
990 const t_inputrec *inputrec,
991 gmx_bool bDoNS,
992 int force_flags,
993 gmx_localtop_t *top,
994 gmx::Constraints *constr,
995 gmx_enerdata_t *enerd,
996 t_fcdata *fcd,
997 t_state *state,
998 gmx::PaddedArrayRef<gmx::RVec> f,
999 tensor force_vir,
1000 const t_mdatoms *md,
1001 t_nrnb *nrnb,
1002 gmx_wallcycle_t wcycle,
1003 t_graph *graph,
1004 const gmx_groups_t *groups,
1005 gmx_shellfc_t *shfc,
1006 t_forcerec *fr,
1007 double t,
1008 rvec mu_tot,
1009 const gmx_vsite_t *vsite,
1010 DdOpenBalanceRegionBeforeForceComputation ddOpenBalanceRegion,
1011 DdCloseBalanceRegionAfterForceComputation ddCloseBalanceRegion)
1013 int nshell;
1014 t_shell *shell;
1015 const t_idef *idef;
1016 rvec *acc_dir = nullptr, *x_old = nullptr;
1017 real Epot[2], df[2];
1018 real sf_dir, invdt;
1019 real ftol, dum = 0;
1020 char sbuf[22];
1021 gmx_bool bCont, bInit, bConverged;
1022 int nat, dd_ac0, dd_ac1 = 0, i;
1023 int homenr = md->homenr, end = homenr, cg0, cg1;
1024 int nflexcon, number_steps, d, Min = 0, count = 0;
1025 #define Try (1-Min) /* At start Try = 1 */
1027 bCont = (mdstep == inputrec->init_step) && inputrec->bContinuation;
1028 bInit = (mdstep == inputrec->init_step) || shfc->bRequireInit;
1029 ftol = inputrec->em_tol;
1030 number_steps = inputrec->niter;
1031 nshell = shfc->nshell;
1032 shell = shfc->shell;
1033 nflexcon = shfc->nflexcon;
1035 idef = &top->idef;
1037 if (DOMAINDECOMP(cr))
1039 nat = dd_natoms_vsite(cr->dd);
1040 if (nflexcon > 0)
1042 dd_get_constraint_range(cr->dd, &dd_ac0, &dd_ac1);
1043 nat = std::max(nat, dd_ac1);
1046 else
1048 nat = state->natoms;
1051 for (i = 0; (i < 2); i++)
1053 shfc->x[i].resize(gmx::paddedRVecVectorSize(nat));
1054 shfc->f[i].resize(gmx::paddedRVecVectorSize(nat));
1057 /* Create views that we can swap */
1058 gmx::PaddedArrayRef<gmx::RVec> pos[2];
1059 gmx::PaddedArrayRef<gmx::RVec> force[2];
1060 for (i = 0; (i < 2); i++)
1062 pos[i] = shfc->x[i];
1063 force[i] = shfc->f[i];
1066 if (bDoNS && inputrec->ePBC != epbcNONE && !DOMAINDECOMP(cr))
1068 /* This is the only time where the coordinates are used
1069 * before do_force is called, which normally puts all
1070 * charge groups in the box.
1072 if (inputrec->cutoff_scheme == ecutsVERLET)
1074 auto xRef = makeArrayRef(state->x);
1075 put_atoms_in_box_omp(fr->ePBC, state->box, xRef.subArray(0, md->homenr));
1077 else
1079 cg0 = 0;
1080 cg1 = top->cgs.nr;
1081 put_charge_groups_in_box(fplog, cg0, cg1, fr->ePBC, state->box,
1082 &(top->cgs), as_rvec_array(state->x.data()), fr->cg_cm);
1085 if (graph)
1087 mk_mshift(fplog, graph, fr->ePBC, state->box, as_rvec_array(state->x.data()));
1091 /* After this all coordinate arrays will contain whole charge groups */
1092 if (graph)
1094 shift_self(graph, state->box, as_rvec_array(state->x.data()));
1097 if (nflexcon)
1099 if (nat > shfc->flex_nalloc)
1101 shfc->flex_nalloc = over_alloc_dd(nat);
1102 srenew(shfc->acc_dir, shfc->flex_nalloc);
1103 srenew(shfc->x_old, shfc->flex_nalloc);
1105 acc_dir = shfc->acc_dir;
1106 x_old = shfc->x_old;
1107 for (i = 0; i < homenr; i++)
1109 for (d = 0; d < DIM; d++)
1111 shfc->x_old[i][d] =
1112 state->x[i][d] - state->v[i][d]*inputrec->delta_t;
1117 /* Do a prediction of the shell positions, when appropriate.
1118 * Without velocities (EM, NM, BD) we only do initial prediction.
1120 if (shfc->bPredict && !bCont && (EI_STATE_VELOCITY(inputrec->eI) || bInit))
1122 predict_shells(fplog, as_rvec_array(state->x.data()), as_rvec_array(state->v.data()), inputrec->delta_t, nshell, shell,
1123 md->massT, nullptr, bInit);
1126 /* do_force expected the charge groups to be in the box */
1127 if (graph)
1129 unshift_self(graph, state->box, as_rvec_array(state->x.data()));
1132 /* Calculate the forces first time around */
1133 if (gmx_debug_at)
1135 pr_rvecs(debug, 0, "x b4 do_force", as_rvec_array(state->x.data()), homenr);
1137 do_force(fplog, cr, ms, inputrec, nullptr, enforcedRotation,
1138 mdstep, nrnb, wcycle, top, groups,
1139 state->box, state->x, &state->hist,
1140 force[Min], force_vir, md, enerd, fcd,
1141 state->lambda, graph,
1142 fr, vsite, mu_tot, t, nullptr,
1143 (bDoNS ? GMX_FORCE_NS : 0) | force_flags,
1144 ddOpenBalanceRegion, ddCloseBalanceRegion);
1146 sf_dir = 0;
1147 if (nflexcon)
1149 init_adir(shfc,
1150 constr, inputrec, cr, dd_ac1, mdstep, md, end,
1151 shfc->x_old, as_rvec_array(state->x.data()), as_rvec_array(state->x.data()), as_rvec_array(force[Min].data()),
1152 shfc->acc_dir,
1153 state->box, state->lambda, &dum);
1155 for (i = 0; i < end; i++)
1157 sf_dir += md->massT[i]*norm2(shfc->acc_dir[i]);
1161 Epot[Min] = enerd->term[F_EPOT];
1163 df[Min] = rms_force(cr, shfc->f[Min], nshell, shell, nflexcon, &sf_dir, &Epot[Min]);
1164 df[Try] = 0;
1165 if (debug)
1167 fprintf(debug, "df = %g %g\n", df[Min], df[Try]);
1170 if (gmx_debug_at)
1172 pr_rvecs(debug, 0, "force0", as_rvec_array(force[Min].data()), md->nr);
1175 if (nshell+nflexcon > 0)
1177 /* Copy x to pos[Min] & pos[Try]: during minimization only the
1178 * shell positions are updated, therefore the other particles must
1179 * be set here.
1181 pos[Min] = state->x;
1182 pos[Try] = state->x;
1185 if (bVerbose && MASTER(cr))
1187 print_epot(stdout, mdstep, 0, Epot[Min], df[Min], nflexcon, sf_dir);
1190 if (debug)
1192 fprintf(debug, "%17s: %14.10e\n",
1193 interaction_function[F_EKIN].longname, enerd->term[F_EKIN]);
1194 fprintf(debug, "%17s: %14.10e\n",
1195 interaction_function[F_EPOT].longname, enerd->term[F_EPOT]);
1196 fprintf(debug, "%17s: %14.10e\n",
1197 interaction_function[F_ETOT].longname, enerd->term[F_ETOT]);
1198 fprintf(debug, "SHELLSTEP %s\n", gmx_step_str(mdstep, sbuf));
1201 /* First check whether we should do shells, or whether the force is
1202 * low enough even without minimization.
1204 bConverged = (df[Min] < ftol);
1206 for (count = 1; (!(bConverged) && (count < number_steps)); count++)
1208 if (vsite)
1210 construct_vsites(vsite, as_rvec_array(pos[Min].data()),
1211 inputrec->delta_t, as_rvec_array(state->v.data()),
1212 idef->iparams, idef->il,
1213 fr->ePBC, fr->bMolPBC, cr, state->box);
1216 if (nflexcon)
1218 init_adir(shfc,
1219 constr, inputrec, cr, dd_ac1, mdstep, md, end,
1220 x_old, as_rvec_array(state->x.data()), as_rvec_array(pos[Min].data()), as_rvec_array(force[Min].data()), acc_dir,
1221 state->box, state->lambda, &dum);
1223 directional_sd(pos[Min], pos[Try], acc_dir, end, fr->fc_stepsize);
1226 /* New positions, Steepest descent */
1227 shell_pos_sd(pos[Min], pos[Try], force[Min], nshell, shell, count);
1229 /* do_force expected the charge groups to be in the box */
1230 if (graph)
1232 unshift_self(graph, state->box, as_rvec_array(pos[Try].data()));
1235 if (gmx_debug_at)
1237 pr_rvecs(debug, 0, "RELAX: pos[Min] ", as_rvec_array(pos[Min].data()), homenr);
1238 pr_rvecs(debug, 0, "RELAX: pos[Try] ", as_rvec_array(pos[Try].data()), homenr);
1240 /* Try the new positions */
1241 do_force(fplog, cr, ms, inputrec, nullptr, enforcedRotation,
1242 1, nrnb, wcycle,
1243 top, groups, state->box, pos[Try], &state->hist,
1244 force[Try], force_vir,
1245 md, enerd, fcd, state->lambda, graph,
1246 fr, vsite, mu_tot, t, nullptr,
1247 force_flags,
1248 ddOpenBalanceRegion, ddCloseBalanceRegion);
1250 if (gmx_debug_at)
1252 pr_rvecs(debug, 0, "RELAX: force[Min]", as_rvec_array(force[Min].data()), homenr);
1253 pr_rvecs(debug, 0, "RELAX: force[Try]", as_rvec_array(force[Try].data()), homenr);
1255 sf_dir = 0;
1256 if (nflexcon)
1258 init_adir(shfc,
1259 constr, inputrec, cr, dd_ac1, mdstep, md, end,
1260 x_old, as_rvec_array(state->x.data()), as_rvec_array(pos[Try].data()), as_rvec_array(force[Try].data()), acc_dir,
1261 state->box, state->lambda, &dum);
1263 for (i = 0; i < end; i++)
1265 sf_dir += md->massT[i]*norm2(acc_dir[i]);
1269 Epot[Try] = enerd->term[F_EPOT];
1271 df[Try] = rms_force(cr, force[Try], nshell, shell, nflexcon, &sf_dir, &Epot[Try]);
1273 if (debug)
1275 fprintf(debug, "df = %g %g\n", df[Min], df[Try]);
1278 if (debug)
1280 if (gmx_debug_at)
1282 pr_rvecs(debug, 0, "F na do_force", as_rvec_array(force[Try].data()), homenr);
1284 if (gmx_debug_at)
1286 fprintf(debug, "SHELL ITER %d\n", count);
1287 dump_shells(debug, pos[Try], force[Try], ftol, nshell, shell);
1291 if (bVerbose && MASTER(cr))
1293 print_epot(stdout, mdstep, count, Epot[Try], df[Try], nflexcon, sf_dir);
1296 bConverged = (df[Try] < ftol);
1298 if ((df[Try] < df[Min]))
1300 if (debug)
1302 fprintf(debug, "Swapping Min and Try\n");
1304 if (nflexcon)
1306 /* Correct the velocities for the flexible constraints */
1307 invdt = 1/inputrec->delta_t;
1308 for (i = 0; i < end; i++)
1310 for (d = 0; d < DIM; d++)
1312 state->v[i][d] += (pos[Try][i][d] - pos[Min][i][d])*invdt;
1316 Min = Try;
1318 else
1320 decrease_step_size(nshell, shell);
1323 shfc->numForceEvaluations += count;
1324 if (bConverged)
1326 shfc->numConvergedIterations++;
1328 if (MASTER(cr) && !(bConverged))
1330 /* Note that the energies and virial are incorrect when not converged */
1331 if (fplog)
1333 fprintf(fplog,
1334 "step %s: EM did not converge in %d iterations, RMS force %.3f\n",
1335 gmx_step_str(mdstep, sbuf), number_steps, df[Min]);
1337 fprintf(stderr,
1338 "step %s: EM did not converge in %d iterations, RMS force %.3f\n",
1339 gmx_step_str(mdstep, sbuf), number_steps, df[Min]);
1342 /* Copy back the coordinates and the forces */
1343 std::copy(pos[Min].begin(), pos[Min].end(), state->x.begin());
1344 std::copy(force[Min].begin(), force[Min].end(), f.begin());
1347 void done_shellfc(FILE *fplog, gmx_shellfc_t *shfc, int64_t numSteps)
1349 if (shfc && fplog && numSteps > 0)
1351 double numStepsAsDouble = static_cast<double>(numSteps);
1352 fprintf(fplog, "Fraction of iterations that converged: %.2f %%\n",
1353 (shfc->numConvergedIterations*100.0)/numStepsAsDouble);
1354 fprintf(fplog, "Average number of force evaluations per MD step: %.2f\n\n",
1355 shfc->numForceEvaluations/numStepsAsDouble);
1358 // TODO Deallocate memory in shfc