1 Non-bonded interactions
2 -----------------------
4 Non-bonded interactions in |Gromacs| are pair-additive:
6 .. math:: V(\mathbf{r}_1,\ldots \mathbf{r}_N) = \sum_{i<j}V_{ij}(\mathbf{r}_{ij});
7 :label: eqnnbinteractions1
9 .. math:: \mathbf{F}_i = -\sum_j \frac{dV_{ij}(r_{ij})}{dr_{ij}} \frac{\mathbf{r}_{ij}}{r_{ij}}
10 :label: eqnnbinteractions2
12 Since the potential only depends on the scalar distance, interactions
13 will be centro-symmetric, i.e. the vectorial partial force on particle
14 :math:`i` from the pairwise interaction :math:`V_{ij}(r_{ij})` has the
15 opposite direction of the partial force on particle :math:`j`. For
16 efficiency reasons, interactions are calculated by loops over
17 interactions and updating both partial forces rather than summing one
18 complete nonbonded force at a time. The non-bonded interactions contain
19 a repulsion term, a dispersion term, and a Coulomb term. The repulsion
20 and dispersion term are combined in either the Lennard-Jones (or 6-12
21 interaction), or the Buckingham (or exp-6 potential). In addition,
22 (partially) charged atoms act through the Coulomb term.
26 The Lennard-Jones interaction
27 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 The Lennard-Jones potential :math:`V_{LJ}` between two atoms equals:
31 .. math:: V_{LJ}({r_{ij}}) = \frac{C_{ij}^{(12)}}{{r_{ij}}^{12}} -
32 \frac{C_{ij}^{(6)}}{{r_{ij}}^6}
35 See also :numref:`Fig. %s <fig-lj>` The parameters :math:`C^{(12)}_{ij}` and
36 :math:`C^{(6)}_{ij}` depend on pairs of *atom types*; consequently they
37 are taken from a matrix of LJ-parameters. In the Verlet cut-off scheme,
38 the potential is shifted by a constant such that it is zero at the
43 .. figure:: plots/f-lj.*
46 The Lennard-Jones interaction.
48 The force derived from this potential is:
50 .. math:: \mathbf{F}_i(\mathbf{r}_{ij}) = \left( 12~\frac{C_{ij}^{(12)}}{{r_{ij}}^{13}} -
51 6~\frac{C_{ij}^{(6)}}{{r_{ij}}^7} \right) {\frac{{\mathbf{r}_{ij}}}{{r_{ij}}}}
54 The LJ potential may also be written in the following form:
56 .. math:: V_{LJ}(\mathbf{r}_{ij}) = 4\epsilon_{ij}\left(\left(\frac{\sigma_{ij}} {{r_{ij}}}\right)^{12}
57 - \left(\frac{\sigma_{ij}}{{r_{ij}}}\right)^{6} \right)
60 In constructing the parameter matrix for the non-bonded LJ-parameters,
61 two types of combination rules can be used within |Gromacs|, only
62 geometric averages (type 1 in the input section of the force-field
65 .. math:: \begin{array}{rcl}
66 C_{ij}^{(6)} &=& \left({C_{ii}^{(6)} \, C_{jj}^{(6)}}\right)^{1/2} \\
67 C_{ij}^{(12)} &=& \left({C_{ii}^{(12)} \, C_{jj}^{(12)}}\right)^{1/2}
71 or, alternatively the Lorentz-Berthelot rules can be used. An
72 arithmetic average is used to calculate :math:`\sigma_{ij}`, while a
73 geometric average is used to calculate :math:`\epsilon_{ij}` (type 2):
75 .. math:: \begin{array}{rcl}
76 \sigma_{ij} &=& \frac{1}{ 2}(\sigma_{ii} + \sigma_{jj}) \\
77 \epsilon_{ij} &=& \left({\epsilon_{ii} \, \epsilon_{jj}}\right)^{1/2}
79 :label: eqnlorentzberthelot
81 finally an geometric average for both parameters can be used (type 3):
83 .. math:: \begin{array}{rcl}
84 \sigma_{ij} &=& \left({\sigma_{ii} \, \sigma_{jj}}\right)^{1/2} \\
85 \epsilon_{ij} &=& \left({\epsilon_{ii} \, \epsilon_{jj}}\right)^{1/2}
87 :label: eqnnbgeometricaverage
89 This last rule is used by the OPLS force field.
94 The Buckingham potential has a more flexible and realistic repulsion
95 term than the Lennard-Jones interaction, but is also more expensive to
96 compute. The potential form is:
98 .. math:: V_{bh}({r_{ij}}) = A_{ij} \exp(-B_{ij} {r_{ij}}) -
99 \frac{C_{ij}}{{r_{ij}}^6}
100 :label: eqnnbbuckingham
104 .. figure:: plots/f-bham.*
107 The Buckingham interaction.
109 See also :numref:`Fig. %s <fig-bham>`. The force derived from this is:
111 .. math:: \mathbf{F}_i({r_{ij}}) = \left[ A_{ij}B_{ij}\exp(-B_{ij} {r_{ij}}) -
112 6\frac{C_{ij}}{{r_{ij}}^7} \right] {\frac{{\mathbf{r}_{ij}}}{{r_{ij}}}}
113 :label: eqnnbbuckinghamforce
120 The Coulomb interaction between two charge particles is given by:
122 .. math:: V_c({r_{ij}}) = f \frac{q_i q_j}{{\varepsilon_r}{r_{ij}}}
125 See also :numref:`Fig. %s <fig-coul>`, where
126 :math:`f = \frac{1}{4\pi \varepsilon_0} = {138.935\,458}` (see chapter :ref:`defunits`)
130 .. figure:: plots/vcrf.*
133 The Coulomb interaction (for particles with equal signed charge) with
134 and without reaction field. In the latter case
135 :math:`{\varepsilon_r}` was 1, :math:`{\varepsilon_{rf}}` was 78, and
136 :math:`r_c` was 0.9 nm. The dot-dashed line is the same as the dashed
137 line, except for a constant.
139 The force derived from this potential is:
141 .. math:: \mathbf{F}_i(\mathbf{r}_{ij}) = f \frac{q_i q_j}{{\varepsilon_r}{r_{ij}}^2}{\frac{{\mathbf{r}_{ij}}}{{r_{ij}}}}
144 A plain Coulomb interaction should only be used without cut-off or when
145 all pairs fall within the cut-off, since there is an abrupt, large
146 change in the force at the cut-off. In case you do want to use a
147 cut-off, the potential can be shifted by a constant to make the
148 potential the integral of the force. With the group cut-off scheme, this
149 shift is only applied to non-excluded pairs. With the Verlet cut-off
150 scheme, the shift is also applied to excluded pairs and self
151 interactions, which makes the potential equivalent to a reaction field
152 with :math:`{\varepsilon_{rf}}=1` (see below).
154 In |Gromacs| the relative dielectric constant :math:`{\varepsilon_r}` may
155 be set in the in the input for :ref:`grompp <gmx grompp>`.
159 Coulomb interaction with reaction field
160 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162 The Coulomb interaction can be modified for homogeneous systems by
163 assuming a constant dielectric environment beyond the cut-off
164 :math:`r_c` with a dielectric constant of :math:`{\varepsilon_{rf}}`.
165 The interaction then reads:
167 .. math:: V_{crf} ~=~
168 f \frac{q_i q_j}{{\varepsilon_r}{r_{ij}}}\left[1+\frac{{\varepsilon_{rf}}-{\varepsilon_r}}{2{\varepsilon_{rf}}+{\varepsilon_r}}
169 \,\frac{{r_{ij}}^3}{r_c^3}\right]
170 - f\frac{q_i q_j}{{\varepsilon_r}r_c}\,\frac{3{\varepsilon_{rf}}}{2{\varepsilon_{rf}}+{\varepsilon_r}}
173 in which the constant expression on the right makes the potential zero
174 at the cut-off :math:`r_c`. For charged cut-off spheres this corresponds
175 to neutralization with a homogeneous background charge. We can rewrite
176 :eq:`eqn. %s <eqnvcrf>` for simplicity as
178 .. math:: V_{crf} ~=~ f \frac{q_i q_j}{{\varepsilon_r}}\left[\frac{1}{{r_{ij}}} + k_{rf}~ {r_{ij}}^2 -c_{rf}\right]
179 :label: eqnvcrfrewrite
183 .. math:: \begin{aligned}
184 k_{rf} &=& \frac{1}{r_c^3}\,\frac{{\varepsilon_{rf}}-{\varepsilon_r}}{(2{\varepsilon_{rf}}+{\varepsilon_r})}
188 .. math:: \begin{aligned}
189 c_{rf} &=& \frac{1}{r_c}+k_{rf}\,r_c^2 ~=~ \frac{1}{r_c}\,\frac{3{\varepsilon_{rf}}}{(2{\varepsilon_{rf}}+{\varepsilon_r})}
193 For large :math:`{\varepsilon_{rf}}` the :math:`k_{rf}` goes to
194 :math:`r_c^{-3}/2`, while for :math:`{\varepsilon_{rf}}` =
195 :math:`{\varepsilon_r}` the correction vanishes. In :numref:`Fig. %s <fig-coul>` the
196 modified interaction is plotted, and it is clear that the derivative
197 with respect to :math:`{r_{ij}}` (= -force) goes to zero at the cut-off
198 distance. The force derived from this potential reads:
200 .. math:: \mathbf{F}_i(\mathbf{r}_{ij}) = f \frac{q_i q_j}{{\varepsilon_r}}\left[\frac{1}{{r_{ij}}^2} - 2 k_{rf}{r_{ij}}\right]{\frac{{\mathbf{r}_{ij}}}{{r_{ij}}}}
203 The reaction-field correction should also be applied to all excluded
204 atoms pairs, including self pairs, in which case the normal Coulomb term
205 in :eq:`eqns. %s <eqnvcrf>` and :eq:`%s <eqnfcrf>` is absent.
209 Modified non-bonded interactions
210 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
212 In |Gromacs|, the non-bonded potentials can be modified by a shift
213 function, also called a force-switch function, since it switches the
214 force to zero at the cut-off. The purpose of this is to replace the
215 truncated forces by forces that are continuous and have continuous
216 derivatives at the cut-off radius. With such forces the time integration
217 produces smaller errors. But note that for Lennard-Jones interactions
218 these errors are usually smaller than other errors, such as integration
219 errors at the repulsive part of the potential. For Coulomb interactions
220 we advise against using a shifted potential and for use of a reaction
221 field or a proper long-range method such as PME.
223 There is *no* fundamental difference between a switch function (which
224 multiplies the potential with a function) and a shift function (which
225 adds a function to the force or potential) \ :ref:`72 <refSpoel2006a>`. The
226 switch function is a special case of the shift function, which we apply
227 to the *force function* :math:`F(r)`, related to the electrostatic or
228 van der Waals force acting on particle :math:`i` by particle :math:`j`
231 .. math:: \mathbf{F}_i = c \, F(r_{ij}) \frac{\mathbf{r}_{ij}}{r_{ij}}
234 For pure Coulomb or Lennard-Jones interactions
235 :math:`F(r) = F_\alpha(r) = \alpha \, r^{-(\alpha+1)}`. The switched
236 force :math:`F_s(r)` can generally be written as:
238 .. math:: \begin{array}{rcl}
239 F_s(r)~=&~F_\alpha(r) & r < r_1 \\
240 F_s(r)~=&~F_\alpha(r)+S(r) & r_1 \le r < r_c \\
241 F_s(r)~=&~0 & r_c \le r
243 :label: eqnswitchforce
245 When :math:`r_1=0` this is a traditional shift function, otherwise it
246 acts as a switch function. The corresponding shifted potential function
249 .. math:: V_s(r) = \int^{\infty}_r~F_s(x)\, dx
250 :label: eqnswitchpotential
252 The |Gromacs| **force switch** function :math:`S_F(r)` should be smooth at
253 the boundaries, therefore the following boundary conditions are imposed
254 on the switch function:
256 .. math:: \begin{array}{rcl}
259 S_F(r_c) &=&-F_\alpha(r_c) \\
260 S_F'(r_c) &=&-F_\alpha'(r_c)
262 :label: eqnswitchforcefunction
264 A 3\ :math:`^{rd}` degree polynomial of the form
266 .. math:: S_F(r) = A(r-r_1)^2 + B(r-r_1)^3
267 :label: eqnswitchforcepoly
269 fulfills these requirements. The constants A and B are given by the
270 boundary condition at :math:`r_c`:
272 .. math:: \begin{array}{rcl}
273 A &~=~& -\alpha \, \displaystyle
274 \frac{(\alpha+4)r_c~-~(\alpha+1)r_1} {r_c^{\alpha+2}~(r_c-r_1)^2} \\
275 B &~=~& \alpha \, \displaystyle
276 \frac{(\alpha+3)r_c~-~(\alpha+1)r_1}{r_c^{\alpha+2}~(r_c-r_1)^3}
278 :label: eqnforceswitchboundary
280 Thus the total force function is:
282 .. math:: F_s(r) = \frac{\alpha}{r^{\alpha+1}} + A(r-r_1)^2 + B(r-r_1)^3
283 :label: eqnswitchfinalforce
285 and the potential function reads:
287 .. math:: V_s(r) = \frac{1}{r^\alpha} - \frac{A}{3} (r-r_1)^3 - \frac{B}{4} (r-r_1)^4 - C
288 :label: eqnswitchfinalpotential
292 .. math:: C = \frac{1}{r_c^\alpha} - \frac{A}{3} (r_c-r_1)^3 - \frac{B}{4} (r_c-r_1)^4
293 :label: eqnswitchpotentialexp
295 The |Gromacs| **potential-switch** function :math:`S_V(r)` scales the
296 potential between :math:`r_1` and :math:`r_c`, and has similar boundary
297 conditions, intended to produce smoothly-varying potential and forces:
299 .. math:: \begin{array}{rcl}
307 :label: eqnpotentialswitch
309 The fifth-degree polynomial that has these properties is
311 .. math:: S_V(r; r_1, r_c) = \frac{1 - 10(r-r_1)^3(r_c-r_1)^2 + 15(r-r_1)^4(r_c-r_1) - 6(r-r_1)}{(r_c-r_1)^5}
312 :label: eqn5polynomal
314 This implementation is found in several other simulation
315 packages,\ :ref:`73 <refOhmine1988>`\ :ref:`75 <refGuenot1993>` but
316 differs from that in CHARMM.\ :ref:`76 <refSteinbach1994>` Switching the
317 potential leads to artificially large forces in the switching region,
318 therefore it is not recommended to switch Coulomb interactions using
319 this function,\ :ref:`72 <refSpoel2006a>` but switching Lennard-Jones
320 interactions using this function produces acceptable results.
322 Modified short-range interactions with Ewald summation
323 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
325 When Ewald summation or particle-mesh Ewald is used to calculate the
326 long-range interactions, the short-range Coulomb potential must also be
327 modified. Here the potential is switched to (nearly) zero at the
328 cut-off, instead of the force. In this case the short range potential is
331 .. math:: V(r) = f \frac{\mbox{erfc}(\beta r_{ij})}{r_{ij}} q_i q_j,
332 :label: eqnewaldsrmod
334 where :math:`\beta` is a parameter that determines the relative weight
335 between the direct space sum and the reciprocal space sum and
336 erfc\ :math:`(x)` is the complementary error function. For further
337 details on long-range electrostatics, see sec. :ref:`lrelstat`.