2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2012,2013,2014,2015,2017 by the GROMACS development team.
7 * Copyright (c) 2018,2019,2020, by the GROMACS development team, led by
8 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9 * and including many others, as listed in the AUTHORS file in the
10 * top-level source directory and at http://www.gromacs.org.
12 * GROMACS is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public License
14 * as published by the Free Software Foundation; either version 2.1
15 * of the License, or (at your option) any later version.
17 * GROMACS is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with GROMACS; if not, see
24 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 * If you want to redistribute modifications to GROMACS, please
28 * consider that scientific software is very special. Version
29 * control is crucial - bugs must be traceable. We will be happy to
30 * consider code for inclusion in the official distribution, but
31 * derived work must not be called official GROMACS. Details are found
32 * in the README & COPYING files - if they are missing, get the
33 * official version at http://www.gromacs.org.
35 * To help us fund GROMACS development, we humbly ask that you cite
36 * the research papers on the package. Check out http://www.gromacs.org.
39 /* This include file has code between ifdef's to make sure
40 * that this performance sensitive code is inlined
41 * and to remove conditionals and variable loop bounds at compile time.
44 #ifdef PME_SPREAD_SIMD4_ORDER4
45 /* Spread one charge with pme_order=4 with unaligned SIMD4 load+store.
46 * This code does not assume any memory alignment for the grid.
50 Simd4Real
ty_S0(thy
[0]);
51 Simd4Real
ty_S1(thy
[1]);
52 Simd4Real
ty_S2(thy
[2]);
53 Simd4Real
ty_S3(thy
[3]);
57 Simd4Real sum_S0
, sum_S1
, sum_S2
, sum_S3
;
58 Simd4Real gri_S0
, gri_S1
, gri_S2
, gri_S3
;
60 /* With order 4 the z-spline is actually aligned */
63 for (ithx
= 0; (ithx
< 4); ithx
++)
65 index_x
= (i0
+ ithx
) * pny
* pnz
;
66 valx
= coefficient
* thx
[ithx
];
68 vx_S
= Simd4Real(valx
);
70 vx_tz_S
= vx_S
* tz_S
;
72 gri_S0
= load4U(grid
+ index_x
+ (j0
+ 0) * pnz
+ k0
);
73 gri_S1
= load4U(grid
+ index_x
+ (j0
+ 1) * pnz
+ k0
);
74 gri_S2
= load4U(grid
+ index_x
+ (j0
+ 2) * pnz
+ k0
);
75 gri_S3
= load4U(grid
+ index_x
+ (j0
+ 3) * pnz
+ k0
);
77 sum_S0
= fma(vx_tz_S
, ty_S0
, gri_S0
);
78 sum_S1
= fma(vx_tz_S
, ty_S1
, gri_S1
);
79 sum_S2
= fma(vx_tz_S
, ty_S2
, gri_S2
);
80 sum_S3
= fma(vx_tz_S
, ty_S3
, gri_S3
);
82 store4U(grid
+ index_x
+ (j0
+ 0) * pnz
+ k0
, sum_S0
);
83 store4U(grid
+ index_x
+ (j0
+ 1) * pnz
+ k0
, sum_S1
);
84 store4U(grid
+ index_x
+ (j0
+ 2) * pnz
+ k0
, sum_S2
);
85 store4U(grid
+ index_x
+ (j0
+ 3) * pnz
+ k0
, sum_S3
);
88 # undef PME_SPREAD_SIMD4_ORDER4
92 #ifdef PME_SPREAD_SIMD4_ALIGNED
93 /* This code assumes that the grid is allocated 4-real aligned
94 * and that pnz is a multiple of 4.
95 * This code supports pme_order <= 5.
101 Simd4Real
ty_S0(thy
[0]);
102 Simd4Real
ty_S1(thy
[1]);
103 Simd4Real
ty_S2(thy
[2]);
104 Simd4Real
ty_S3(thy
[3]);
110 Simd4Real sum_S00
, sum_S01
, sum_S02
, sum_S03
;
111 Simd4Real sum_S10
, sum_S11
, sum_S12
, sum_S13
;
112 Simd4Real gri_S00
, gri_S01
, gri_S02
, gri_S03
;
113 Simd4Real gri_S10
, gri_S11
, gri_S12
, gri_S13
;
115 Simd4Real
ty_S4(thy
[4]);
124 # ifdef PME_SIMD4_UNALIGNED
125 tz_S0
= load4U(thz
- offset
);
126 tz_S1
= load4U(thz
- offset
+ 4);
130 /* Copy thz to an aligned buffer (unused buffer parts are masked) */
131 for (i
= 0; i
< PME_ORDER
; i
++)
133 thz_aligned
[offset
+ i
] = thz
[i
];
135 tz_S0
= load4(thz_aligned
);
136 tz_S1
= load4(thz_aligned
+ 4);
139 tz_S0
= selectByMask(tz_S0
, work
->mask_S0
[offset
]);
140 tz_S1
= selectByMask(tz_S1
, work
->mask_S1
[offset
]);
142 for (ithx
= 0; (ithx
< PME_ORDER
); ithx
++)
144 index
= (i0
+ ithx
) * pny
* pnz
+ j0
* pnz
+ k0
- offset
;
145 valx
= coefficient
* thx
[ithx
];
147 vx_S
= Simd4Real(valx
);
149 vx_tz_S0
= vx_S
* tz_S0
;
150 vx_tz_S1
= vx_S
* tz_S1
;
152 gri_S00
= load4(grid
+ index
+ 0 * pnz
);
153 gri_S01
= load4(grid
+ index
+ 1 * pnz
);
154 gri_S02
= load4(grid
+ index
+ 2 * pnz
);
155 gri_S03
= load4(grid
+ index
+ 3 * pnz
);
157 gri_S04
= load4(grid
+ index
+ 4 * pnz
);
159 gri_S10
= load4(grid
+ index
+ 0 * pnz
+ 4);
160 gri_S11
= load4(grid
+ index
+ 1 * pnz
+ 4);
161 gri_S12
= load4(grid
+ index
+ 2 * pnz
+ 4);
162 gri_S13
= load4(grid
+ index
+ 3 * pnz
+ 4);
164 gri_S14
= load4(grid
+ index
+ 4 * pnz
+ 4);
167 sum_S00
= fma(vx_tz_S0
, ty_S0
, gri_S00
);
168 sum_S01
= fma(vx_tz_S0
, ty_S1
, gri_S01
);
169 sum_S02
= fma(vx_tz_S0
, ty_S2
, gri_S02
);
170 sum_S03
= fma(vx_tz_S0
, ty_S3
, gri_S03
);
172 sum_S04
= fma(vx_tz_S0
, ty_S4
, gri_S04
);
174 sum_S10
= fma(vx_tz_S1
, ty_S0
, gri_S10
);
175 sum_S11
= fma(vx_tz_S1
, ty_S1
, gri_S11
);
176 sum_S12
= fma(vx_tz_S1
, ty_S2
, gri_S12
);
177 sum_S13
= fma(vx_tz_S1
, ty_S3
, gri_S13
);
179 sum_S14
= fma(vx_tz_S1
, ty_S4
, gri_S14
);
182 store4(grid
+ index
+ 0 * pnz
, sum_S00
);
183 store4(grid
+ index
+ 1 * pnz
, sum_S01
);
184 store4(grid
+ index
+ 2 * pnz
, sum_S02
);
185 store4(grid
+ index
+ 3 * pnz
, sum_S03
);
187 store4(grid
+ index
+ 4 * pnz
, sum_S04
);
189 store4(grid
+ index
+ 0 * pnz
+ 4, sum_S10
);
190 store4(grid
+ index
+ 1 * pnz
+ 4, sum_S11
);
191 store4(grid
+ index
+ 2 * pnz
+ 4, sum_S12
);
192 store4(grid
+ index
+ 3 * pnz
+ 4, sum_S13
);
194 store4(grid
+ index
+ 4 * pnz
+ 4, sum_S14
);
199 # undef PME_SPREAD_SIMD4_ALIGNED