Update instructions in containers.rst
[gromacs.git] / src / gromacs / gmxana / gmx_nmtraj.cpp
blobc752308e9217b59df0f8758f17a159e64e6db284
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2017,2019,2020, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include <cctype>
40 #include <cmath>
41 #include <cstdlib>
42 #include <cstring>
44 #include "gromacs/commandline/pargs.h"
45 #include "gromacs/fileio/confio.h"
46 #include "gromacs/fileio/pdbio.h"
47 #include "gromacs/fileio/trxio.h"
48 #include "gromacs/gmxana/eigio.h"
49 #include "gromacs/gmxana/gmx_ana.h"
50 #include "gromacs/math/functions.h"
51 #include "gromacs/math/units.h"
52 #include "gromacs/math/vec.h"
53 #include "gromacs/topology/topology.h"
54 #include "gromacs/utility/arraysize.h"
55 #include "gromacs/utility/cstringutil.h"
56 #include "gromacs/utility/fatalerror.h"
57 #include "gromacs/utility/futil.h"
58 #include "gromacs/utility/smalloc.h"
59 #include "gromacs/utility/strconvert.h"
60 #include "gromacs/utility/stringutil.h"
62 int gmx_nmtraj(int argc, char* argv[])
64 const char* desc[] = {
65 "[THISMODULE] generates an virtual trajectory from an eigenvector, ",
66 "corresponding to a harmonic Cartesian oscillation around the average ",
67 "structure. The eigenvectors should normally be mass-weighted, but you can ",
68 "use non-weighted eigenvectors to generate orthogonal motions. ",
69 "The output frames are written as a trajectory file covering an entire period, and ",
70 "the first frame is the average structure. If you write the trajectory in (or convert to) ",
71 "PDB format you can view it directly in PyMol and also render a photorealistic movie. ",
72 "Motion amplitudes are calculated from the eigenvalues and a preset temperature, ",
73 "assuming equipartition of the energy over all modes. To make the motion clearly visible ",
74 "in PyMol you might want to amplify it by setting an unrealistically high temperature. ",
75 "However, be aware that both the linear Cartesian displacements and mass weighting will ",
76 "lead to serious structure deformation for high amplitudes - this is is simply a ",
77 "limitation of the Cartesian normal mode model. By default the selected eigenvector ",
78 "is set to 7, since ",
79 "the first six normal modes are the translational and rotational degrees of freedom."
82 static real refamplitude = 0.25;
83 static int nframes = 30;
84 static real temp = 300.0;
85 static const char* eignrvec = "7";
86 static const char* phasevec = "0.0";
88 t_pargs pa[] = {
89 { "-eignr", FALSE, etSTR, { &eignrvec }, "String of eigenvectors to use (first is 1)" },
90 { "-phases", FALSE, etSTR, { &phasevec }, "String of phases (default is 0.0)" },
91 { "-temp", FALSE, etREAL, { &temp }, "Temperature (K)" },
92 { "-amplitude", FALSE, etREAL, { &refamplitude }, "Amplitude for modes with eigenvalue<=0" },
93 { "-nframes", FALSE, etINT, { &nframes }, "Number of frames to generate" }
96 #define NPA asize(pa)
98 t_trxstatus* out;
99 t_topology top;
100 PbcType pbcType;
101 t_atoms* atoms;
102 rvec * xtop, *xref, *xav, *xout;
103 int nvec, *eignr = nullptr;
104 rvec** eigvec = nullptr;
105 matrix box;
106 int natoms;
107 int i, j, k, kmode, d;
108 gmx_bool bDMR, bDMA, bFit;
110 real* eigval;
111 int* dummy;
112 real* invsqrtm;
113 int* out_eigidx;
114 rvec* this_eigvec;
115 real omega, Ekin, m, vel;
116 real* amplitude;
117 gmx_output_env_t* oenv;
119 t_filenm fnm[] = { { efTPS, nullptr, nullptr, ffREAD },
120 { efTRN, "-v", "eigenvec", ffREAD },
121 { efTRO, "-o", "nmtraj", ffWRITE } };
123 #define NFILE asize(fnm)
125 if (!parse_common_args(&argc, argv, 0, NFILE, fnm, NPA, pa, asize(desc), desc, 0, nullptr, &oenv))
127 return 0;
130 read_eigenvectors(opt2fn("-v", NFILE, fnm), &natoms, &bFit, &xref, &bDMR, &xav, &bDMA, &nvec,
131 &eignr, &eigvec, &eigval);
133 read_tps_conf(ftp2fn(efTPS, NFILE, fnm), &top, &pbcType, &xtop, nullptr, box, bDMA);
135 /* Find vectors and phases */
137 std::vector<int> imodes;
138 for (const auto& imodeString : gmx::splitString(eignrvec))
140 imodes.emplace_back(gmx::fromStdString<int>(imodeString));
142 int nmodes = gmx::ssize(imodes);
144 std::vector<real> phases;
145 phases.reserve(nmodes);
146 for (const auto& phaseString : gmx::splitString(phasevec))
148 phases.emplace_back(gmx::fromStdString<int>(phaseString));
150 int nphases = gmx::ssize(phases);
152 if (nphases > nmodes)
154 gmx_fatal(FARGS, "More phases than eigenvector indices specified.\n");
157 if (nmodes > nphases)
159 printf("Warning: Setting phase of last %d modes to zero...\n", nmodes - nphases);
160 phases.resize(nmodes, 0);
163 atoms = &top.atoms;
165 if (atoms->nr != natoms)
167 gmx_fatal(FARGS, "Different number of atoms in topology and eigenvectors.\n");
170 snew(dummy, natoms);
171 for (i = 0; i < natoms; i++)
173 dummy[i] = i;
176 /* Find the eigenvalue/vector to match our select one */
177 snew(out_eigidx, nmodes);
178 for (i = 0; i < nmodes; i++)
180 out_eigidx[i] = -1;
183 for (i = 0; i < nvec; i++)
185 for (j = 0; j < nmodes; j++)
187 if (imodes[j] == eignr[i])
189 out_eigidx[j] = i;
193 for (i = 0; i < nmodes; i++)
195 if (out_eigidx[i] == -1)
197 gmx_fatal(FARGS, "Could not find mode %d in eigenvector file.\n", imodes[i]);
202 snew(invsqrtm, natoms);
204 if (bDMA)
206 for (i = 0; (i < natoms); i++)
208 invsqrtm[i] = gmx::invsqrt(atoms->atom[i].m);
211 else
213 for (i = 0; (i < natoms); i++)
215 invsqrtm[i] = 1.0;
219 snew(xout, natoms);
220 snew(amplitude, nmodes);
222 printf("mode phases: %g %g\n", phases[0], phases[1]);
224 for (i = 0; i < nmodes; i++)
226 kmode = out_eigidx[i];
227 this_eigvec = eigvec[kmode];
229 if ((kmode >= 6) && (eigval[kmode] > 0))
231 /* Derive amplitude from temperature and eigenvalue if we can */
233 /* Convert eigenvalue to angular frequency, in units s^(-1) */
234 omega = std::sqrt(eigval[kmode] * 1.0E21 / (AVOGADRO * AMU));
235 /* Harmonic motion will be x=x0 + A*sin(omega*t)*eigenvec.
236 * The velocity is thus:
238 * v = A*omega*cos(omega*t)*eigenvec.
240 * And the average kinetic energy the integral of mass*v*v/2 over a
241 * period:
243 * (1/4)*mass*A*omega*eigenvec
245 * For t =2*pi*n, all energy will be kinetic, and v=A*omega*eigenvec.
246 * The kinetic energy will be sum(0.5*mass*v*v) if we temporarily set A to 1,
247 * and the average over a period half of this.
250 Ekin = 0;
251 for (k = 0; k < natoms; k++)
253 m = atoms->atom[k].m;
254 for (d = 0; d < DIM; d++)
256 vel = omega * this_eigvec[k][d];
257 Ekin += 0.5 * 0.5 * m * vel * vel;
261 /* Convert Ekin from amu*(nm/s)^2 to J, i.e., kg*(m/s)^2
262 * This will also be proportional to A^2
264 Ekin *= AMU * 1E-18;
266 /* Set the amplitude so the energy is kT/2 */
267 amplitude[i] = std::sqrt(0.5 * BOLTZMANN * temp / Ekin);
269 else
271 amplitude[i] = refamplitude;
275 out = open_trx(ftp2fn(efTRO, NFILE, fnm), "w");
277 /* Write a sine oscillation around the average structure,
278 * modulated by the eigenvector with selected amplitude.
281 for (i = 0; i < nframes; i++)
283 real fraction = static_cast<real>(i) / static_cast<real>(nframes);
284 for (j = 0; j < natoms; j++)
286 copy_rvec(xav[j], xout[j]);
289 for (k = 0; k < nmodes; k++)
291 kmode = out_eigidx[k];
292 this_eigvec = eigvec[kmode];
294 for (j = 0; j < natoms; j++)
296 for (d = 0; d < DIM; d++)
298 xout[j][d] += amplitude[k] * std::sin(2 * M_PI * (fraction + phases[k] / 360.0))
299 * this_eigvec[j][d];
303 write_trx(out, natoms, dummy, atoms, i, fraction, box, xout, nullptr, nullptr);
306 fprintf(stderr, "\n");
307 close_trx(out);
309 return 0;