2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017 by the GROMACS development team.
7 * Copyright (c) 2018,2019,2020, by the GROMACS development team, led by
8 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9 * and including many others, as listed in the AUTHORS file in the
10 * top-level source directory and at http://www.gromacs.org.
12 * GROMACS is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public License
14 * as published by the Free Software Foundation; either version 2.1
15 * of the License, or (at your option) any later version.
17 * GROMACS is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with GROMACS; if not, see
24 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 * If you want to redistribute modifications to GROMACS, please
28 * consider that scientific software is very special. Version
29 * control is crucial - bugs must be traceable. We will be happy to
30 * consider code for inclusion in the official distribution, but
31 * derived work must not be called official GROMACS. Details are found
32 * in the README & COPYING files - if they are missing, get the
33 * official version at http://www.gromacs.org.
35 * To help us fund GROMACS development, we humbly ask that you cite
36 * the research papers on the package. Check out http://www.gromacs.org.
44 #include "gromacs/commandline/pargs.h"
45 #include "gromacs/commandline/viewit.h"
46 #include "gromacs/correlationfunctions/autocorr.h"
47 #include "gromacs/fft/fft.h"
48 #include "gromacs/fileio/confio.h"
49 #include "gromacs/fileio/trxio.h"
50 #include "gromacs/fileio/xvgr.h"
51 #include "gromacs/gmxana/gmx_ana.h"
52 #include "gromacs/gmxana/gstat.h"
53 #include "gromacs/math/functions.h"
54 #include "gromacs/math/units.h"
55 #include "gromacs/math/utilities.h"
56 #include "gromacs/math/vec.h"
57 #include "gromacs/pbcutil/pbc.h"
58 #include "gromacs/topology/index.h"
59 #include "gromacs/topology/topology.h"
60 #include "gromacs/trajectory/trajectoryframe.h"
61 #include "gromacs/utility/arraysize.h"
62 #include "gromacs/utility/fatalerror.h"
63 #include "gromacs/utility/futil.h"
64 #include "gromacs/utility/smalloc.h"
66 static void index_atom2mol(int* n
, int* index
, const t_block
* mols
)
68 int nat
, i
, nmol
, mol
, j
;
76 while (index
[i
] > mols
->index
[mol
])
81 gmx_fatal(FARGS
, "Atom index out of range: %d", index
[i
] + 1);
84 for (j
= mols
->index
[mol
]; j
< mols
->index
[mol
+ 1]; j
++)
86 if (i
>= nat
|| index
[i
] != j
)
88 gmx_fatal(FARGS
, "The index group does not consist of whole molecules");
95 fprintf(stderr
, "\nSplit group of %d atoms into %d molecules\n", nat
, nmol
);
100 static void precalc(const t_topology
& top
, real normm
[])
106 for (i
= 0; i
< top
.mols
.nr
; i
++)
108 k
= top
.mols
.index
[i
];
109 l
= top
.mols
.index
[i
+ 1];
112 for (j
= k
; j
< l
; j
++)
114 mtot
+= top
.atoms
.atom
[j
].m
;
117 for (j
= k
; j
< l
; j
++)
119 normm
[j
] = top
.atoms
.atom
[j
].m
/ mtot
;
124 static void calc_spectrum(int n
, const real c
[], real dt
, const char* fn
, gmx_output_env_t
* oenv
, gmx_bool bRecip
)
130 real nu
, omega
, recip_fac
;
133 for (i
= 0; (i
< n
); i
++)
138 if ((status
= gmx_fft_init_1d_real(&fft
, n
, GMX_FFT_FLAG_NONE
)) != 0)
140 gmx_fatal(FARGS
, "Invalid fft return status %d", status
);
142 if ((status
= gmx_fft_1d_real(fft
, GMX_FFT_REAL_TO_COMPLEX
, data
, data
)) != 0)
144 gmx_fatal(FARGS
, "Invalid fft return status %d", status
);
146 fp
= xvgropen(fn
, "Vibrational Power Spectrum",
147 bRecip
? "\\f{12}w\\f{4} (cm\\S-1\\N)" : "\\f{12}n\\f{4} (ps\\S-1\\N)", "a.u.", oenv
);
148 /* This is difficult.
149 * The length of the ACF is dt (as passed to this routine).
150 * We pass the vacf with N time steps from 0 to dt.
151 * That means that after FFT we have lowest frequency = 1/dt
152 * then 1/(2 dt) etc. (this is the X-axis of the data after FFT).
153 * To convert to 1/cm we need to have to realize that
154 * E = hbar w = h nu = h c/lambda. We want to have reciprokal cm
155 * on the x-axis, that is 1/lambda, so we then have
156 * 1/lambda = nu/c. Since nu has units of 1/ps and c has gromacs units
157 * of nm/ps, we need to multiply by 1e7.
158 * The timestep between saving the trajectory is
159 * 1e7 is to convert nanometer to cm
161 recip_fac
= bRecip
? (1e7
/ SPEED_OF_LIGHT
) : 1.0;
162 for (i
= 0; (i
< n
); i
+= 2)
165 omega
= nu
* recip_fac
;
166 /* Computing the square magnitude of a complex number, since this is a power
169 fprintf(fp
, "%10g %10g\n", omega
, gmx::square(data
[i
]) + gmx::square(data
[i
+ 1]));
172 gmx_fft_destroy(fft
);
176 int gmx_velacc(int argc
, char* argv
[])
178 const char* desc
[] = { "[THISMODULE] computes the velocity autocorrelation function.",
179 "When the [TT]-m[tt] option is used, the momentum autocorrelation",
180 "function is calculated.[PAR]",
181 "With option [TT]-mol[tt] the velocity autocorrelation function of",
182 "molecules is calculated. In this case the index group should consist",
183 "of molecule numbers instead of atom numbers.[PAR]",
184 "By using option [TT]-os[tt] you can also extract the estimated",
185 "(vibrational) power spectrum, which is the Fourier transform of the",
186 "velocity autocorrelation function.",
187 "Be sure that your trajectory contains frames with velocity information",
188 "(i.e. [TT]nstvout[tt] was set in your original [REF].mdp[ref] file),",
189 "and that the time interval between data collection points is",
190 "much shorter than the time scale of the autocorrelation." };
192 static gmx_bool bMass
= FALSE
, bMol
= FALSE
, bRecip
= TRUE
;
194 { "-m", FALSE
, etBOOL
, { &bMass
}, "Calculate the momentum autocorrelation function" },
195 { "-recip", FALSE
, etBOOL
, { &bRecip
}, "Use cm^-1 on X-axis instead of 1/ps for spectra." },
196 { "-mol", FALSE
, etBOOL
, { &bMol
}, "Calculate the velocity acf of molecules" }
200 PbcType pbcType
= PbcType::Unset
;
203 gmx_bool bTPS
= FALSE
, bTop
= FALSE
;
207 /* t0, t1 are the beginning and end time respectively.
208 * dt is the time step, mass is temp variable for atomic mass.
210 real t0
, t1
, dt
, mass
;
212 int counter
, n_alloc
, i
, j
, counter_dim
, k
, l
;
214 /* Array for the correlation function */
216 real
* normm
= nullptr;
217 gmx_output_env_t
* oenv
;
221 t_filenm fnm
[] = { { efTRN
, "-f", nullptr, ffREAD
},
222 { efTPS
, nullptr, nullptr, ffOPTRD
},
223 { efNDX
, nullptr, nullptr, ffOPTRD
},
224 { efXVG
, "-o", "vac", ffWRITE
},
225 { efXVG
, "-os", "spectrum", ffOPTWR
} };
226 #define NFILE asize(fnm)
231 ppa
= add_acf_pargs(&npargs
, pa
);
232 if (!parse_common_args(&argc
, argv
, PCA_CAN_VIEW
| PCA_CAN_TIME
, NFILE
, fnm
, npargs
, ppa
,
233 asize(desc
), desc
, 0, nullptr, &oenv
))
241 bTPS
= ftp2bSet(efTPS
, NFILE
, fnm
) || !ftp2bSet(efNDX
, NFILE
, fnm
);
246 bTop
= read_tps_conf(ftp2fn(efTPS
, NFILE
, fnm
), &top
, &pbcType
, nullptr, nullptr, box
, TRUE
);
247 get_index(&top
.atoms
, ftp2fn_null(efNDX
, NFILE
, fnm
), 1, &gnx
, &index
, &grpname
);
251 rd_index(ftp2fn(efNDX
, NFILE
, fnm
), 1, &gnx
, &index
, &grpname
);
258 gmx_fatal(FARGS
, "Need a topology to determine the molecules");
260 snew(normm
, top
.atoms
.nr
);
262 index_atom2mol(&gnx
, index
, &top
.mols
);
265 /* Correlation stuff */
267 for (i
= 0; (i
< gnx
); i
++)
272 read_first_frame(oenv
, &status
, ftp2fn(efTRN
, NFILE
, fnm
), &fr
, TRX_NEED_V
);
279 if (counter
>= n_alloc
)
282 for (i
= 0; i
< gnx
; i
++)
284 srenew(c1
[i
], DIM
* n_alloc
);
287 counter_dim
= DIM
* counter
;
290 for (i
= 0; i
< gnx
; i
++)
293 k
= top
.mols
.index
[index
[i
]];
294 l
= top
.mols
.index
[index
[i
] + 1];
295 for (j
= k
; j
< l
; j
++)
299 mass
= top
.atoms
.atom
[j
].m
;
305 mv_mol
[XX
] += mass
* fr
.v
[j
][XX
];
306 mv_mol
[YY
] += mass
* fr
.v
[j
][YY
];
307 mv_mol
[ZZ
] += mass
* fr
.v
[j
][ZZ
];
309 c1
[i
][counter_dim
+ XX
] = mv_mol
[XX
];
310 c1
[i
][counter_dim
+ YY
] = mv_mol
[YY
];
311 c1
[i
][counter_dim
+ ZZ
] = mv_mol
[ZZ
];
316 for (i
= 0; i
< gnx
; i
++)
320 mass
= top
.atoms
.atom
[index
[i
]].m
;
326 c1
[i
][counter_dim
+ XX
] = mass
* fr
.v
[index
[i
]][XX
];
327 c1
[i
][counter_dim
+ YY
] = mass
* fr
.v
[index
[i
]][YY
];
328 c1
[i
][counter_dim
+ ZZ
] = mass
* fr
.v
[index
[i
]][ZZ
];
335 } while (read_next_frame(oenv
, status
, &fr
));
341 /* Compute time step between frames */
342 dt
= (t1
- t0
) / (counter
- 1);
343 do_autocorr(opt2fn("-o", NFILE
, fnm
), oenv
,
344 bMass
? "Momentum Autocorrelation Function" : "Velocity Autocorrelation Function",
345 counter
, gnx
, c1
, dt
, eacVector
, TRUE
);
347 do_view(oenv
, opt2fn("-o", NFILE
, fnm
), "-nxy");
349 if (opt2bSet("-os", NFILE
, fnm
))
351 calc_spectrum(counter
/ 2, (c1
[0]), (t1
- t0
) / 2, opt2fn("-os", NFILE
, fnm
), oenv
, bRecip
);
352 do_view(oenv
, opt2fn("-os", NFILE
, fnm
), "-nxy");
357 fprintf(stderr
, "Not enough frames in trajectory - no output generated.\n");