2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
44 #include "gromacs/domdec/domdec_struct.h"
45 #include "gromacs/domdec/ga2la.h"
46 #include "gromacs/fileio/confio.h"
47 #include "gromacs/gmxlib/network.h"
48 #include "gromacs/math/functions.h"
49 #include "gromacs/math/utilities.h"
50 #include "gromacs/math/vec.h"
51 #include "gromacs/mdtypes/commrec.h"
52 #include "gromacs/mdtypes/md_enums.h"
53 #include "gromacs/mdtypes/mdatom.h"
54 #include "gromacs/pbcutil/pbc.h"
55 #include "gromacs/pulling/pull.h"
56 #include "gromacs/pulling/pull_internal.h"
57 #include "gromacs/utility/fatalerror.h"
58 #include "gromacs/utility/futil.h"
59 #include "gromacs/utility/gmxassert.h"
60 #include "gromacs/utility/real.h"
61 #include "gromacs/utility/smalloc.h"
63 static void pull_reduce_real(t_commrec
*cr
,
68 if (cr
!= nullptr && PAR(cr
))
70 if (comm
->bParticipateAll
)
72 /* Sum the contributions over all DD ranks */
78 #if MPI_IN_PLACE_EXISTS
79 MPI_Allreduce(MPI_IN_PLACE
, data
, n
, GMX_MPI_REAL
, MPI_SUM
,
86 MPI_Allreduce(data
, buf
, n
, GMX_MPI_REAL
, MPI_SUM
,
89 /* Copy the result from the buffer to the input/output data */
90 for (int i
= 0; i
< n
; i
++)
97 gmx_incons("comm->bParticipateAll=FALSE without GMX_MPI");
103 static void pull_reduce_double(t_commrec
*cr
,
108 if (cr
!= nullptr && PAR(cr
))
110 if (comm
->bParticipateAll
)
112 /* Sum the contributions over all DD ranks */
113 gmx_sumd(n
, data
, cr
);
118 #if MPI_IN_PLACE_EXISTS
119 MPI_Allreduce(MPI_IN_PLACE
, data
, n
, MPI_DOUBLE
, MPI_SUM
,
126 MPI_Allreduce(data
, buf
, n
, MPI_DOUBLE
, MPI_SUM
,
129 /* Copy the result from the buffer to the input/output data */
130 for (int i
= 0; i
< n
; i
++)
137 gmx_incons("comm->bParticipateAll=FALSE without GMX_MPI");
143 static void pull_set_pbcatom(t_commrec
*cr
, pull_group_work_t
*pgrp
,
149 if (cr
!= nullptr && DOMAINDECOMP(cr
))
151 if (ga2la_get_home(cr
->dd
->ga2la
, pgrp
->params
.pbcatom
, &a
))
153 copy_rvec(x
[a
], x_pbc
);
162 copy_rvec(x
[pgrp
->params
.pbcatom
], x_pbc
);
166 static void pull_set_pbcatoms(t_commrec
*cr
, struct pull_t
*pull
,
173 for (g
= 0; g
< pull
->ngroup
; g
++)
175 if (!pull
->group
[g
].bCalcCOM
|| pull
->group
[g
].params
.pbcatom
== -1)
177 clear_rvec(x_pbc
[g
]);
181 pull_set_pbcatom(cr
, &pull
->group
[g
], x
, x_pbc
[g
]);
186 if (cr
&& PAR(cr
) && n
> 0)
188 /* Sum over participating ranks to get x_pbc from the home ranks.
189 * This can be very expensive at high parallelization, so we only
190 * do this after each DD repartitioning.
192 pull_reduce_real(cr
, &pull
->comm
, pull
->ngroup
*DIM
, x_pbc
[0]);
196 static void make_cyl_refgrps(t_commrec
*cr
, struct pull_t
*pull
, t_mdatoms
*md
,
197 t_pbc
*pbc
, double t
, rvec
*x
)
199 /* The size and stride per coord for the reduction buffer */
200 const int stride
= 9;
201 int c
, i
, ii
, m
, start
, end
;
205 gmx_ga2la_t
*ga2la
= nullptr;
209 if (comm
->dbuf_cyl
== nullptr)
211 snew(comm
->dbuf_cyl
, pull
->ncoord
*stride
);
214 if (cr
&& DOMAINDECOMP(cr
))
216 ga2la
= cr
->dd
->ga2la
;
222 inv_cyl_r2
= 1.0/gmx::square(pull
->params
.cylinder_r
);
224 /* loop over all groups to make a reference group for each*/
225 for (c
= 0; c
< pull
->ncoord
; c
++)
227 pull_coord_work_t
*pcrd
;
228 double sum_a
, wmass
, wwmass
;
229 dvec radf_fac0
, radf_fac1
;
231 pcrd
= &pull
->coord
[c
];
236 clear_dvec(radf_fac0
);
237 clear_dvec(radf_fac1
);
239 if (pcrd
->params
.eGeom
== epullgCYL
)
241 pull_group_work_t
*pref
, *pgrp
, *pdyna
;
243 /* pref will be the same group for all pull coordinates */
244 pref
= &pull
->group
[pcrd
->params
.group
[0]];
245 pgrp
= &pull
->group
[pcrd
->params
.group
[1]];
246 pdyna
= &pull
->dyna
[c
];
247 copy_dvec_to_rvec(pcrd
->vec
, dir
);
250 /* We calculate distances with respect to the reference location
251 * of this cylinder group (g_x), which we already have now since
252 * we reduced the other group COM over the ranks. This resolves
253 * any PBC issues and we don't need to use a PBC-atom here.
255 if (pcrd
->params
.rate
!= 0)
257 /* With rate=0, value_ref is set initially */
258 pcrd
->value_ref
= pcrd
->params
.init
+ pcrd
->params
.rate
*t
;
260 for (m
= 0; m
< DIM
; m
++)
262 g_x
[m
] = pgrp
->x
[m
] - pcrd
->vec
[m
]*pcrd
->value_ref
;
265 /* loop over all atoms in the main ref group */
266 for (i
= 0; i
< pref
->params
.nat
; i
++)
268 ii
= pref
->params
.ind
[i
];
271 if (!ga2la_get_home(ga2la
, pref
->params
.ind
[i
], &ii
))
276 if (ii
>= start
&& ii
< end
)
278 double dr2
, dr2_rel
, inp
;
281 pbc_dx_aiuc(pbc
, x
[ii
], g_x
, dx
);
282 inp
= iprod(dir
, dx
);
284 for (m
= 0; m
< DIM
; m
++)
286 /* Determine the radial components */
287 dr
[m
] = dx
[m
] - inp
*dir
[m
];
290 dr2_rel
= dr2
*inv_cyl_r2
;
294 double mass
, weight
, dweight_r
;
297 /* add to index, to sum of COM, to weight array */
298 if (pdyna
->nat_loc
>= pdyna
->nalloc_loc
)
300 pdyna
->nalloc_loc
= over_alloc_large(pdyna
->nat_loc
+1);
301 srenew(pdyna
->ind_loc
, pdyna
->nalloc_loc
);
302 srenew(pdyna
->weight_loc
, pdyna
->nalloc_loc
);
303 srenew(pdyna
->mdw
, pdyna
->nalloc_loc
);
304 srenew(pdyna
->dv
, pdyna
->nalloc_loc
);
306 pdyna
->ind_loc
[pdyna
->nat_loc
] = ii
;
308 mass
= md
->massT
[ii
];
309 /* The radial weight function is 1-2x^2+x^4,
310 * where x=r/cylinder_r. Since this function depends
311 * on the radial component, we also get radial forces
314 weight
= 1 + (-2 + dr2_rel
)*dr2_rel
;
315 dweight_r
= (-4 + 4*dr2_rel
)*inv_cyl_r2
;
316 pdyna
->weight_loc
[pdyna
->nat_loc
] = weight
;
317 sum_a
+= mass
*weight
*inp
;
318 wmass
+= mass
*weight
;
319 wwmass
+= mass
*weight
*weight
;
320 dsvmul(mass
*dweight_r
, dr
, mdw
);
321 copy_dvec(mdw
, pdyna
->mdw
[pdyna
->nat_loc
]);
322 /* Currently we only have the axial component of the
323 * distance (inp) up to an unkown offset. We add this
324 * offset after the reduction needs to determine the
325 * COM of the cylinder group.
327 pdyna
->dv
[pdyna
->nat_loc
] = inp
;
328 for (m
= 0; m
< DIM
; m
++)
330 radf_fac0
[m
] += mdw
[m
];
331 radf_fac1
[m
] += mdw
[m
]*inp
;
338 comm
->dbuf_cyl
[c
*stride
+0] = wmass
;
339 comm
->dbuf_cyl
[c
*stride
+1] = wwmass
;
340 comm
->dbuf_cyl
[c
*stride
+2] = sum_a
;
341 comm
->dbuf_cyl
[c
*stride
+3] = radf_fac0
[XX
];
342 comm
->dbuf_cyl
[c
*stride
+4] = radf_fac0
[YY
];
343 comm
->dbuf_cyl
[c
*stride
+5] = radf_fac0
[ZZ
];
344 comm
->dbuf_cyl
[c
*stride
+6] = radf_fac1
[XX
];
345 comm
->dbuf_cyl
[c
*stride
+7] = radf_fac1
[YY
];
346 comm
->dbuf_cyl
[c
*stride
+8] = radf_fac1
[ZZ
];
349 if (cr
!= nullptr && PAR(cr
))
351 /* Sum the contributions over the ranks */
352 pull_reduce_double(cr
, comm
, pull
->ncoord
*stride
, comm
->dbuf_cyl
);
355 for (c
= 0; c
< pull
->ncoord
; c
++)
357 pull_coord_work_t
*pcrd
;
359 pcrd
= &pull
->coord
[c
];
361 if (pcrd
->params
.eGeom
== epullgCYL
)
363 pull_group_work_t
*pdyna
, *pgrp
;
364 double wmass
, wwmass
, dist
;
366 pdyna
= &pull
->dyna
[c
];
367 pgrp
= &pull
->group
[pcrd
->params
.group
[1]];
369 wmass
= comm
->dbuf_cyl
[c
*stride
+0];
370 wwmass
= comm
->dbuf_cyl
[c
*stride
+1];
371 pdyna
->mwscale
= 1.0/wmass
;
372 /* Cylinder pulling can't be used with constraints, but we set
373 * wscale and invtm anyhow, in case someone would like to use them.
375 pdyna
->wscale
= wmass
/wwmass
;
376 pdyna
->invtm
= wwmass
/(wmass
*wmass
);
378 /* We store the deviation of the COM from the reference location
379 * used above, since we need it when we apply the radial forces
380 * to the atoms in the cylinder group.
383 for (m
= 0; m
< DIM
; m
++)
385 g_x
[m
] = pgrp
->x
[m
] - pcrd
->vec
[m
]*pcrd
->value_ref
;
386 dist
= -pcrd
->vec
[m
]*comm
->dbuf_cyl
[c
*stride
+2]*pdyna
->mwscale
;
387 pdyna
->x
[m
] = g_x
[m
] - dist
;
388 pcrd
->cyl_dev
+= dist
;
390 /* Now we know the exact COM of the cylinder reference group,
391 * we can determine the radial force factor (ffrad) that when
392 * multiplied with the axial pull force will give the radial
393 * force on the pulled (non-cylinder) group.
395 for (m
= 0; m
< DIM
; m
++)
397 pcrd
->ffrad
[m
] = (comm
->dbuf_cyl
[c
*stride
+6+m
] +
398 comm
->dbuf_cyl
[c
*stride
+3+m
]*pcrd
->cyl_dev
)/wmass
;
403 fprintf(debug
, "Pull cylinder group %d:%8.3f%8.3f%8.3f m:%8.3f\n",
404 c
, pdyna
->x
[0], pdyna
->x
[1],
405 pdyna
->x
[2], 1.0/pdyna
->invtm
);
406 fprintf(debug
, "ffrad %8.3f %8.3f %8.3f\n",
407 pcrd
->ffrad
[XX
], pcrd
->ffrad
[YY
], pcrd
->ffrad
[ZZ
]);
413 static double atan2_0_2pi(double y
, double x
)
425 static void sum_com_part(const pull_group_work_t
*pgrp
,
426 int ind_start
, int ind_end
,
427 const rvec
*x
, const rvec
*xp
,
431 pull_sum_com_t
*sum_com
)
435 dvec sum_wmx
= { 0, 0, 0 };
436 dvec sum_wmxp
= { 0, 0, 0 };
438 for (int i
= ind_start
; i
< ind_end
; i
++)
440 int ii
= pgrp
->ind_loc
[i
];
442 if (pgrp
->weight_loc
== nullptr)
451 w
= pgrp
->weight_loc
[i
];
456 if (pgrp
->epgrppbc
== epgrppbcNONE
)
458 /* Plain COM: sum the coordinates */
459 for (int d
= 0; d
< DIM
; d
++)
461 sum_wmx
[d
] += wm
*x
[ii
][d
];
465 for (int d
= 0; d
< DIM
; d
++)
467 sum_wmxp
[d
] += wm
*xp
[ii
][d
];
475 /* Sum the difference with the reference atom */
476 pbc_dx(pbc
, x
[ii
], x_pbc
, dx
);
477 for (int d
= 0; d
< DIM
; d
++)
479 sum_wmx
[d
] += wm
*dx
[d
];
483 /* For xp add the difference between xp and x to dx,
484 * such that we use the same periodic image,
485 * also when xp has a large displacement.
487 for (int d
= 0; d
< DIM
; d
++)
489 sum_wmxp
[d
] += wm
*(dx
[d
] + xp
[ii
][d
] - x
[ii
][d
]);
495 sum_com
->sum_wm
= sum_wm
;
496 sum_com
->sum_wwm
= sum_wwm
;
497 copy_dvec(sum_wmx
, sum_com
->sum_wmx
);
500 copy_dvec(sum_wmxp
, sum_com
->sum_wmxp
);
504 static void sum_com_part_cosweight(const pull_group_work_t
*pgrp
,
505 int ind_start
, int ind_end
,
506 int cosdim
, real twopi_box
,
507 const rvec
*x
, const rvec
*xp
,
509 pull_sum_com_t
*sum_com
)
511 /* Cosine weighting geometry */
520 for (int i
= ind_start
; i
< ind_end
; i
++)
522 int ii
= pgrp
->ind_loc
[i
];
524 /* Determine cos and sin sums */
525 real cw
= std::cos(x
[ii
][cosdim
]*twopi_box
);
526 real sw
= std::sin(x
[ii
][cosdim
]*twopi_box
);
527 sum_cm
+= static_cast<double>(cw
*m
);
528 sum_sm
+= static_cast<double>(sw
*m
);
529 sum_ccm
+= static_cast<double>(cw
*cw
*m
);
530 sum_csm
+= static_cast<double>(cw
*sw
*m
);
531 sum_ssm
+= static_cast<double>(sw
*sw
*m
);
535 real cw
= std::cos(xp
[ii
][cosdim
]*twopi_box
);
536 real sw
= std::sin(xp
[ii
][cosdim
]*twopi_box
);
537 sum_cmp
+= static_cast<double>(cw
*m
);
538 sum_smp
+= static_cast<double>(sw
*m
);
542 sum_com
->sum_cm
= sum_cm
;
543 sum_com
->sum_sm
= sum_sm
;
544 sum_com
->sum_ccm
= sum_ccm
;
545 sum_com
->sum_csm
= sum_csm
;
546 sum_com
->sum_ssm
= sum_ssm
;
547 sum_com
->sum_cmp
= sum_cmp
;
548 sum_com
->sum_smp
= sum_smp
;
551 /* calculates center of mass of selection index from all coordinates x */
552 void pull_calc_coms(t_commrec
*cr
,
553 struct pull_t
*pull
, t_mdatoms
*md
, t_pbc
*pbc
, double t
,
562 if (comm
->rbuf
== nullptr)
564 snew(comm
->rbuf
, pull
->ngroup
);
566 if (comm
->dbuf
== nullptr)
568 snew(comm
->dbuf
, 3*pull
->ngroup
);
571 if (pull
->bRefAt
&& pull
->bSetPBCatoms
)
573 pull_set_pbcatoms(cr
, pull
, x
, comm
->rbuf
);
575 if (cr
!= nullptr && DOMAINDECOMP(cr
))
577 /* We can keep these PBC reference coordinates fixed for nstlist
578 * steps, since atoms won't jump over PBC.
579 * This avoids a global reduction at the next nstlist-1 steps.
580 * Note that the exact values of the pbc reference coordinates
581 * are irrelevant, as long all atoms in the group are within
582 * half a box distance of the reference coordinate.
584 pull
->bSetPBCatoms
= FALSE
;
588 if (pull
->cosdim
>= 0)
592 assert(pull
->npbcdim
<= DIM
);
594 for (m
= pull
->cosdim
+1; m
< pull
->npbcdim
; m
++)
596 if (pbc
->box
[m
][pull
->cosdim
] != 0)
598 gmx_fatal(FARGS
, "Can not do cosine weighting for trilinic dimensions");
601 twopi_box
= 2.0*M_PI
/pbc
->box
[pull
->cosdim
][pull
->cosdim
];
604 for (g
= 0; g
< pull
->ngroup
; g
++)
606 pull_group_work_t
*pgrp
;
608 pgrp
= &pull
->group
[g
];
612 if (pgrp
->epgrppbc
!= epgrppbcCOS
)
614 rvec x_pbc
= { 0, 0, 0 };
616 if (pgrp
->epgrppbc
== epgrppbcREFAT
)
618 /* Set the pbc atom */
619 copy_rvec(comm
->rbuf
[g
], x_pbc
);
622 /* The final sums should end up in sum_com[0] */
623 pull_sum_com_t
*sum_com
= &pull
->sum_com
[0];
625 /* If we have a single-atom group the mass is irrelevant, so
626 * we can remove the mass factor to avoid division by zero.
627 * Note that with constraint pulling the mass does matter, but
628 * in that case a check group mass != 0 has been done before.
630 if (pgrp
->params
.nat
== 1 &&
631 pgrp
->nat_loc
== 1 &&
632 md
->massT
[pgrp
->ind_loc
[0]] == 0)
634 GMX_ASSERT(xp
== NULL
, "We should not have groups with zero mass with constraints, i.e. xp!=NULL");
636 /* Copy the single atom coordinate */
637 for (int d
= 0; d
< DIM
; d
++)
639 sum_com
->sum_wmx
[d
] = x
[pgrp
->ind_loc
[0]][d
];
641 /* Set all mass factors to 1 to get the correct COM */
643 sum_com
->sum_wwm
= 1;
645 else if (pgrp
->nat_loc
<= c_pullMaxNumLocalAtomsSingleThreaded
)
647 sum_com_part(pgrp
, 0, pgrp
->nat_loc
,
654 #pragma omp parallel for num_threads(pull->nthreads) schedule(static)
655 for (int t
= 0; t
< pull
->nthreads
; t
++)
657 int ind_start
= (pgrp
->nat_loc
*(t
+ 0))/pull
->nthreads
;
658 int ind_end
= (pgrp
->nat_loc
*(t
+ 1))/pull
->nthreads
;
659 sum_com_part(pgrp
, ind_start
, ind_end
,
665 /* Reduce the thread contributions to sum_com[0] */
666 for (int t
= 1; t
< pull
->nthreads
; t
++)
668 sum_com
->sum_wm
+= pull
->sum_com
[t
].sum_wm
;
669 sum_com
->sum_wwm
+= pull
->sum_com
[t
].sum_wwm
;
670 dvec_inc(sum_com
->sum_wmx
, pull
->sum_com
[t
].sum_wmx
);
671 dvec_inc(sum_com
->sum_wmxp
, pull
->sum_com
[t
].sum_wmxp
);
675 if (pgrp
->weight_loc
== nullptr)
677 sum_com
->sum_wwm
= sum_com
->sum_wm
;
680 /* Copy local sums to a buffer for global summing */
681 copy_dvec(sum_com
->sum_wmx
, comm
->dbuf
[g
*3]);
682 copy_dvec(sum_com
->sum_wmxp
, comm
->dbuf
[g
*3 + 1]);
683 comm
->dbuf
[g
*3 + 2][0] = sum_com
->sum_wm
;
684 comm
->dbuf
[g
*3 + 2][1] = sum_com
->sum_wwm
;
685 comm
->dbuf
[g
*3 + 2][2] = 0;
689 /* Cosine weighting geometry.
690 * This uses a slab of the system, thus we always have many
691 * atoms in the pull groups. Therefore, always use threads.
693 #pragma omp parallel for num_threads(pull->nthreads) schedule(static)
694 for (int t
= 0; t
< pull
->nthreads
; t
++)
696 int ind_start
= (pgrp
->nat_loc
*(t
+ 0))/pull
->nthreads
;
697 int ind_end
= (pgrp
->nat_loc
*(t
+ 1))/pull
->nthreads
;
698 sum_com_part_cosweight(pgrp
, ind_start
, ind_end
,
699 pull
->cosdim
, twopi_box
,
704 /* Reduce the thread contributions to sum_com[0] */
705 pull_sum_com_t
*sum_com
= &pull
->sum_com
[0];
706 for (int t
= 1; t
< pull
->nthreads
; t
++)
708 sum_com
->sum_cm
+= pull
->sum_com
[t
].sum_cm
;
709 sum_com
->sum_sm
+= pull
->sum_com
[t
].sum_sm
;
710 sum_com
->sum_ccm
+= pull
->sum_com
[t
].sum_ccm
;
711 sum_com
->sum_csm
+= pull
->sum_com
[t
].sum_csm
;
712 sum_com
->sum_ssm
+= pull
->sum_com
[t
].sum_ssm
;
713 sum_com
->sum_cmp
+= pull
->sum_com
[t
].sum_cmp
;
714 sum_com
->sum_smp
+= pull
->sum_com
[t
].sum_smp
;
717 /* Copy local sums to a buffer for global summing */
718 comm
->dbuf
[g
*3 ][0] = sum_com
->sum_cm
;
719 comm
->dbuf
[g
*3 ][1] = sum_com
->sum_sm
;
720 comm
->dbuf
[g
*3 ][2] = 0;
721 comm
->dbuf
[g
*3 + 1][0] = sum_com
->sum_ccm
;
722 comm
->dbuf
[g
*3 + 1][1] = sum_com
->sum_csm
;
723 comm
->dbuf
[g
*3 + 1][2] = sum_com
->sum_ssm
;
724 comm
->dbuf
[g
*3 + 2][0] = sum_com
->sum_cmp
;
725 comm
->dbuf
[g
*3 + 2][1] = sum_com
->sum_smp
;
726 comm
->dbuf
[g
*3 + 2][2] = 0;
731 pull_reduce_double(cr
, comm
, pull
->ngroup
*3*DIM
, comm
->dbuf
[0]);
733 for (g
= 0; g
< pull
->ngroup
; g
++)
735 pull_group_work_t
*pgrp
;
737 pgrp
= &pull
->group
[g
];
738 if (pgrp
->params
.nat
> 0 && pgrp
->bCalcCOM
)
740 if (pgrp
->epgrppbc
!= epgrppbcCOS
)
742 double wmass
, wwmass
;
745 /* Determine the inverse mass */
746 wmass
= comm
->dbuf
[g
*3+2][0];
747 wwmass
= comm
->dbuf
[g
*3+2][1];
748 pgrp
->mwscale
= 1.0/wmass
;
749 /* invtm==0 signals a frozen group, so then we should keep it zero */
750 if (pgrp
->invtm
!= 0)
752 pgrp
->wscale
= wmass
/wwmass
;
753 pgrp
->invtm
= wwmass
/(wmass
*wmass
);
755 /* Divide by the total mass */
756 for (m
= 0; m
< DIM
; m
++)
758 pgrp
->x
[m
] = comm
->dbuf
[g
*3 ][m
]*pgrp
->mwscale
;
761 pgrp
->xp
[m
] = comm
->dbuf
[g
*3+1][m
]*pgrp
->mwscale
;
763 if (pgrp
->epgrppbc
== epgrppbcREFAT
)
765 pgrp
->x
[m
] += comm
->rbuf
[g
][m
];
768 pgrp
->xp
[m
] += comm
->rbuf
[g
][m
];
775 /* Cosine weighting geometry */
776 double csw
, snw
, wmass
, wwmass
;
779 /* Determine the optimal location of the cosine weight */
780 csw
= comm
->dbuf
[g
*3][0];
781 snw
= comm
->dbuf
[g
*3][1];
782 pgrp
->x
[pull
->cosdim
] = atan2_0_2pi(snw
, csw
)/twopi_box
;
783 /* Set the weights for the local atoms */
784 wmass
= sqrt(csw
*csw
+ snw
*snw
);
785 wwmass
= (comm
->dbuf
[g
*3+1][0]*csw
*csw
+
786 comm
->dbuf
[g
*3+1][1]*csw
*snw
+
787 comm
->dbuf
[g
*3+1][2]*snw
*snw
)/(wmass
*wmass
);
789 pgrp
->mwscale
= 1.0/wmass
;
790 pgrp
->wscale
= wmass
/wwmass
;
791 pgrp
->invtm
= wwmass
/(wmass
*wmass
);
792 /* Set the weights for the local atoms */
795 for (i
= 0; i
< pgrp
->nat_loc
; i
++)
797 ii
= pgrp
->ind_loc
[i
];
798 pgrp
->weight_loc
[i
] = csw
*cos(twopi_box
*x
[ii
][pull
->cosdim
]) +
799 snw
*sin(twopi_box
*x
[ii
][pull
->cosdim
]);
803 csw
= comm
->dbuf
[g
*3+2][0];
804 snw
= comm
->dbuf
[g
*3+2][1];
805 pgrp
->xp
[pull
->cosdim
] = atan2_0_2pi(snw
, csw
)/twopi_box
;
810 fprintf(debug
, "Pull group %d wmass %f invtm %f\n",
811 g
, 1.0/pgrp
->mwscale
, pgrp
->invtm
);
818 /* Calculate the COMs for the cyclinder reference groups */
819 make_cyl_refgrps(cr
, pull
, md
, pbc
, t
, x
);