Add gmx convert-trj
[gromacs.git] / src / gromacs / ewald / pme_grid.cpp
bloba3e42e9c635090293061133079f93aae8b36a556
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 /* TODO find out what this file should be called */
38 #include "gmxpre.h"
40 #include "pme_grid.h"
42 #include "config.h"
44 #include <cstdlib>
46 #include "gromacs/ewald/pme.h"
47 #include "gromacs/fft/parallel_3dfft.h"
48 #include "gromacs/math/vec.h"
49 #include "gromacs/timing/cyclecounter.h"
50 #include "gromacs/utility/fatalerror.h"
51 #include "gromacs/utility/smalloc.h"
53 #include "pme_internal.h"
55 #ifdef DEBUG_PME
56 #include "gromacs/fileio/pdbio.h"
57 #include "gromacs/utility/cstringutil.h"
58 #include "gromacs/utility/futil.h"
59 #endif
61 #include "pme_simd.h"
63 /* GMX_CACHE_SEP should be a multiple of the SIMD and SIMD4 register size
64 * to preserve alignment.
66 #define GMX_CACHE_SEP 64
68 void gmx_sum_qgrid_dd(gmx_pme_t *pme,
69 real *grid,
70 const int direction)
72 #if GMX_MPI
73 pme_overlap_t *overlap;
74 int send_index0, send_nindex;
75 int recv_index0, recv_nindex;
76 MPI_Status stat;
77 int i, j, k, ix, iy, iz, icnt;
78 int send_id, recv_id, datasize;
79 real *p;
80 real *sendptr, *recvptr;
82 /* Start with minor-rank communication. This is a bit of a pain since it is not contiguous */
83 overlap = &pme->overlap[1];
85 for (size_t ipulse = 0; ipulse < overlap->comm_data.size(); ipulse++)
87 /* Since we have already (un)wrapped the overlap in the z-dimension,
88 * we only have to communicate 0 to nkz (not pmegrid_nz).
90 if (direction == GMX_SUM_GRID_FORWARD)
92 send_id = overlap->comm_data[ipulse].send_id;
93 recv_id = overlap->comm_data[ipulse].recv_id;
94 send_index0 = overlap->comm_data[ipulse].send_index0;
95 send_nindex = overlap->comm_data[ipulse].send_nindex;
96 recv_index0 = overlap->comm_data[ipulse].recv_index0;
97 recv_nindex = overlap->comm_data[ipulse].recv_nindex;
99 else
101 send_id = overlap->comm_data[ipulse].recv_id;
102 recv_id = overlap->comm_data[ipulse].send_id;
103 send_index0 = overlap->comm_data[ipulse].recv_index0;
104 send_nindex = overlap->comm_data[ipulse].recv_nindex;
105 recv_index0 = overlap->comm_data[ipulse].send_index0;
106 recv_nindex = overlap->comm_data[ipulse].send_nindex;
109 /* Copy data to contiguous send buffer */
110 if (debug)
112 fprintf(debug, "PME send rank %d %d -> %d grid start %d Communicating %d to %d\n",
113 pme->nodeid, overlap->nodeid, send_id,
114 pme->pmegrid_start_iy,
115 send_index0-pme->pmegrid_start_iy,
116 send_index0-pme->pmegrid_start_iy+send_nindex);
118 icnt = 0;
119 for (i = 0; i < pme->pmegrid_nx; i++)
121 ix = i;
122 for (j = 0; j < send_nindex; j++)
124 iy = j + send_index0 - pme->pmegrid_start_iy;
125 for (k = 0; k < pme->nkz; k++)
127 iz = k;
128 overlap->sendbuf[icnt++] = grid[ix*(pme->pmegrid_ny*pme->pmegrid_nz)+iy*(pme->pmegrid_nz)+iz];
133 datasize = pme->pmegrid_nx * pme->nkz;
135 MPI_Sendrecv(overlap->sendbuf.data(), send_nindex*datasize, GMX_MPI_REAL,
136 send_id, ipulse,
137 overlap->recvbuf.data(), recv_nindex*datasize, GMX_MPI_REAL,
138 recv_id, ipulse,
139 overlap->mpi_comm, &stat);
141 /* Get data from contiguous recv buffer */
142 if (debug)
144 fprintf(debug, "PME recv rank %d %d <- %d grid start %d Communicating %d to %d\n",
145 pme->nodeid, overlap->nodeid, recv_id,
146 pme->pmegrid_start_iy,
147 recv_index0-pme->pmegrid_start_iy,
148 recv_index0-pme->pmegrid_start_iy+recv_nindex);
150 icnt = 0;
151 for (i = 0; i < pme->pmegrid_nx; i++)
153 ix = i;
154 for (j = 0; j < recv_nindex; j++)
156 iy = j + recv_index0 - pme->pmegrid_start_iy;
157 for (k = 0; k < pme->nkz; k++)
159 iz = k;
160 if (direction == GMX_SUM_GRID_FORWARD)
162 grid[ix*(pme->pmegrid_ny*pme->pmegrid_nz)+iy*(pme->pmegrid_nz)+iz] += overlap->recvbuf[icnt++];
164 else
166 grid[ix*(pme->pmegrid_ny*pme->pmegrid_nz)+iy*(pme->pmegrid_nz)+iz] = overlap->recvbuf[icnt++];
173 /* Major dimension is easier, no copying required,
174 * but we might have to sum to separate array.
175 * Since we don't copy, we have to communicate up to pmegrid_nz,
176 * not nkz as for the minor direction.
178 overlap = &pme->overlap[0];
180 for (size_t ipulse = 0; ipulse < overlap->comm_data.size(); ipulse++)
182 if (direction == GMX_SUM_GRID_FORWARD)
184 send_id = overlap->comm_data[ipulse].send_id;
185 recv_id = overlap->comm_data[ipulse].recv_id;
186 send_index0 = overlap->comm_data[ipulse].send_index0;
187 send_nindex = overlap->comm_data[ipulse].send_nindex;
188 recv_index0 = overlap->comm_data[ipulse].recv_index0;
189 recv_nindex = overlap->comm_data[ipulse].recv_nindex;
190 recvptr = overlap->recvbuf.data();
192 else
194 send_id = overlap->comm_data[ipulse].recv_id;
195 recv_id = overlap->comm_data[ipulse].send_id;
196 send_index0 = overlap->comm_data[ipulse].recv_index0;
197 send_nindex = overlap->comm_data[ipulse].recv_nindex;
198 recv_index0 = overlap->comm_data[ipulse].send_index0;
199 recv_nindex = overlap->comm_data[ipulse].send_nindex;
200 recvptr = grid + (recv_index0-pme->pmegrid_start_ix)*(pme->pmegrid_ny*pme->pmegrid_nz);
203 sendptr = grid + (send_index0-pme->pmegrid_start_ix)*(pme->pmegrid_ny*pme->pmegrid_nz);
204 datasize = pme->pmegrid_ny * pme->pmegrid_nz;
206 if (debug)
208 fprintf(debug, "PME send rank %d %d -> %d grid start %d Communicating %d to %d\n",
209 pme->nodeid, overlap->nodeid, send_id,
210 pme->pmegrid_start_ix,
211 send_index0-pme->pmegrid_start_ix,
212 send_index0-pme->pmegrid_start_ix+send_nindex);
213 fprintf(debug, "PME recv rank %d %d <- %d grid start %d Communicating %d to %d\n",
214 pme->nodeid, overlap->nodeid, recv_id,
215 pme->pmegrid_start_ix,
216 recv_index0-pme->pmegrid_start_ix,
217 recv_index0-pme->pmegrid_start_ix+recv_nindex);
220 MPI_Sendrecv(sendptr, send_nindex*datasize, GMX_MPI_REAL,
221 send_id, ipulse,
222 recvptr, recv_nindex*datasize, GMX_MPI_REAL,
223 recv_id, ipulse,
224 overlap->mpi_comm, &stat);
226 /* ADD data from contiguous recv buffer */
227 if (direction == GMX_SUM_GRID_FORWARD)
229 p = grid + (recv_index0-pme->pmegrid_start_ix)*(pme->pmegrid_ny*pme->pmegrid_nz);
230 for (i = 0; i < recv_nindex*datasize; i++)
232 p[i] += overlap->recvbuf[i];
236 #else // GMX_MPI
237 GMX_UNUSED_VALUE(pme);
238 GMX_UNUSED_VALUE(grid);
239 GMX_UNUSED_VALUE(direction);
241 GMX_RELEASE_ASSERT(false, "gmx_sum_qgrid_dd() should not be called without MPI");
242 #endif // GMX_MPI
246 int copy_pmegrid_to_fftgrid(const gmx_pme_t *pme, const real *pmegrid, real *fftgrid, int grid_index)
248 ivec local_fft_ndata, local_fft_offset, local_fft_size;
249 ivec local_pme_size;
250 int ix, iy, iz;
251 int pmeidx, fftidx;
253 /* Dimensions should be identical for A/B grid, so we just use A here */
254 gmx_parallel_3dfft_real_limits(pme->pfft_setup[grid_index],
255 local_fft_ndata,
256 local_fft_offset,
257 local_fft_size);
259 local_pme_size[0] = pme->pmegrid_nx;
260 local_pme_size[1] = pme->pmegrid_ny;
261 local_pme_size[2] = pme->pmegrid_nz;
263 /* The fftgrid is always 'justified' to the lower-left corner of the PME grid,
264 the offset is identical, and the PME grid always has more data (due to overlap)
267 #ifdef DEBUG_PME
268 FILE *fp, *fp2;
269 char fn[STRLEN];
270 real val;
271 sprintf(fn, "pmegrid%d.pdb", pme->nodeid);
272 fp = gmx_ffopen(fn, "w");
273 sprintf(fn, "pmegrid%d.txt", pme->nodeid);
274 fp2 = gmx_ffopen(fn, "w");
275 #endif
277 for (ix = 0; ix < local_fft_ndata[XX]; ix++)
279 for (iy = 0; iy < local_fft_ndata[YY]; iy++)
281 for (iz = 0; iz < local_fft_ndata[ZZ]; iz++)
283 pmeidx = ix*(local_pme_size[YY]*local_pme_size[ZZ])+iy*(local_pme_size[ZZ])+iz;
284 fftidx = ix*(local_fft_size[YY]*local_fft_size[ZZ])+iy*(local_fft_size[ZZ])+iz;
285 fftgrid[fftidx] = pmegrid[pmeidx];
286 #ifdef DEBUG_PME
287 val = 100*pmegrid[pmeidx];
288 if (pmegrid[pmeidx] != 0)
290 gmx_fprintf_pdb_atomline(fp, epdbATOM, pmeidx, "CA", ' ', "GLY", ' ', pmeidx, ' ',
291 5.0*ix, 5.0*iy, 5.0*iz, 1.0, val, "");
293 if (pmegrid[pmeidx] != 0)
295 fprintf(fp2, "%-12s %5d %5d %5d %12.5e\n",
296 "qgrid",
297 pme->pmegrid_start_ix + ix,
298 pme->pmegrid_start_iy + iy,
299 pme->pmegrid_start_iz + iz,
300 pmegrid[pmeidx]);
302 #endif
306 #ifdef DEBUG_PME
307 gmx_ffclose(fp);
308 gmx_ffclose(fp2);
309 #endif
311 return 0;
315 #ifdef PME_TIME_THREADS
316 static gmx_cycles_t omp_cyc_start()
318 return gmx_cycles_read();
321 static gmx_cycles_t omp_cyc_end(gmx_cycles_t c)
323 return gmx_cycles_read() - c;
325 #endif
328 int copy_fftgrid_to_pmegrid(struct gmx_pme_t *pme, const real *fftgrid, real *pmegrid, int grid_index,
329 int nthread, int thread)
331 ivec local_fft_ndata, local_fft_offset, local_fft_size;
332 ivec local_pme_size;
333 int ixy0, ixy1, ixy, ix, iy, iz;
334 int pmeidx, fftidx;
335 #ifdef PME_TIME_THREADS
336 gmx_cycles_t c1;
337 static double cs1 = 0;
338 static int cnt = 0;
339 #endif
341 #ifdef PME_TIME_THREADS
342 c1 = omp_cyc_start();
343 #endif
344 /* Dimensions should be identical for A/B grid, so we just use A here */
345 gmx_parallel_3dfft_real_limits(pme->pfft_setup[grid_index],
346 local_fft_ndata,
347 local_fft_offset,
348 local_fft_size);
350 local_pme_size[0] = pme->pmegrid_nx;
351 local_pme_size[1] = pme->pmegrid_ny;
352 local_pme_size[2] = pme->pmegrid_nz;
354 /* The fftgrid is always 'justified' to the lower-left corner of the PME grid,
355 the offset is identical, and the PME grid always has more data (due to overlap)
357 ixy0 = ((thread )*local_fft_ndata[XX]*local_fft_ndata[YY])/nthread;
358 ixy1 = ((thread+1)*local_fft_ndata[XX]*local_fft_ndata[YY])/nthread;
360 for (ixy = ixy0; ixy < ixy1; ixy++)
362 ix = ixy/local_fft_ndata[YY];
363 iy = ixy - ix*local_fft_ndata[YY];
365 pmeidx = (ix*local_pme_size[YY] + iy)*local_pme_size[ZZ];
366 fftidx = (ix*local_fft_size[YY] + iy)*local_fft_size[ZZ];
367 for (iz = 0; iz < local_fft_ndata[ZZ]; iz++)
369 pmegrid[pmeidx+iz] = fftgrid[fftidx+iz];
373 #ifdef PME_TIME_THREADS
374 c1 = omp_cyc_end(c1);
375 cs1 += (double)c1;
376 cnt++;
377 if (cnt % 20 == 0)
379 printf("copy %.2f\n", cs1*1e-9);
381 #endif
383 return 0;
387 void wrap_periodic_pmegrid(const gmx_pme_t *pme, real *pmegrid)
389 int nx, ny, nz, pny, pnz, ny_x, overlap, ix, iy, iz;
391 nx = pme->nkx;
392 ny = pme->nky;
393 nz = pme->nkz;
395 pny = pme->pmegrid_ny;
396 pnz = pme->pmegrid_nz;
398 overlap = pme->pme_order - 1;
400 /* Add periodic overlap in z */
401 for (ix = 0; ix < pme->pmegrid_nx; ix++)
403 for (iy = 0; iy < pme->pmegrid_ny; iy++)
405 for (iz = 0; iz < overlap; iz++)
407 pmegrid[(ix*pny+iy)*pnz+iz] +=
408 pmegrid[(ix*pny+iy)*pnz+nz+iz];
413 if (pme->nnodes_minor == 1)
415 for (ix = 0; ix < pme->pmegrid_nx; ix++)
417 for (iy = 0; iy < overlap; iy++)
419 for (iz = 0; iz < nz; iz++)
421 pmegrid[(ix*pny+iy)*pnz+iz] +=
422 pmegrid[(ix*pny+ny+iy)*pnz+iz];
428 if (pme->nnodes_major == 1)
430 ny_x = (pme->nnodes_minor == 1 ? ny : pme->pmegrid_ny);
432 for (ix = 0; ix < overlap; ix++)
434 for (iy = 0; iy < ny_x; iy++)
436 for (iz = 0; iz < nz; iz++)
438 pmegrid[(ix*pny+iy)*pnz+iz] +=
439 pmegrid[((nx+ix)*pny+iy)*pnz+iz];
447 void unwrap_periodic_pmegrid(struct gmx_pme_t *pme, real *pmegrid)
449 int nx, ny, nz, pny, pnz, ny_x, overlap, ix;
451 nx = pme->nkx;
452 ny = pme->nky;
453 nz = pme->nkz;
455 pny = pme->pmegrid_ny;
456 pnz = pme->pmegrid_nz;
458 overlap = pme->pme_order - 1;
460 if (pme->nnodes_major == 1)
462 ny_x = (pme->nnodes_minor == 1 ? ny : pme->pmegrid_ny);
464 for (ix = 0; ix < overlap; ix++)
466 int iy, iz;
468 for (iy = 0; iy < ny_x; iy++)
470 for (iz = 0; iz < nz; iz++)
472 pmegrid[((nx+ix)*pny+iy)*pnz+iz] =
473 pmegrid[(ix*pny+iy)*pnz+iz];
479 if (pme->nnodes_minor == 1)
481 #pragma omp parallel for num_threads(pme->nthread) schedule(static)
482 for (ix = 0; ix < pme->pmegrid_nx; ix++)
484 // Trivial OpenMP region that does not throw, no need for try/catch
485 int iy, iz;
487 for (iy = 0; iy < overlap; iy++)
489 for (iz = 0; iz < nz; iz++)
491 pmegrid[(ix*pny+ny+iy)*pnz+iz] =
492 pmegrid[(ix*pny+iy)*pnz+iz];
498 /* Copy periodic overlap in z */
499 #pragma omp parallel for num_threads(pme->nthread) schedule(static)
500 for (ix = 0; ix < pme->pmegrid_nx; ix++)
502 // Trivial OpenMP region that does not throw, no need for try/catch
503 int iy, iz;
505 for (iy = 0; iy < pme->pmegrid_ny; iy++)
507 for (iz = 0; iz < overlap; iz++)
509 pmegrid[(ix*pny+iy)*pnz+nz+iz] =
510 pmegrid[(ix*pny+iy)*pnz+iz];
516 void set_grid_alignment(int gmx_unused *pmegrid_nz, int gmx_unused pme_order)
518 #ifdef PME_SIMD4_SPREAD_GATHER
519 if (pme_order == 5
520 #if !PME_4NSIMD_GATHER
521 || pme_order == 4
522 #endif
525 /* Round nz up to a multiple of 4 to ensure alignment */
526 *pmegrid_nz = ((*pmegrid_nz + 3) & ~3);
528 #endif
531 static void set_gridsize_alignment(int gmx_unused *gridsize, int gmx_unused pme_order)
533 #ifdef PME_SIMD4_SPREAD_GATHER
534 #if !PME_4NSIMD_GATHER
535 if (pme_order == 4)
537 /* Add extra elements to ensured aligned operations do not go
538 * beyond the allocated grid size.
539 * Note that for pme_order=5, the pme grid z-size alignment
540 * ensures that we will not go beyond the grid size.
542 *gridsize += 4;
544 #endif
545 #endif
548 void pmegrid_init(pmegrid_t *grid,
549 int cx, int cy, int cz,
550 int x0, int y0, int z0,
551 int x1, int y1, int z1,
552 gmx_bool set_alignment,
553 int pme_order,
554 real *ptr)
556 int nz, gridsize;
558 grid->ci[XX] = cx;
559 grid->ci[YY] = cy;
560 grid->ci[ZZ] = cz;
561 grid->offset[XX] = x0;
562 grid->offset[YY] = y0;
563 grid->offset[ZZ] = z0;
564 grid->n[XX] = x1 - x0 + pme_order - 1;
565 grid->n[YY] = y1 - y0 + pme_order - 1;
566 grid->n[ZZ] = z1 - z0 + pme_order - 1;
567 copy_ivec(grid->n, grid->s);
569 nz = grid->s[ZZ];
570 set_grid_alignment(&nz, pme_order);
571 if (set_alignment)
573 grid->s[ZZ] = nz;
575 else if (nz != grid->s[ZZ])
577 gmx_incons("pmegrid_init call with an unaligned z size");
580 grid->order = pme_order;
581 if (ptr == nullptr)
583 gridsize = grid->s[XX]*grid->s[YY]*grid->s[ZZ];
584 set_gridsize_alignment(&gridsize, pme_order);
585 snew_aligned(grid->grid, gridsize, SIMD4_ALIGNMENT);
587 else
589 grid->grid = ptr;
593 static int div_round_up(int enumerator, int denominator)
595 return (enumerator + denominator - 1)/denominator;
598 static void make_subgrid_division(const ivec n, int ovl, int nthread,
599 ivec nsub)
601 int gsize_opt, gsize;
602 int nsx, nsy, nsz;
603 char *env;
605 gsize_opt = -1;
606 for (nsx = 1; nsx <= nthread; nsx++)
608 if (nthread % nsx == 0)
610 for (nsy = 1; nsy <= nthread; nsy++)
612 if (nsx*nsy <= nthread && nthread % (nsx*nsy) == 0)
614 nsz = nthread/(nsx*nsy);
616 /* Determine the number of grid points per thread */
617 gsize =
618 (div_round_up(n[XX], nsx) + ovl)*
619 (div_round_up(n[YY], nsy) + ovl)*
620 (div_round_up(n[ZZ], nsz) + ovl);
622 /* Minimize the number of grids points per thread
623 * and, secondarily, the number of cuts in minor dimensions.
625 if (gsize_opt == -1 ||
626 gsize < gsize_opt ||
627 (gsize == gsize_opt &&
628 (nsz < nsub[ZZ] || (nsz == nsub[ZZ] && nsy < nsub[YY]))))
630 nsub[XX] = nsx;
631 nsub[YY] = nsy;
632 nsub[ZZ] = nsz;
633 gsize_opt = gsize;
640 env = getenv("GMX_PME_THREAD_DIVISION");
641 if (env != nullptr)
643 sscanf(env, "%20d %20d %20d", &nsub[XX], &nsub[YY], &nsub[ZZ]);
646 if (nsub[XX]*nsub[YY]*nsub[ZZ] != nthread)
648 gmx_fatal(FARGS, "PME grid thread division (%d x %d x %d) does not match the total number of threads (%d)", nsub[XX], nsub[YY], nsub[ZZ], nthread);
652 void pmegrids_init(pmegrids_t *grids,
653 int nx, int ny, int nz, int nz_base,
654 int pme_order,
655 gmx_bool bUseThreads,
656 int nthread,
657 int overlap_x,
658 int overlap_y)
660 ivec n, n_base;
661 int t, x, y, z, d, i, tfac;
662 int max_comm_lines = -1;
664 n[XX] = nx - (pme_order - 1);
665 n[YY] = ny - (pme_order - 1);
666 n[ZZ] = nz - (pme_order - 1);
668 copy_ivec(n, n_base);
669 n_base[ZZ] = nz_base;
671 pmegrid_init(&grids->grid, 0, 0, 0, 0, 0, 0, n[XX], n[YY], n[ZZ], FALSE, pme_order,
672 nullptr);
674 grids->nthread = nthread;
676 make_subgrid_division(n_base, pme_order-1, grids->nthread, grids->nc);
678 if (bUseThreads)
680 ivec nst;
681 int gridsize;
683 for (d = 0; d < DIM; d++)
685 nst[d] = div_round_up(n[d], grids->nc[d]) + pme_order - 1;
687 set_grid_alignment(&nst[ZZ], pme_order);
689 if (debug)
691 fprintf(debug, "pmegrid thread local division: %d x %d x %d\n",
692 grids->nc[XX], grids->nc[YY], grids->nc[ZZ]);
693 fprintf(debug, "pmegrid %d %d %d max thread pmegrid %d %d %d\n",
694 nx, ny, nz,
695 nst[XX], nst[YY], nst[ZZ]);
698 snew(grids->grid_th, grids->nthread);
699 t = 0;
700 gridsize = nst[XX]*nst[YY]*nst[ZZ];
701 set_gridsize_alignment(&gridsize, pme_order);
702 snew_aligned(grids->grid_all,
703 grids->nthread*gridsize+(grids->nthread+1)*GMX_CACHE_SEP,
704 SIMD4_ALIGNMENT);
706 for (x = 0; x < grids->nc[XX]; x++)
708 for (y = 0; y < grids->nc[YY]; y++)
710 for (z = 0; z < grids->nc[ZZ]; z++)
712 pmegrid_init(&grids->grid_th[t],
713 x, y, z,
714 (n[XX]*(x ))/grids->nc[XX],
715 (n[YY]*(y ))/grids->nc[YY],
716 (n[ZZ]*(z ))/grids->nc[ZZ],
717 (n[XX]*(x+1))/grids->nc[XX],
718 (n[YY]*(y+1))/grids->nc[YY],
719 (n[ZZ]*(z+1))/grids->nc[ZZ],
720 TRUE,
721 pme_order,
722 grids->grid_all+GMX_CACHE_SEP+t*(gridsize+GMX_CACHE_SEP));
723 t++;
728 else
730 grids->grid_th = nullptr;
733 tfac = 1;
734 for (d = DIM-1; d >= 0; d--)
736 snew(grids->g2t[d], n[d]);
737 t = 0;
738 for (i = 0; i < n[d]; i++)
740 /* The second check should match the parameters
741 * of the pmegrid_init call above.
743 while (t + 1 < grids->nc[d] && i >= (n[d]*(t+1))/grids->nc[d])
745 t++;
747 grids->g2t[d][i] = t*tfac;
750 tfac *= grids->nc[d];
752 switch (d)
754 case XX: max_comm_lines = overlap_x; break;
755 case YY: max_comm_lines = overlap_y; break;
756 case ZZ: max_comm_lines = pme_order - 1; break;
758 grids->nthread_comm[d] = 0;
759 while ((n[d]*grids->nthread_comm[d])/grids->nc[d] < max_comm_lines &&
760 grids->nthread_comm[d] < grids->nc[d])
762 grids->nthread_comm[d]++;
764 if (debug != nullptr)
766 fprintf(debug, "pmegrid thread grid communication range in %c: %d\n",
767 'x'+d, grids->nthread_comm[d]);
769 /* It should be possible to make grids->nthread_comm[d]==grids->nc[d]
770 * work, but this is not a problematic restriction.
772 if (grids->nc[d] > 1 && grids->nthread_comm[d] > grids->nc[d])
774 gmx_fatal(FARGS, "Too many threads for PME (%d) compared to the number of grid lines, reduce the number of threads doing PME", grids->nthread);
779 void pmegrids_destroy(pmegrids_t *grids)
781 if (grids->grid.grid != nullptr)
783 sfree_aligned(grids->grid.grid);
785 if (grids->nthread > 0)
787 sfree_aligned(grids->grid_all);
788 sfree(grids->grid_th);
790 for (int d = 0; d < DIM; d++)
792 sfree(grids->g2t[d]);
797 void
798 make_gridindex_to_localindex(int n, int local_start, int local_range,
799 int **global_to_local,
800 real **fraction_shift)
802 /* Here we construct array for looking up the grid line index and
803 * fraction for particles. This is done because it is slighlty
804 * faster than the modulo operation and to because we need to take
805 * care of rounding issues, see below.
806 * We use an array size of c_pmeNeighborUnitcellCount times the grid size
807 * to allow for particles to be out of the triclinic unit-cell.
809 const int arraySize = c_pmeNeighborUnitcellCount * n;
810 int * gtl;
811 real * fsh;
813 snew(gtl, arraySize);
814 snew(fsh, arraySize);
816 for (int i = 0; i < arraySize; i++)
818 /* Transform global grid index to the local grid index.
819 * Our local grid always runs from 0 to local_range-1.
821 gtl[i] = (i - local_start + n) % n;
822 /* For coordinates that fall within the local grid the fraction
823 * is correct, we don't need to shift it.
825 fsh[i] = 0;
826 /* Check if we are using domain decomposition for PME */
827 if (local_range < n)
829 /* Due to rounding issues i could be 1 beyond the lower or
830 * upper boundary of the local grid. Correct the index for this.
831 * If we shift the index, we need to shift the fraction by
832 * the same amount in the other direction to not affect
833 * the weights.
834 * Note that due to this shifting the weights at the end of
835 * the spline might change, but that will only involve values
836 * between zero and values close to the precision of a real,
837 * which is anyhow the accuracy of the whole mesh calculation.
839 if (gtl[i] == n - 1)
841 /* When this i is used, we should round the local index up */
842 gtl[i] = 0;
843 fsh[i] = -1;
845 else if (gtl[i] == local_range && local_range > 0)
847 /* When this i is used, we should round the local index down */
848 gtl[i] = local_range - 1;
849 fsh[i] = 1;
854 *global_to_local = gtl;
855 *fraction_shift = fsh;
858 void reuse_pmegrids(const pmegrids_t *oldgrid, pmegrids_t *newgrid)
860 int d, t;
862 for (d = 0; d < DIM; d++)
864 if (newgrid->grid.n[d] > oldgrid->grid.n[d])
866 return;
870 sfree_aligned(newgrid->grid.grid);
871 newgrid->grid.grid = oldgrid->grid.grid;
873 if (newgrid->grid_th != nullptr && newgrid->nthread == oldgrid->nthread)
875 sfree_aligned(newgrid->grid_all);
876 newgrid->grid_all = oldgrid->grid_all;
877 for (t = 0; t < newgrid->nthread; t++)
879 newgrid->grid_th[t].grid = oldgrid->grid_th[t].grid;