2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017 The GROMACS development team.
7 * Copyright (c) 2018,2019,2020, by the GROMACS development team, led by
8 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9 * and including many others, as listed in the AUTHORS file in the
10 * top-level source directory and at http://www.gromacs.org.
12 * GROMACS is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public License
14 * as published by the Free Software Foundation; either version 2.1
15 * of the License, or (at your option) any later version.
17 * GROMACS is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with GROMACS; if not, see
24 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 * If you want to redistribute modifications to GROMACS, please
28 * consider that scientific software is very special. Version
29 * control is crucial - bugs must be traceable. We will be happy to
30 * consider code for inclusion in the official distribution, but
31 * derived work must not be called official GROMACS. Details are found
32 * in the README & COPYING files - if they are missing, get the
33 * official version at http://www.gromacs.org.
35 * To help us fund GROMACS development, we humbly ask that you cite
36 * the research papers on the package. Check out http://www.gromacs.org.
40 * \brief This file defines integrators for energy minimization
42 * \author Berk Hess <hess@kth.se>
43 * \author Erik Lindahl <erik@kth.se>
44 * \ingroup module_mdrun
57 #include "gromacs/commandline/filenm.h"
58 #include "gromacs/domdec/collect.h"
59 #include "gromacs/domdec/dlbtiming.h"
60 #include "gromacs/domdec/domdec.h"
61 #include "gromacs/domdec/domdec_struct.h"
62 #include "gromacs/domdec/mdsetup.h"
63 #include "gromacs/domdec/partition.h"
64 #include "gromacs/ewald/pme_pp.h"
65 #include "gromacs/fileio/confio.h"
66 #include "gromacs/fileio/mtxio.h"
67 #include "gromacs/gmxlib/network.h"
68 #include "gromacs/gmxlib/nrnb.h"
69 #include "gromacs/imd/imd.h"
70 #include "gromacs/linearalgebra/sparsematrix.h"
71 #include "gromacs/listed_forces/listed_forces.h"
72 #include "gromacs/math/functions.h"
73 #include "gromacs/math/vec.h"
74 #include "gromacs/mdlib/constr.h"
75 #include "gromacs/mdlib/coupling.h"
76 #include "gromacs/mdlib/dispersioncorrection.h"
77 #include "gromacs/mdlib/ebin.h"
78 #include "gromacs/mdlib/enerdata_utils.h"
79 #include "gromacs/mdlib/energyoutput.h"
80 #include "gromacs/mdlib/force.h"
81 #include "gromacs/mdlib/force_flags.h"
82 #include "gromacs/mdlib/forcerec.h"
83 #include "gromacs/mdlib/gmx_omp_nthreads.h"
84 #include "gromacs/mdlib/md_support.h"
85 #include "gromacs/mdlib/mdatoms.h"
86 #include "gromacs/mdlib/stat.h"
87 #include "gromacs/mdlib/tgroup.h"
88 #include "gromacs/mdlib/trajectory_writing.h"
89 #include "gromacs/mdlib/update.h"
90 #include "gromacs/mdlib/vsite.h"
91 #include "gromacs/mdrunutility/handlerestart.h"
92 #include "gromacs/mdrunutility/printtime.h"
93 #include "gromacs/mdtypes/checkpointdata.h"
94 #include "gromacs/mdtypes/commrec.h"
95 #include "gromacs/mdtypes/forcebuffers.h"
96 #include "gromacs/mdtypes/forcerec.h"
97 #include "gromacs/mdtypes/inputrec.h"
98 #include "gromacs/mdtypes/interaction_const.h"
99 #include "gromacs/mdtypes/md_enums.h"
100 #include "gromacs/mdtypes/mdatom.h"
101 #include "gromacs/mdtypes/mdrunoptions.h"
102 #include "gromacs/mdtypes/state.h"
103 #include "gromacs/pbcutil/pbc.h"
104 #include "gromacs/timing/wallcycle.h"
105 #include "gromacs/timing/walltime_accounting.h"
106 #include "gromacs/topology/mtop_util.h"
107 #include "gromacs/topology/topology.h"
108 #include "gromacs/utility/cstringutil.h"
109 #include "gromacs/utility/exceptions.h"
110 #include "gromacs/utility/fatalerror.h"
111 #include "gromacs/utility/logger.h"
112 #include "gromacs/utility/smalloc.h"
114 #include "legacysimulator.h"
118 using gmx::MdrunScheduleWorkload
;
120 using gmx::VirtualSitesHandler
;
122 //! Utility structure for manipulating states during EM
123 typedef struct em_state
125 //! Copy of the global state
131 //! Norm of the force
139 //! Print the EM starting conditions
140 static void print_em_start(FILE* fplog
,
142 gmx_walltime_accounting_t walltime_accounting
,
143 gmx_wallcycle_t wcycle
,
146 walltime_accounting_start_time(walltime_accounting
);
147 wallcycle_start(wcycle
, ewcRUN
);
148 print_start(fplog
, cr
, walltime_accounting
, name
);
151 //! Stop counting time for EM
152 static void em_time_end(gmx_walltime_accounting_t walltime_accounting
, gmx_wallcycle_t wcycle
)
154 wallcycle_stop(wcycle
, ewcRUN
);
156 walltime_accounting_end_time(walltime_accounting
);
159 //! Printing a log file and console header
160 static void sp_header(FILE* out
, const char* minimizer
, real ftol
, int nsteps
)
163 fprintf(out
, "%s:\n", minimizer
);
164 fprintf(out
, " Tolerance (Fmax) = %12.5e\n", ftol
);
165 fprintf(out
, " Number of steps = %12d\n", nsteps
);
168 //! Print warning message
169 static void warn_step(FILE* fp
, real ftol
, real fmax
, gmx_bool bLastStep
, gmx_bool bConstrain
)
171 constexpr bool realIsDouble
= GMX_DOUBLE
;
174 if (!std::isfinite(fmax
))
177 "\nEnergy minimization has stopped because the force "
178 "on at least one atom is not finite. This usually means "
179 "atoms are overlapping. Modify the input coordinates to "
180 "remove atom overlap or use soft-core potentials with "
181 "the free energy code to avoid infinite forces.\n%s",
182 !realIsDouble
? "You could also be lucky that switching to double precision "
183 "is sufficient to obtain finite forces.\n"
189 "\nEnergy minimization reached the maximum number "
190 "of steps before the forces reached the requested "
191 "precision Fmax < %g.\n",
197 "\nEnergy minimization has stopped, but the forces have "
198 "not converged to the requested precision Fmax < %g (which "
199 "may not be possible for your system). It stopped "
200 "because the algorithm tried to make a new step whose size "
201 "was too small, or there was no change in the energy since "
202 "last step. Either way, we regard the minimization as "
203 "converged to within the available machine precision, "
204 "given your starting configuration and EM parameters.\n%s%s",
206 !realIsDouble
? "\nDouble precision normally gives you higher accuracy, but "
207 "this is often not needed for preparing to run molecular "
210 bConstrain
? "You might need to increase your constraint accuracy, or turn\n"
211 "off constraints altogether (set constraints = none in mdp file)\n"
215 fputs(wrap_lines(buffer
, 78, 0, FALSE
), stderr
);
216 fputs(wrap_lines(buffer
, 78, 0, FALSE
), fp
);
219 //! Print message about convergence of the EM
220 static void print_converged(FILE* fp
,
226 const em_state_t
* ems
,
229 char buf
[STEPSTRSIZE
];
233 fprintf(fp
, "\n%s converged to Fmax < %g in %s steps\n", alg
, ftol
, gmx_step_str(count
, buf
));
235 else if (count
< nsteps
)
238 "\n%s converged to machine precision in %s steps,\n"
239 "but did not reach the requested Fmax < %g.\n",
240 alg
, gmx_step_str(count
, buf
), ftol
);
244 fprintf(fp
, "\n%s did not converge to Fmax < %g in %s steps.\n", alg
, ftol
,
245 gmx_step_str(count
, buf
));
249 fprintf(fp
, "Potential Energy = %21.14e\n", ems
->epot
);
250 fprintf(fp
, "Maximum force = %21.14e on atom %d\n", ems
->fmax
, ems
->a_fmax
+ 1);
251 fprintf(fp
, "Norm of force = %21.14e\n", ems
->fnorm
/ sqrtNumAtoms
);
253 fprintf(fp
, "Potential Energy = %14.7e\n", ems
->epot
);
254 fprintf(fp
, "Maximum force = %14.7e on atom %d\n", ems
->fmax
, ems
->a_fmax
+ 1);
255 fprintf(fp
, "Norm of force = %14.7e\n", ems
->fnorm
/ sqrtNumAtoms
);
259 //! Compute the norm and max of the force array in parallel
260 static void get_f_norm_max(const t_commrec
* cr
,
263 gmx::ArrayRef
<const gmx::RVec
> f
,
270 int la_max
, a_max
, start
, end
, i
, m
, gf
;
272 /* This routine finds the largest force and returns it.
273 * On parallel machines the global max is taken.
279 end
= mdatoms
->homenr
;
280 if (mdatoms
->cFREEZE
)
282 for (i
= start
; i
< end
; i
++)
284 gf
= mdatoms
->cFREEZE
[i
];
286 for (m
= 0; m
< DIM
; m
++)
288 if (!opts
->nFreeze
[gf
][m
])
290 fam
+= gmx::square(f
[i
][m
]);
303 for (i
= start
; i
< end
; i
++)
315 if (la_max
>= 0 && DOMAINDECOMP(cr
))
317 a_max
= cr
->dd
->globalAtomIndices
[la_max
];
325 snew(sum
, 2 * cr
->nnodes
+ 1);
326 sum
[2 * cr
->nodeid
] = fmax2
;
327 sum
[2 * cr
->nodeid
+ 1] = a_max
;
328 sum
[2 * cr
->nnodes
] = fnorm2
;
329 gmx_sumd(2 * cr
->nnodes
+ 1, sum
, cr
);
330 fnorm2
= sum
[2 * cr
->nnodes
];
331 /* Determine the global maximum */
332 for (i
= 0; i
< cr
->nnodes
; i
++)
334 if (sum
[2 * i
] > fmax2
)
337 a_max
= gmx::roundToInt(sum
[2 * i
+ 1]);
345 *fnorm
= sqrt(fnorm2
);
357 //! Compute the norm of the force
358 static void get_state_f_norm_max(const t_commrec
* cr
, t_grpopts
* opts
, t_mdatoms
* mdatoms
, em_state_t
* ems
)
360 get_f_norm_max(cr
, opts
, mdatoms
, ems
->f
.view().force(), &ems
->fnorm
, &ems
->fmax
, &ems
->a_fmax
);
363 //! Initialize the energy minimization
364 static void init_em(FILE* fplog
,
365 const gmx::MDLogger
& mdlog
,
369 gmx::ImdSession
* imdSession
,
371 t_state
* state_global
,
372 const gmx_mtop_t
* top_global
,
377 gmx::MDAtoms
* mdAtoms
,
378 gmx_global_stat_t
* gstat
,
379 VirtualSitesHandler
* vsite
,
380 gmx::Constraints
* constr
,
381 gmx_shellfc_t
** shellfc
)
387 fprintf(fplog
, "Initiating %s\n", title
);
392 state_global
->ngtc
= 0;
394 int* fep_state
= MASTER(cr
) ? &state_global
->fep_state
: nullptr;
395 gmx::ArrayRef
<real
> lambda
= MASTER(cr
) ? state_global
->lambda
: gmx::ArrayRef
<real
>();
396 initialize_lambdas(fplog
, *ir
, MASTER(cr
), fep_state
, lambda
);
400 GMX_ASSERT(shellfc
!= nullptr, "With NM we always support shells");
403 init_shell_flexcon(stdout
, top_global
, constr
? constr
->numFlexibleConstraints() : 0,
404 ir
->nstcalcenergy
, DOMAINDECOMP(cr
), thisRankHasDuty(cr
, DUTY_PME
));
408 GMX_ASSERT(EI_ENERGY_MINIMIZATION(ir
->eI
),
409 "This else currently only handles energy minimizers, consider if your algorithm "
410 "needs shell/flexible-constraint support");
412 /* With energy minimization, shells and flexible constraints are
413 * automatically minimized when treated like normal DOFS.
415 if (shellfc
!= nullptr)
421 if (DOMAINDECOMP(cr
))
423 dd_init_local_state(cr
->dd
, state_global
, &ems
->s
);
425 /* Distribute the charge groups over the nodes from the master node */
426 dd_partition_system(fplog
, mdlog
, ir
->init_step
, cr
, TRUE
, 1, state_global
, *top_global
, ir
,
427 imdSession
, pull_work
, &ems
->s
, &ems
->f
, mdAtoms
, top
, fr
, vsite
,
428 constr
, nrnb
, nullptr, FALSE
);
429 dd_store_state(cr
->dd
, &ems
->s
);
433 state_change_natoms(state_global
, state_global
->natoms
);
434 /* Just copy the state */
435 ems
->s
= *state_global
;
436 state_change_natoms(&ems
->s
, ems
->s
.natoms
);
438 mdAlgorithmsSetupAtomData(cr
, ir
, *top_global
, top
, fr
, &ems
->f
, mdAtoms
, constr
, vsite
,
439 shellfc
? *shellfc
: nullptr);
442 update_mdatoms(mdAtoms
->mdatoms(), ems
->s
.lambda
[efptMASS
]);
446 // TODO how should this cross-module support dependency be managed?
447 if (ir
->eConstrAlg
== econtSHAKE
&& gmx_mtop_ftype_count(top_global
, F_CONSTR
) > 0)
449 gmx_fatal(FARGS
, "Can not do energy minimization with %s, use %s\n",
450 econstr_names
[econtSHAKE
], econstr_names
[econtLINCS
]);
453 if (!ir
->bContinuation
)
455 /* Constrain the starting coordinates */
456 bool needsLogging
= true;
457 bool computeEnergy
= true;
458 bool computeVirial
= false;
460 constr
->apply(needsLogging
, computeEnergy
, -1, 0, 1.0, ems
->s
.x
.arrayRefWithPadding(),
461 ems
->s
.x
.arrayRefWithPadding(), ArrayRef
<RVec
>(), ems
->s
.box
,
462 ems
->s
.lambda
[efptFEP
], &dvdl_constr
, gmx::ArrayRefWithPadding
<RVec
>(),
463 computeVirial
, nullptr, gmx::ConstraintVariable::Positions
);
469 *gstat
= global_stat_init(ir
);
476 calc_shifts(ems
->s
.box
, fr
->shift_vec
);
479 //! Finalize the minimization
480 static void finish_em(const t_commrec
* cr
,
482 gmx_walltime_accounting_t walltime_accounting
,
483 gmx_wallcycle_t wcycle
)
485 if (!thisRankHasDuty(cr
, DUTY_PME
))
487 /* Tell the PME only node to finish */
488 gmx_pme_send_finish(cr
);
493 em_time_end(walltime_accounting
, wcycle
);
496 //! Swap two different EM states during minimization
497 static void swap_em_state(em_state_t
** ems1
, em_state_t
** ems2
)
506 //! Save the EM trajectory
507 static void write_em_traj(FILE* fplog
,
513 const gmx_mtop_t
* top_global
,
517 t_state
* state_global
,
518 ObservablesHistory
* observablesHistory
)
524 mdof_flags
|= MDOF_X
;
528 mdof_flags
|= MDOF_F
;
531 /* If we want IMD output, set appropriate MDOF flag */
534 mdof_flags
|= MDOF_IMD
;
537 gmx::WriteCheckpointDataHolder checkpointDataHolder
;
538 mdoutf_write_to_trajectory_files(fplog
, cr
, outf
, mdof_flags
, top_global
->natoms
, step
,
539 static_cast<double>(step
), &state
->s
, state_global
,
540 observablesHistory
, state
->f
.view().force(), &checkpointDataHolder
);
542 if (confout
!= nullptr)
544 if (DOMAINDECOMP(cr
))
546 /* If bX=true, x was collected to state_global in the call above */
549 auto globalXRef
= MASTER(cr
) ? state_global
->x
: gmx::ArrayRef
<gmx::RVec
>();
550 dd_collect_vec(cr
->dd
, state
->s
.ddp_count
, state
->s
.ddp_count_cg_gl
, state
->s
.cg_gl
,
551 state
->s
.x
, globalXRef
);
556 /* Copy the local state pointer */
557 state_global
= &state
->s
;
562 if (ir
->pbcType
!= PbcType::No
&& !ir
->bPeriodicMols
&& DOMAINDECOMP(cr
))
564 /* Make molecules whole only for confout writing */
565 do_pbc_mtop(ir
->pbcType
, state
->s
.box
, top_global
, state_global
->x
.rvec_array());
568 write_sto_conf_mtop(confout
, *top_global
->name
, top_global
,
569 state_global
->x
.rvec_array(), nullptr, ir
->pbcType
, state
->s
.box
);
574 //! \brief Do one minimization step
576 // \returns true when the step succeeded, false when a constraint error occurred
577 static bool do_em_step(const t_commrec
* cr
,
582 gmx::ArrayRefWithPadding
<const gmx::RVec
> force
,
584 gmx::Constraints
* constr
,
591 int nthreads gmx_unused
;
593 bool validStep
= true;
598 if (DOMAINDECOMP(cr
) && s1
->ddp_count
!= cr
->dd
->ddp_count
)
600 gmx_incons("state mismatch in do_em_step");
603 s2
->flags
= s1
->flags
;
605 if (s2
->natoms
!= s1
->natoms
)
607 state_change_natoms(s2
, s1
->natoms
);
608 ems2
->f
.resize(s2
->natoms
);
610 if (DOMAINDECOMP(cr
) && s2
->cg_gl
.size() != s1
->cg_gl
.size())
612 s2
->cg_gl
.resize(s1
->cg_gl
.size());
615 copy_mat(s1
->box
, s2
->box
);
616 /* Copy free energy state */
617 s2
->lambda
= s1
->lambda
;
618 copy_mat(s1
->box
, s2
->box
);
623 nthreads
= gmx_omp_nthreads_get(emntUpdate
);
624 #pragma omp parallel num_threads(nthreads)
626 const rvec
* x1
= s1
->x
.rvec_array();
627 rvec
* x2
= s2
->x
.rvec_array();
628 const rvec
* f
= as_rvec_array(force
.unpaddedArrayRef().data());
631 #pragma omp for schedule(static) nowait
632 for (int i
= start
; i
< end
; i
++)
640 for (int m
= 0; m
< DIM
; m
++)
642 if (ir
->opts
.nFreeze
[gf
][m
])
648 x2
[i
][m
] = x1
[i
][m
] + a
* f
[i
][m
];
652 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
655 if (s2
->flags
& (1 << estCGP
))
657 /* Copy the CG p vector */
658 const rvec
* p1
= s1
->cg_p
.rvec_array();
659 rvec
* p2
= s2
->cg_p
.rvec_array();
660 #pragma omp for schedule(static) nowait
661 for (int i
= start
; i
< end
; i
++)
663 // Trivial OpenMP block that does not throw
664 copy_rvec(p1
[i
], p2
[i
]);
668 if (DOMAINDECOMP(cr
))
670 /* OpenMP does not supported unsigned loop variables */
671 #pragma omp for schedule(static) nowait
672 for (gmx::index i
= 0; i
< gmx::ssize(s2
->cg_gl
); i
++)
674 s2
->cg_gl
[i
] = s1
->cg_gl
[i
];
679 if (DOMAINDECOMP(cr
))
681 s2
->ddp_count
= s1
->ddp_count
;
682 s2
->ddp_count_cg_gl
= s1
->ddp_count_cg_gl
;
688 validStep
= constr
->apply(
689 TRUE
, TRUE
, count
, 0, 1.0, s1
->x
.arrayRefWithPadding(), s2
->x
.arrayRefWithPadding(),
690 ArrayRef
<RVec
>(), s2
->box
, s2
->lambda
[efptBONDED
], &dvdl_constr
,
691 gmx::ArrayRefWithPadding
<RVec
>(), false, nullptr, gmx::ConstraintVariable::Positions
);
695 /* This global reduction will affect performance at high
696 * parallelization, but we can not really avoid it.
697 * But usually EM is not run at high parallelization.
699 int reductionBuffer
= static_cast<int>(!validStep
);
700 gmx_sumi(1, &reductionBuffer
, cr
);
701 validStep
= (reductionBuffer
== 0);
704 // We should move this check to the different minimizers
705 if (!validStep
&& ir
->eI
!= eiSteep
)
708 "The coordinates could not be constrained. Minimizer '%s' can not handle "
709 "constraint failures, use minimizer '%s' before using '%s'.",
710 EI(ir
->eI
), EI(eiSteep
), EI(ir
->eI
));
717 //! Prepare EM for using domain decomposition parallellization
718 static void em_dd_partition_system(FILE* fplog
,
719 const gmx::MDLogger
& mdlog
,
722 const gmx_mtop_t
* top_global
,
724 gmx::ImdSession
* imdSession
,
728 gmx::MDAtoms
* mdAtoms
,
730 VirtualSitesHandler
* vsite
,
731 gmx::Constraints
* constr
,
733 gmx_wallcycle_t wcycle
)
735 /* Repartition the domain decomposition */
736 dd_partition_system(fplog
, mdlog
, step
, cr
, FALSE
, 1, nullptr, *top_global
, ir
, imdSession
, pull_work
,
737 &ems
->s
, &ems
->f
, mdAtoms
, top
, fr
, vsite
, constr
, nrnb
, wcycle
, FALSE
);
738 dd_store_state(cr
->dd
, &ems
->s
);
744 /*! \brief Class to handle the work of setting and doing an energy evaluation.
746 * This class is a mere aggregate of parameters to pass to evaluate an
747 * energy, so that future changes to names and types of them consume
748 * less time when refactoring other code.
750 * Aggregate initialization is used, for which the chief risk is that
751 * if a member is added at the end and not all initializer lists are
752 * updated, then the member will be value initialized, which will
753 * typically mean initialization to zero.
755 * Use a braced initializer list to construct one of these. */
756 class EnergyEvaluator
759 /*! \brief Evaluates an energy on the state in \c ems.
761 * \todo In practice, the same objects mu_tot, vir, and pres
762 * are always passed to this function, so we would rather have
763 * them as data members. However, their C-array types are
764 * unsuited for aggregate initialization. When the types
765 * improve, the call signature of this method can be reduced.
767 void run(em_state_t
* ems
, rvec mu_tot
, tensor vir
, tensor pres
, int64_t count
, gmx_bool bFirst
);
768 //! Handles logging (deprecated).
771 const gmx::MDLogger
& mdlog
;
772 //! Handles communication.
774 //! Coordinates multi-simulations.
775 const gmx_multisim_t
* ms
;
776 //! Holds the simulation topology.
777 const gmx_mtop_t
* top_global
;
778 //! Holds the domain topology.
780 //! User input options.
781 t_inputrec
* inputrec
;
782 //! The Interactive Molecular Dynamics session.
783 gmx::ImdSession
* imdSession
;
784 //! The pull work object.
786 //! Manages flop accounting.
788 //! Manages wall cycle accounting.
789 gmx_wallcycle_t wcycle
;
790 //! Coordinates global reduction.
791 gmx_global_stat_t gstat
;
792 //! Handles virtual sites.
793 VirtualSitesHandler
* vsite
;
794 //! Handles constraints.
795 gmx::Constraints
* constr
;
796 //! Per-atom data for this domain.
797 gmx::MDAtoms
* mdAtoms
;
798 //! Handles how to calculate the forces.
800 //! Schedule of force-calculation work each step for this task.
801 MdrunScheduleWorkload
* runScheduleWork
;
802 //! Stores the computed energies.
803 gmx_enerdata_t
* enerd
;
806 void EnergyEvaluator::run(em_state_t
* ems
, rvec mu_tot
, tensor vir
, tensor pres
, int64_t count
, gmx_bool bFirst
)
810 tensor force_vir
, shake_vir
, ekin
;
814 /* Set the time to the initial time, the time does not change during EM */
815 t
= inputrec
->init_t
;
817 if (bFirst
|| (DOMAINDECOMP(cr
) && ems
->s
.ddp_count
< cr
->dd
->ddp_count
))
819 /* This is the first state or an old state used before the last ns */
825 if (inputrec
->nstlist
> 0)
833 vsite
->construct(ems
->s
.x
, 1, {}, ems
->s
.box
);
836 if (DOMAINDECOMP(cr
) && bNS
)
838 /* Repartition the domain decomposition */
839 em_dd_partition_system(fplog
, mdlog
, count
, cr
, top_global
, inputrec
, imdSession
, pull_work
,
840 ems
, top
, mdAtoms
, fr
, vsite
, constr
, nrnb
, wcycle
);
843 /* Calc force & energy on new trial position */
844 /* do_force always puts the charge groups in the box and shifts again
845 * We do not unshift, so molecules are always whole in congrad.c
847 do_force(fplog
, cr
, ms
, inputrec
, nullptr, nullptr, imdSession
, pull_work
, count
, nrnb
, wcycle
,
848 top
, ems
->s
.box
, ems
->s
.x
.arrayRefWithPadding(), &ems
->s
.hist
, &ems
->f
.view(), force_vir
,
849 mdAtoms
->mdatoms(), enerd
, ems
->s
.lambda
, fr
, runScheduleWork
, vsite
, mu_tot
, t
, nullptr,
850 GMX_FORCE_STATECHANGED
| GMX_FORCE_ALLFORCES
| GMX_FORCE_VIRIAL
| GMX_FORCE_ENERGY
851 | (bNS
? GMX_FORCE_NS
: 0),
852 DDBalanceRegionHandler(cr
));
854 /* Clear the unused shake virial and pressure */
855 clear_mat(shake_vir
);
858 /* Communicate stuff when parallel */
859 if (PAR(cr
) && inputrec
->eI
!= eiNM
)
861 wallcycle_start(wcycle
, ewcMoveE
);
863 global_stat(gstat
, cr
, enerd
, force_vir
, shake_vir
, inputrec
, nullptr, nullptr, nullptr, 1,
864 &terminate
, nullptr, FALSE
, CGLO_ENERGY
| CGLO_PRESSURE
| CGLO_CONSTRAINT
);
866 wallcycle_stop(wcycle
, ewcMoveE
);
869 if (fr
->dispersionCorrection
)
871 /* Calculate long range corrections to pressure and energy */
872 const DispersionCorrection::Correction correction
=
873 fr
->dispersionCorrection
->calculate(ems
->s
.box
, ems
->s
.lambda
[efptVDW
]);
875 enerd
->term
[F_DISPCORR
] = correction
.energy
;
876 enerd
->term
[F_EPOT
] += correction
.energy
;
877 enerd
->term
[F_PRES
] += correction
.pressure
;
878 enerd
->term
[F_DVDL
] += correction
.dvdl
;
882 enerd
->term
[F_DISPCORR
] = 0;
885 ems
->epot
= enerd
->term
[F_EPOT
];
889 /* Project out the constraint components of the force */
890 bool needsLogging
= false;
891 bool computeEnergy
= false;
892 bool computeVirial
= true;
894 auto f
= ems
->f
.view().forceWithPadding();
895 constr
->apply(needsLogging
, computeEnergy
, count
, 0, 1.0, ems
->s
.x
.arrayRefWithPadding(), f
,
896 f
.unpaddedArrayRef(), ems
->s
.box
, ems
->s
.lambda
[efptBONDED
], &dvdl_constr
,
897 gmx::ArrayRefWithPadding
<RVec
>(), computeVirial
, shake_vir
,
898 gmx::ConstraintVariable::ForceDispl
);
899 enerd
->term
[F_DVDL_CONSTR
] += dvdl_constr
;
900 m_add(force_vir
, shake_vir
, vir
);
904 copy_mat(force_vir
, vir
);
908 enerd
->term
[F_PRES
] = calc_pres(fr
->pbcType
, inputrec
->nwall
, ems
->s
.box
, ekin
, vir
, pres
);
910 if (inputrec
->efep
!= efepNO
)
912 accumulateKineticLambdaComponents(enerd
, ems
->s
.lambda
, *inputrec
->fepvals
);
915 if (EI_ENERGY_MINIMIZATION(inputrec
->eI
))
917 get_state_f_norm_max(cr
, &(inputrec
->opts
), mdAtoms
->mdatoms(), ems
);
923 //! Parallel utility summing energies and forces
924 static double reorder_partsum(const t_commrec
* cr
,
926 const gmx_mtop_t
* top_global
,
927 const em_state_t
* s_min
,
928 const em_state_t
* s_b
)
932 fprintf(debug
, "Doing reorder_partsum\n");
935 auto fm
= s_min
->f
.view().force();
936 auto fb
= s_b
->f
.view().force();
938 /* Collect fm in a global vector fmg.
939 * This conflicts with the spirit of domain decomposition,
940 * but to fully optimize this a much more complicated algorithm is required.
942 const int natoms
= top_global
->natoms
;
946 gmx::ArrayRef
<const int> indicesMin
= s_min
->s
.cg_gl
;
948 for (int a
: indicesMin
)
950 copy_rvec(fm
[i
], fmg
[a
]);
953 gmx_sum(top_global
->natoms
* 3, fmg
[0], cr
);
955 /* Now we will determine the part of the sum for the cgs in state s_b */
956 gmx::ArrayRef
<const int> indicesB
= s_b
->s
.cg_gl
;
961 gmx::ArrayRef
<const unsigned char> grpnrFREEZE
=
962 top_global
->groups
.groupNumbers
[SimulationAtomGroupType::Freeze
];
963 for (int a
: indicesB
)
965 if (!grpnrFREEZE
.empty())
969 for (int m
= 0; m
< DIM
; m
++)
971 if (!opts
->nFreeze
[gf
][m
])
973 partsum
+= (fb
[i
][m
] - fmg
[a
][m
]) * fb
[i
][m
];
984 //! Print some stuff, like beta, whatever that means.
985 static real
pr_beta(const t_commrec
* cr
,
988 const gmx_mtop_t
* top_global
,
989 const em_state_t
* s_min
,
990 const em_state_t
* s_b
)
994 /* This is just the classical Polak-Ribiere calculation of beta;
995 * it looks a bit complicated since we take freeze groups into account,
996 * and might have to sum it in parallel runs.
999 if (!DOMAINDECOMP(cr
)
1000 || (s_min
->s
.ddp_count
== cr
->dd
->ddp_count
&& s_b
->s
.ddp_count
== cr
->dd
->ddp_count
))
1002 auto fm
= s_min
->f
.view().force();
1003 auto fb
= s_b
->f
.view().force();
1006 /* This part of code can be incorrect with DD,
1007 * since the atom ordering in s_b and s_min might differ.
1009 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1011 if (mdatoms
->cFREEZE
)
1013 gf
= mdatoms
->cFREEZE
[i
];
1015 for (int m
= 0; m
< DIM
; m
++)
1017 if (!opts
->nFreeze
[gf
][m
])
1019 sum
+= (fb
[i
][m
] - fm
[i
][m
]) * fb
[i
][m
];
1026 /* We need to reorder cgs while summing */
1027 sum
= reorder_partsum(cr
, opts
, top_global
, s_min
, s_b
);
1031 gmx_sumd(1, &sum
, cr
);
1034 return sum
/ gmx::square(s_min
->fnorm
);
1040 void LegacySimulator::do_cg()
1042 const char* CG
= "Polak-Ribiere Conjugate Gradients";
1044 gmx_localtop_t
top(top_global
->ffparams
);
1045 gmx_global_stat_t gstat
;
1046 double tmp
, minstep
;
1048 real a
, b
, c
, beta
= 0.0;
1051 gmx_bool converged
, foundlower
;
1052 rvec mu_tot
= { 0 };
1053 gmx_bool do_log
= FALSE
, do_ene
= FALSE
, do_x
, do_f
;
1055 int number_steps
, neval
= 0, nstcg
= inputrec
->nstcgsteep
;
1056 int m
, step
, nminstep
;
1057 auto mdatoms
= mdAtoms
->mdatoms();
1062 "Note that activating conjugate gradient energy minimization via the "
1063 "integrator .mdp option and the command gmx mdrun may "
1064 "be available in a different form in a future version of GROMACS, "
1065 "e.g. gmx minimize and an .mdp option.");
1071 // In CG, the state is extended with a search direction
1072 state_global
->flags
|= (1 << estCGP
);
1074 // Ensure the extra per-atom state array gets allocated
1075 state_change_natoms(state_global
, state_global
->natoms
);
1077 // Initialize the search direction to zero
1078 for (RVec
& cg_p
: state_global
->cg_p
)
1084 /* Create 4 states on the stack and extract pointers that we will swap */
1085 em_state_t s0
{}, s1
{}, s2
{}, s3
{};
1086 em_state_t
* s_min
= &s0
;
1087 em_state_t
* s_a
= &s1
;
1088 em_state_t
* s_b
= &s2
;
1089 em_state_t
* s_c
= &s3
;
1091 /* Init em and store the local state in s_min */
1092 init_em(fplog
, mdlog
, CG
, cr
, inputrec
, imdSession
, pull_work
, state_global
, top_global
, s_min
,
1093 &top
, nrnb
, fr
, mdAtoms
, &gstat
, vsite
, constr
, nullptr);
1094 const bool simulationsShareState
= false;
1095 gmx_mdoutf
* outf
= init_mdoutf(fplog
, nfile
, fnm
, mdrunOptions
, cr
, outputProvider
,
1096 mdModulesNotifier
, inputrec
, top_global
, nullptr, wcycle
,
1097 StartingBehavior::NewSimulation
, simulationsShareState
, ms
);
1098 gmx::EnergyOutput
energyOutput(mdoutf_get_fp_ene(outf
), top_global
, inputrec
, pull_work
,
1099 nullptr, false, StartingBehavior::NewSimulation
,
1100 simulationsShareState
, mdModulesNotifier
);
1102 /* Print to log file */
1103 print_em_start(fplog
, cr
, walltime_accounting
, wcycle
, CG
);
1105 /* Max number of steps */
1106 number_steps
= inputrec
->nsteps
;
1110 sp_header(stderr
, CG
, inputrec
->em_tol
, number_steps
);
1114 sp_header(fplog
, CG
, inputrec
->em_tol
, number_steps
);
1117 EnergyEvaluator energyEvaluator
{ fplog
, mdlog
, cr
, ms
, top_global
, &top
,
1118 inputrec
, imdSession
, pull_work
, nrnb
, wcycle
, gstat
,
1119 vsite
, constr
, mdAtoms
, fr
, runScheduleWork
, enerd
};
1120 /* Call the force routine and some auxiliary (neighboursearching etc.) */
1121 /* do_force always puts the charge groups in the box and shifts again
1122 * We do not unshift, so molecules are always whole in congrad.c
1124 energyEvaluator
.run(s_min
, mu_tot
, vir
, pres
, -1, TRUE
);
1128 /* Copy stuff to the energy bin for easy printing etc. */
1129 matrix nullBox
= {};
1130 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(step
), mdatoms
->tmass
,
1131 enerd
, nullptr, nullptr, nullBox
, PTCouplingArrays(), 0,
1132 nullptr, nullptr, vir
, pres
, nullptr, mu_tot
, constr
);
1134 EnergyOutput::printHeader(fplog
, step
, step
);
1135 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), TRUE
, FALSE
, FALSE
, fplog
, step
,
1136 step
, fr
->fcdata
.get(), nullptr);
1139 /* Estimate/guess the initial stepsize */
1140 stepsize
= inputrec
->em_stepsize
/ s_min
->fnorm
;
1144 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
1145 fprintf(stderr
, " F-max = %12.5e on atom %d\n", s_min
->fmax
, s_min
->a_fmax
+ 1);
1146 fprintf(stderr
, " F-Norm = %12.5e\n", s_min
->fnorm
/ sqrtNumAtoms
);
1147 fprintf(stderr
, "\n");
1148 /* and copy to the log file too... */
1149 fprintf(fplog
, " F-max = %12.5e on atom %d\n", s_min
->fmax
, s_min
->a_fmax
+ 1);
1150 fprintf(fplog
, " F-Norm = %12.5e\n", s_min
->fnorm
/ sqrtNumAtoms
);
1151 fprintf(fplog
, "\n");
1153 /* Start the loop over CG steps.
1154 * Each successful step is counted, and we continue until
1155 * we either converge or reach the max number of steps.
1158 for (step
= 0; (number_steps
< 0 || step
<= number_steps
) && !converged
; step
++)
1161 /* start taking steps in a new direction
1162 * First time we enter the routine, beta=0, and the direction is
1163 * simply the negative gradient.
1166 /* Calculate the new direction in p, and the gradient in this direction, gpa */
1167 gmx::ArrayRef
<gmx::RVec
> pm
= s_min
->s
.cg_p
;
1168 gmx::ArrayRef
<const gmx::RVec
> sfm
= s_min
->f
.view().force();
1171 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1173 if (mdatoms
->cFREEZE
)
1175 gf
= mdatoms
->cFREEZE
[i
];
1177 for (m
= 0; m
< DIM
; m
++)
1179 if (!inputrec
->opts
.nFreeze
[gf
][m
])
1181 pm
[i
][m
] = sfm
[i
][m
] + beta
* pm
[i
][m
];
1182 gpa
-= pm
[i
][m
] * sfm
[i
][m
];
1183 /* f is negative gradient, thus the sign */
1192 /* Sum the gradient along the line across CPUs */
1195 gmx_sumd(1, &gpa
, cr
);
1198 /* Calculate the norm of the search vector */
1199 get_f_norm_max(cr
, &(inputrec
->opts
), mdatoms
, pm
, &pnorm
, nullptr, nullptr);
1201 /* Just in case stepsize reaches zero due to numerical precision... */
1204 stepsize
= inputrec
->em_stepsize
/ pnorm
;
1208 * Double check the value of the derivative in the search direction.
1209 * If it is positive it must be due to the old information in the
1210 * CG formula, so just remove that and start over with beta=0.
1211 * This corresponds to a steepest descent step.
1216 step
--; /* Don't count this step since we are restarting */
1217 continue; /* Go back to the beginning of the big for-loop */
1220 /* Calculate minimum allowed stepsize, before the average (norm)
1221 * relative change in coordinate is smaller than precision
1224 auto s_min_x
= makeArrayRef(s_min
->s
.x
);
1225 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1227 for (m
= 0; m
< DIM
; m
++)
1229 tmp
= fabs(s_min_x
[i
][m
]);
1234 tmp
= pm
[i
][m
] / tmp
;
1235 minstep
+= tmp
* tmp
;
1238 /* Add up from all CPUs */
1241 gmx_sumd(1, &minstep
, cr
);
1244 minstep
= GMX_REAL_EPS
/ sqrt(minstep
/ (3 * top_global
->natoms
));
1246 if (stepsize
< minstep
)
1252 /* Write coordinates if necessary */
1253 do_x
= do_per_step(step
, inputrec
->nstxout
);
1254 do_f
= do_per_step(step
, inputrec
->nstfout
);
1256 write_em_traj(fplog
, cr
, outf
, do_x
, do_f
, nullptr, top_global
, inputrec
, step
, s_min
,
1257 state_global
, observablesHistory
);
1259 /* Take a step downhill.
1260 * In theory, we should minimize the function along this direction.
1261 * That is quite possible, but it turns out to take 5-10 function evaluations
1262 * for each line. However, we dont really need to find the exact minimum -
1263 * it is much better to start a new CG step in a modified direction as soon
1264 * as we are close to it. This will save a lot of energy evaluations.
1266 * In practice, we just try to take a single step.
1267 * If it worked (i.e. lowered the energy), we increase the stepsize but
1268 * the continue straight to the next CG step without trying to find any minimum.
1269 * If it didn't work (higher energy), there must be a minimum somewhere between
1270 * the old position and the new one.
1272 * Due to the finite numerical accuracy, it turns out that it is a good idea
1273 * to even accept a SMALL increase in energy, if the derivative is still downhill.
1274 * This leads to lower final energies in the tests I've done. / Erik
1276 s_a
->epot
= s_min
->epot
;
1278 c
= a
+ stepsize
; /* reference position along line is zero */
1280 if (DOMAINDECOMP(cr
) && s_min
->s
.ddp_count
< cr
->dd
->ddp_count
)
1282 em_dd_partition_system(fplog
, mdlog
, step
, cr
, top_global
, inputrec
, imdSession
,
1283 pull_work
, s_min
, &top
, mdAtoms
, fr
, vsite
, constr
, nrnb
, wcycle
);
1286 /* Take a trial step (new coords in s_c) */
1287 do_em_step(cr
, inputrec
, mdatoms
, s_min
, c
, s_min
->s
.cg_p
.constArrayRefWithPadding(), s_c
,
1291 /* Calculate energy for the trial step */
1292 energyEvaluator
.run(s_c
, mu_tot
, vir
, pres
, -1, FALSE
);
1294 /* Calc derivative along line */
1295 const rvec
* pc
= s_c
->s
.cg_p
.rvec_array();
1296 gmx::ArrayRef
<const gmx::RVec
> sfc
= s_c
->f
.view().force();
1298 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1300 for (m
= 0; m
< DIM
; m
++)
1302 gpc
-= pc
[i
][m
] * sfc
[i
][m
]; /* f is negative gradient, thus the sign */
1305 /* Sum the gradient along the line across CPUs */
1308 gmx_sumd(1, &gpc
, cr
);
1311 /* This is the max amount of increase in energy we tolerate */
1312 tmp
= std::sqrt(GMX_REAL_EPS
) * fabs(s_a
->epot
);
1314 /* Accept the step if the energy is lower, or if it is not significantly higher
1315 * and the line derivative is still negative.
1317 if (s_c
->epot
< s_a
->epot
|| (gpc
< 0 && s_c
->epot
< (s_a
->epot
+ tmp
)))
1320 /* Great, we found a better energy. Increase step for next iteration
1321 * if we are still going down, decrease it otherwise
1325 stepsize
*= 1.618034; /* The golden section */
1329 stepsize
*= 0.618034; /* 1/golden section */
1334 /* New energy is the same or higher. We will have to do some work
1335 * to find a smaller value in the interval. Take smaller step next time!
1338 stepsize
*= 0.618034;
1342 /* OK, if we didn't find a lower value we will have to locate one now - there must
1343 * be one in the interval [a=0,c].
1344 * The same thing is valid here, though: Don't spend dozens of iterations to find
1345 * the line minimum. We try to interpolate based on the derivative at the endpoints,
1346 * and only continue until we find a lower value. In most cases this means 1-2 iterations.
1348 * I also have a safeguard for potentially really pathological functions so we never
1349 * take more than 20 steps before we give up ...
1351 * If we already found a lower value we just skip this step and continue to the update.
1360 /* Select a new trial point.
1361 * If the derivatives at points a & c have different sign we interpolate to zero,
1362 * otherwise just do a bisection.
1364 if (gpa
< 0 && gpc
> 0)
1366 b
= a
+ gpa
* (a
- c
) / (gpc
- gpa
);
1373 /* safeguard if interpolation close to machine accuracy causes errors:
1374 * never go outside the interval
1376 if (b
<= a
|| b
>= c
)
1381 if (DOMAINDECOMP(cr
) && s_min
->s
.ddp_count
!= cr
->dd
->ddp_count
)
1383 /* Reload the old state */
1384 em_dd_partition_system(fplog
, mdlog
, -1, cr
, top_global
, inputrec
, imdSession
, pull_work
,
1385 s_min
, &top
, mdAtoms
, fr
, vsite
, constr
, nrnb
, wcycle
);
1388 /* Take a trial step to this new point - new coords in s_b */
1389 do_em_step(cr
, inputrec
, mdatoms
, s_min
, b
,
1390 s_min
->s
.cg_p
.constArrayRefWithPadding(), s_b
, constr
, -1);
1393 /* Calculate energy for the trial step */
1394 energyEvaluator
.run(s_b
, mu_tot
, vir
, pres
, -1, FALSE
);
1396 /* p does not change within a step, but since the domain decomposition
1397 * might change, we have to use cg_p of s_b here.
1399 const rvec
* pb
= s_b
->s
.cg_p
.rvec_array();
1400 gmx::ArrayRef
<const gmx::RVec
> sfb
= s_b
->f
.view().force();
1402 for (int i
= 0; i
< mdatoms
->homenr
; i
++)
1404 for (m
= 0; m
< DIM
; m
++)
1406 gpb
-= pb
[i
][m
] * sfb
[i
][m
]; /* f is negative gradient, thus the sign */
1409 /* Sum the gradient along the line across CPUs */
1412 gmx_sumd(1, &gpb
, cr
);
1417 fprintf(debug
, "CGE: EpotA %f EpotB %f EpotC %f gpb %f\n", s_a
->epot
, s_b
->epot
,
1421 epot_repl
= s_b
->epot
;
1423 /* Keep one of the intervals based on the value of the derivative at the new point */
1426 /* Replace c endpoint with b */
1427 swap_em_state(&s_b
, &s_c
);
1433 /* Replace a endpoint with b */
1434 swap_em_state(&s_b
, &s_a
);
1440 * Stop search as soon as we find a value smaller than the endpoints.
1441 * Never run more than 20 steps, no matter what.
1444 } while ((epot_repl
> s_a
->epot
|| epot_repl
> s_c
->epot
) && (nminstep
< 20));
1446 if (std::fabs(epot_repl
- s_min
->epot
) < fabs(s_min
->epot
) * GMX_REAL_EPS
|| nminstep
>= 20)
1448 /* OK. We couldn't find a significantly lower energy.
1449 * If beta==0 this was steepest descent, and then we give up.
1450 * If not, set beta=0 and restart with steepest descent before quitting.
1460 /* Reset memory before giving up */
1466 /* Select min energy state of A & C, put the best in B.
1468 if (s_c
->epot
< s_a
->epot
)
1472 fprintf(debug
, "CGE: C (%f) is lower than A (%f), moving C to B\n", s_c
->epot
,
1475 swap_em_state(&s_b
, &s_c
);
1482 fprintf(debug
, "CGE: A (%f) is lower than C (%f), moving A to B\n", s_a
->epot
,
1485 swap_em_state(&s_b
, &s_a
);
1493 fprintf(debug
, "CGE: Found a lower energy %f, moving C to B\n", s_c
->epot
);
1495 swap_em_state(&s_b
, &s_c
);
1499 /* new search direction */
1500 /* beta = 0 means forget all memory and restart with steepest descents. */
1501 if (nstcg
&& ((step
% nstcg
) == 0))
1507 /* s_min->fnorm cannot be zero, because then we would have converged
1511 /* Polak-Ribiere update.
1512 * Change to fnorm2/fnorm2_old for Fletcher-Reeves
1514 beta
= pr_beta(cr
, &inputrec
->opts
, mdatoms
, top_global
, s_min
, s_b
);
1516 /* Limit beta to prevent oscillations */
1517 if (fabs(beta
) > 5.0)
1523 /* update positions */
1524 swap_em_state(&s_min
, &s_b
);
1527 /* Print it if necessary */
1530 if (mdrunOptions
.verbose
)
1532 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
1533 fprintf(stderr
, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n", step
,
1534 s_min
->epot
, s_min
->fnorm
/ sqrtNumAtoms
, s_min
->fmax
, s_min
->a_fmax
+ 1);
1537 /* Store the new (lower) energies */
1538 matrix nullBox
= {};
1539 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(step
), mdatoms
->tmass
,
1540 enerd
, nullptr, nullptr, nullBox
, PTCouplingArrays(), 0,
1541 nullptr, nullptr, vir
, pres
, nullptr, mu_tot
, constr
);
1543 do_log
= do_per_step(step
, inputrec
->nstlog
);
1544 do_ene
= do_per_step(step
, inputrec
->nstenergy
);
1546 imdSession
->fillEnergyRecord(step
, TRUE
);
1550 EnergyOutput::printHeader(fplog
, step
, step
);
1552 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), do_ene
, FALSE
, FALSE
,
1553 do_log
? fplog
: nullptr, step
, step
,
1554 fr
->fcdata
.get(), nullptr);
1557 /* Send energies and positions to the IMD client if bIMD is TRUE. */
1558 if (MASTER(cr
) && imdSession
->run(step
, TRUE
, state_global
->box
, state_global
->x
.rvec_array(), 0))
1560 imdSession
->sendPositionsAndEnergies();
1563 /* Stop when the maximum force lies below tolerance.
1564 * If we have reached machine precision, converged is already set to true.
1566 converged
= converged
|| (s_min
->fmax
< inputrec
->em_tol
);
1568 } /* End of the loop */
1572 step
--; /* we never took that last step in this case */
1574 if (s_min
->fmax
> inputrec
->em_tol
)
1578 warn_step(fplog
, inputrec
->em_tol
, s_min
->fmax
, step
- 1 == number_steps
, FALSE
);
1585 /* If we printed energy and/or logfile last step (which was the last step)
1586 * we don't have to do it again, but otherwise print the final values.
1590 /* Write final value to log since we didn't do anything the last step */
1591 EnergyOutput::printHeader(fplog
, step
, step
);
1593 if (!do_ene
|| !do_log
)
1595 /* Write final energy file entries */
1596 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), !do_ene
, FALSE
, FALSE
,
1597 !do_log
? fplog
: nullptr, step
, step
,
1598 fr
->fcdata
.get(), nullptr);
1602 /* Print some stuff... */
1605 fprintf(stderr
, "\nwriting lowest energy coordinates.\n");
1609 * For accurate normal mode calculation it is imperative that we
1610 * store the last conformation into the full precision binary trajectory.
1612 * However, we should only do it if we did NOT already write this step
1613 * above (which we did if do_x or do_f was true).
1615 /* Note that with 0 < nstfout != nstxout we can end up with two frames
1616 * in the trajectory with the same step number.
1618 do_x
= !do_per_step(step
, inputrec
->nstxout
);
1619 do_f
= (inputrec
->nstfout
> 0 && !do_per_step(step
, inputrec
->nstfout
));
1621 write_em_traj(fplog
, cr
, outf
, do_x
, do_f
, ftp2fn(efSTO
, nfile
, fnm
), top_global
, inputrec
,
1622 step
, s_min
, state_global
, observablesHistory
);
1627 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
1628 print_converged(stderr
, CG
, inputrec
->em_tol
, step
, converged
, number_steps
, s_min
, sqrtNumAtoms
);
1629 print_converged(fplog
, CG
, inputrec
->em_tol
, step
, converged
, number_steps
, s_min
, sqrtNumAtoms
);
1631 fprintf(fplog
, "\nPerformed %d energy evaluations in total.\n", neval
);
1634 finish_em(cr
, outf
, walltime_accounting
, wcycle
);
1636 /* To print the actual number of steps we needed somewhere */
1637 walltime_accounting_set_nsteps_done(walltime_accounting
, step
);
1641 void LegacySimulator::do_lbfgs()
1643 static const char* LBFGS
= "Low-Memory BFGS Minimizer";
1645 gmx_localtop_t
top(top_global
->ffparams
);
1646 gmx_global_stat_t gstat
;
1647 int ncorr
, nmaxcorr
, point
, cp
, neval
, nminstep
;
1648 double stepsize
, step_taken
, gpa
, gpb
, gpc
, tmp
, minstep
;
1649 real
* rho
, *alpha
, *p
, *s
, **dx
, **dg
;
1650 real a
, b
, c
, maxdelta
, delta
;
1652 real dgdx
, dgdg
, sq
, yr
, beta
;
1654 rvec mu_tot
= { 0 };
1655 gmx_bool do_log
, do_ene
, do_x
, do_f
, foundlower
, *frozen
;
1657 int start
, end
, number_steps
;
1658 int i
, k
, m
, n
, gf
, step
;
1660 auto mdatoms
= mdAtoms
->mdatoms();
1665 "Note that activating L-BFGS energy minimization via the "
1666 "integrator .mdp option and the command gmx mdrun may "
1667 "be available in a different form in a future version of GROMACS, "
1668 "e.g. gmx minimize and an .mdp option.");
1672 gmx_fatal(FARGS
, "L-BFGS minimization only supports a single rank");
1675 if (nullptr != constr
)
1679 "The combination of constraints and L-BFGS minimization is not implemented. Either "
1680 "do not use constraints, or use another minimizer (e.g. steepest descent).");
1683 n
= 3 * state_global
->natoms
;
1684 nmaxcorr
= inputrec
->nbfgscorr
;
1689 snew(rho
, nmaxcorr
);
1690 snew(alpha
, nmaxcorr
);
1693 for (i
= 0; i
< nmaxcorr
; i
++)
1699 for (i
= 0; i
< nmaxcorr
; i
++)
1708 init_em(fplog
, mdlog
, LBFGS
, cr
, inputrec
, imdSession
, pull_work
, state_global
, top_global
,
1709 &ems
, &top
, nrnb
, fr
, mdAtoms
, &gstat
, vsite
, constr
, nullptr);
1710 const bool simulationsShareState
= false;
1711 gmx_mdoutf
* outf
= init_mdoutf(fplog
, nfile
, fnm
, mdrunOptions
, cr
, outputProvider
,
1712 mdModulesNotifier
, inputrec
, top_global
, nullptr, wcycle
,
1713 StartingBehavior::NewSimulation
, simulationsShareState
, ms
);
1714 gmx::EnergyOutput
energyOutput(mdoutf_get_fp_ene(outf
), top_global
, inputrec
, pull_work
,
1715 nullptr, false, StartingBehavior::NewSimulation
,
1716 simulationsShareState
, mdModulesNotifier
);
1719 end
= mdatoms
->homenr
;
1721 /* We need 4 working states */
1722 em_state_t s0
{}, s1
{}, s2
{}, s3
{};
1723 em_state_t
* sa
= &s0
;
1724 em_state_t
* sb
= &s1
;
1725 em_state_t
* sc
= &s2
;
1726 em_state_t
* last
= &s3
;
1727 /* Initialize by copying the state from ems (we could skip x and f here) */
1732 /* Print to log file */
1733 print_em_start(fplog
, cr
, walltime_accounting
, wcycle
, LBFGS
);
1735 do_log
= do_ene
= do_x
= do_f
= TRUE
;
1737 /* Max number of steps */
1738 number_steps
= inputrec
->nsteps
;
1740 /* Create a 3*natoms index to tell whether each degree of freedom is frozen */
1742 for (i
= start
; i
< end
; i
++)
1744 if (mdatoms
->cFREEZE
)
1746 gf
= mdatoms
->cFREEZE
[i
];
1748 for (m
= 0; m
< DIM
; m
++)
1750 frozen
[3 * i
+ m
] = (inputrec
->opts
.nFreeze
[gf
][m
] != 0);
1755 sp_header(stderr
, LBFGS
, inputrec
->em_tol
, number_steps
);
1759 sp_header(fplog
, LBFGS
, inputrec
->em_tol
, number_steps
);
1764 vsite
->construct(state_global
->x
, 1, {}, state_global
->box
);
1767 /* Call the force routine and some auxiliary (neighboursearching etc.) */
1768 /* do_force always puts the charge groups in the box and shifts again
1769 * We do not unshift, so molecules are always whole
1772 EnergyEvaluator energyEvaluator
{ fplog
, mdlog
, cr
, ms
, top_global
, &top
,
1773 inputrec
, imdSession
, pull_work
, nrnb
, wcycle
, gstat
,
1774 vsite
, constr
, mdAtoms
, fr
, runScheduleWork
, enerd
};
1775 energyEvaluator
.run(&ems
, mu_tot
, vir
, pres
, -1, TRUE
);
1779 /* Copy stuff to the energy bin for easy printing etc. */
1780 matrix nullBox
= {};
1781 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(step
), mdatoms
->tmass
,
1782 enerd
, nullptr, nullptr, nullBox
, PTCouplingArrays(), 0,
1783 nullptr, nullptr, vir
, pres
, nullptr, mu_tot
, constr
);
1785 EnergyOutput::printHeader(fplog
, step
, step
);
1786 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), TRUE
, FALSE
, FALSE
, fplog
, step
,
1787 step
, fr
->fcdata
.get(), nullptr);
1790 /* Set the initial step.
1791 * since it will be multiplied by the non-normalized search direction
1792 * vector (force vector the first time), we scale it by the
1793 * norm of the force.
1798 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
1799 fprintf(stderr
, "Using %d BFGS correction steps.\n\n", nmaxcorr
);
1800 fprintf(stderr
, " F-max = %12.5e on atom %d\n", ems
.fmax
, ems
.a_fmax
+ 1);
1801 fprintf(stderr
, " F-Norm = %12.5e\n", ems
.fnorm
/ sqrtNumAtoms
);
1802 fprintf(stderr
, "\n");
1803 /* and copy to the log file too... */
1804 fprintf(fplog
, "Using %d BFGS correction steps.\n\n", nmaxcorr
);
1805 fprintf(fplog
, " F-max = %12.5e on atom %d\n", ems
.fmax
, ems
.a_fmax
+ 1);
1806 fprintf(fplog
, " F-Norm = %12.5e\n", ems
.fnorm
/ sqrtNumAtoms
);
1807 fprintf(fplog
, "\n");
1810 // Point is an index to the memory of search directions, where 0 is the first one.
1813 // Set initial search direction to the force (-gradient), or 0 for frozen particles.
1814 real
* fInit
= static_cast<real
*>(ems
.f
.view().force().data()[0]);
1815 for (i
= 0; i
< n
; i
++)
1819 dx
[point
][i
] = fInit
[i
]; /* Initial search direction */
1827 // Stepsize will be modified during the search, and actually it is not critical
1828 // (the main efficiency in the algorithm comes from changing directions), but
1829 // we still need an initial value, so estimate it as the inverse of the norm
1830 // so we take small steps where the potential fluctuates a lot.
1831 stepsize
= 1.0 / ems
.fnorm
;
1833 /* Start the loop over BFGS steps.
1834 * Each successful step is counted, and we continue until
1835 * we either converge or reach the max number of steps.
1840 /* Set the gradient from the force */
1842 for (step
= 0; (number_steps
< 0 || step
<= number_steps
) && !converged
; step
++)
1845 /* Write coordinates if necessary */
1846 do_x
= do_per_step(step
, inputrec
->nstxout
);
1847 do_f
= do_per_step(step
, inputrec
->nstfout
);
1852 mdof_flags
|= MDOF_X
;
1857 mdof_flags
|= MDOF_F
;
1862 mdof_flags
|= MDOF_IMD
;
1865 gmx::WriteCheckpointDataHolder checkpointDataHolder
;
1866 mdoutf_write_to_trajectory_files(fplog
, cr
, outf
, mdof_flags
, top_global
->natoms
, step
,
1867 static_cast<real
>(step
), &ems
.s
, state_global
, observablesHistory
,
1868 ems
.f
.view().force(), &checkpointDataHolder
);
1870 /* Do the linesearching in the direction dx[point][0..(n-1)] */
1872 /* make s a pointer to current search direction - point=0 first time we get here */
1875 real
* xx
= static_cast<real
*>(ems
.s
.x
.rvec_array()[0]);
1876 real
* ff
= static_cast<real
*>(ems
.f
.view().force().data()[0]);
1878 // calculate line gradient in position A
1879 for (gpa
= 0, i
= 0; i
< n
; i
++)
1881 gpa
-= s
[i
] * ff
[i
];
1884 /* Calculate minimum allowed stepsize along the line, before the average (norm)
1885 * relative change in coordinate is smaller than precision
1887 for (minstep
= 0, i
= 0; i
< n
; i
++)
1895 minstep
+= tmp
* tmp
;
1897 minstep
= GMX_REAL_EPS
/ sqrt(minstep
/ n
);
1899 if (stepsize
< minstep
)
1905 // Before taking any steps along the line, store the old position
1907 real
* lastx
= static_cast<real
*>(last
->s
.x
.data()[0]);
1908 real
* lastf
= static_cast<real
*>(last
->f
.view().force().data()[0]);
1913 /* Take a step downhill.
1914 * In theory, we should find the actual minimum of the function in this
1915 * direction, somewhere along the line.
1916 * That is quite possible, but it turns out to take 5-10 function evaluations
1917 * for each line. However, we dont really need to find the exact minimum -
1918 * it is much better to start a new BFGS step in a modified direction as soon
1919 * as we are close to it. This will save a lot of energy evaluations.
1921 * In practice, we just try to take a single step.
1922 * If it worked (i.e. lowered the energy), we increase the stepsize but
1923 * continue straight to the next BFGS step without trying to find any minimum,
1924 * i.e. we change the search direction too. If the line was smooth, it is
1925 * likely we are in a smooth region, and then it makes sense to take longer
1926 * steps in the modified search direction too.
1928 * If it didn't work (higher energy), there must be a minimum somewhere between
1929 * the old position and the new one. Then we need to start by finding a lower
1930 * value before we change search direction. Since the energy was apparently
1931 * quite rough, we need to decrease the step size.
1933 * Due to the finite numerical accuracy, it turns out that it is a good idea
1934 * to accept a SMALL increase in energy, if the derivative is still downhill.
1935 * This leads to lower final energies in the tests I've done. / Erik
1938 // State "A" is the first position along the line.
1939 // reference position along line is initially zero
1942 // Check stepsize first. We do not allow displacements
1943 // larger than emstep.
1947 // Pick a new position C by adding stepsize to A.
1950 // Calculate what the largest change in any individual coordinate
1951 // would be (translation along line * gradient along line)
1953 for (i
= 0; i
< n
; i
++)
1956 if (delta
> maxdelta
)
1961 // If any displacement is larger than the stepsize limit, reduce the step
1962 if (maxdelta
> inputrec
->em_stepsize
)
1966 } while (maxdelta
> inputrec
->em_stepsize
);
1968 // Take a trial step and move the coordinate array xc[] to position C
1969 real
* xc
= static_cast<real
*>(sc
->s
.x
.rvec_array()[0]);
1970 for (i
= 0; i
< n
; i
++)
1972 xc
[i
] = lastx
[i
] + c
* s
[i
];
1976 // Calculate energy for the trial step in position C
1977 energyEvaluator
.run(sc
, mu_tot
, vir
, pres
, step
, FALSE
);
1979 // Calc line gradient in position C
1980 real
* fc
= static_cast<real
*>(sc
->f
.view().force()[0]);
1981 for (gpc
= 0, i
= 0; i
< n
; i
++)
1983 gpc
-= s
[i
] * fc
[i
]; /* f is negative gradient, thus the sign */
1985 /* Sum the gradient along the line across CPUs */
1988 gmx_sumd(1, &gpc
, cr
);
1991 // This is the max amount of increase in energy we tolerate.
1992 // By allowing VERY small changes (close to numerical precision) we
1993 // frequently find even better (lower) final energies.
1994 tmp
= std::sqrt(GMX_REAL_EPS
) * fabs(sa
->epot
);
1996 // Accept the step if the energy is lower in the new position C (compared to A),
1997 // or if it is not significantly higher and the line derivative is still negative.
1998 foundlower
= sc
->epot
< sa
->epot
|| (gpc
< 0 && sc
->epot
< (sa
->epot
+ tmp
));
1999 // If true, great, we found a better energy. We no longer try to alter the
2000 // stepsize, but simply accept this new better position. The we select a new
2001 // search direction instead, which will be much more efficient than continuing
2002 // to take smaller steps along a line. Set fnorm based on the new C position,
2003 // which will be used to update the stepsize to 1/fnorm further down.
2005 // If false, the energy is NOT lower in point C, i.e. it will be the same
2006 // or higher than in point A. In this case it is pointless to move to point C,
2007 // so we will have to do more iterations along the same line to find a smaller
2008 // value in the interval [A=0.0,C].
2009 // Here, A is still 0.0, but that will change when we do a search in the interval
2010 // [0.0,C] below. That search we will do by interpolation or bisection rather
2011 // than with the stepsize, so no need to modify it. For the next search direction
2012 // it will be reset to 1/fnorm anyway.
2016 // OK, if we didn't find a lower value we will have to locate one now - there must
2017 // be one in the interval [a,c].
2018 // The same thing is valid here, though: Don't spend dozens of iterations to find
2019 // the line minimum. We try to interpolate based on the derivative at the endpoints,
2020 // and only continue until we find a lower value. In most cases this means 1-2 iterations.
2021 // I also have a safeguard for potentially really pathological functions so we never
2022 // take more than 20 steps before we give up.
2023 // If we already found a lower value we just skip this step and continue to the update.
2028 // Select a new trial point B in the interval [A,C].
2029 // If the derivatives at points a & c have different sign we interpolate to zero,
2030 // otherwise just do a bisection since there might be multiple minima/maxima
2031 // inside the interval.
2032 if (gpa
< 0 && gpc
> 0)
2034 b
= a
+ gpa
* (a
- c
) / (gpc
- gpa
);
2041 /* safeguard if interpolation close to machine accuracy causes errors:
2042 * never go outside the interval
2044 if (b
<= a
|| b
>= c
)
2049 // Take a trial step to point B
2050 real
* xb
= static_cast<real
*>(sb
->s
.x
.rvec_array()[0]);
2051 for (i
= 0; i
< n
; i
++)
2053 xb
[i
] = lastx
[i
] + b
* s
[i
];
2057 // Calculate energy for the trial step in point B
2058 energyEvaluator
.run(sb
, mu_tot
, vir
, pres
, step
, FALSE
);
2061 // Calculate gradient in point B
2062 real
* fb
= static_cast<real
*>(sb
->f
.view().force()[0]);
2063 for (gpb
= 0, i
= 0; i
< n
; i
++)
2065 gpb
-= s
[i
] * fb
[i
]; /* f is negative gradient, thus the sign */
2067 /* Sum the gradient along the line across CPUs */
2070 gmx_sumd(1, &gpb
, cr
);
2073 // Keep one of the intervals [A,B] or [B,C] based on the value of the derivative
2074 // at the new point B, and rename the endpoints of this new interval A and C.
2077 /* Replace c endpoint with b */
2079 /* copy state b to c */
2084 /* Replace a endpoint with b */
2086 /* copy state b to a */
2091 * Stop search as soon as we find a value smaller than the endpoints,
2092 * or if the tolerance is below machine precision.
2093 * Never run more than 20 steps, no matter what.
2096 } while ((sb
->epot
> sa
->epot
|| sb
->epot
> sc
->epot
) && (nminstep
< 20));
2098 if (std::fabs(sb
->epot
- Epot0
) < GMX_REAL_EPS
|| nminstep
>= 20)
2100 /* OK. We couldn't find a significantly lower energy.
2101 * If ncorr==0 this was steepest descent, and then we give up.
2102 * If not, reset memory to restart as steepest descent before quitting.
2114 /* Search in gradient direction */
2115 for (i
= 0; i
< n
; i
++)
2117 dx
[point
][i
] = ff
[i
];
2119 /* Reset stepsize */
2120 stepsize
= 1.0 / fnorm
;
2125 /* Select min energy state of A & C, put the best in xx/ff/Epot
2127 if (sc
->epot
< sa
->epot
)
2148 /* Update the memory information, and calculate a new
2149 * approximation of the inverse hessian
2152 /* Have new data in Epot, xx, ff */
2153 if (ncorr
< nmaxcorr
)
2158 for (i
= 0; i
< n
; i
++)
2160 dg
[point
][i
] = lastf
[i
] - ff
[i
];
2161 dx
[point
][i
] *= step_taken
;
2166 for (i
= 0; i
< n
; i
++)
2168 dgdg
+= dg
[point
][i
] * dg
[point
][i
];
2169 dgdx
+= dg
[point
][i
] * dx
[point
][i
];
2174 rho
[point
] = 1.0 / dgdx
;
2177 if (point
>= nmaxcorr
)
2183 for (i
= 0; i
< n
; i
++)
2190 /* Recursive update. First go back over the memory points */
2191 for (k
= 0; k
< ncorr
; k
++)
2200 for (i
= 0; i
< n
; i
++)
2202 sq
+= dx
[cp
][i
] * p
[i
];
2205 alpha
[cp
] = rho
[cp
] * sq
;
2207 for (i
= 0; i
< n
; i
++)
2209 p
[i
] -= alpha
[cp
] * dg
[cp
][i
];
2213 for (i
= 0; i
< n
; i
++)
2218 /* And then go forward again */
2219 for (k
= 0; k
< ncorr
; k
++)
2222 for (i
= 0; i
< n
; i
++)
2224 yr
+= p
[i
] * dg
[cp
][i
];
2227 beta
= rho
[cp
] * yr
;
2228 beta
= alpha
[cp
] - beta
;
2230 for (i
= 0; i
< n
; i
++)
2232 p
[i
] += beta
* dx
[cp
][i
];
2242 for (i
= 0; i
< n
; i
++)
2246 dx
[point
][i
] = p
[i
];
2254 /* Print it if necessary */
2257 if (mdrunOptions
.verbose
)
2259 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
2260 fprintf(stderr
, "\rStep %d, Epot=%12.6e, Fnorm=%9.3e, Fmax=%9.3e (atom %d)\n", step
,
2261 ems
.epot
, ems
.fnorm
/ sqrtNumAtoms
, ems
.fmax
, ems
.a_fmax
+ 1);
2264 /* Store the new (lower) energies */
2265 matrix nullBox
= {};
2266 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(step
), mdatoms
->tmass
,
2267 enerd
, nullptr, nullptr, nullBox
, PTCouplingArrays(), 0,
2268 nullptr, nullptr, vir
, pres
, nullptr, mu_tot
, constr
);
2270 do_log
= do_per_step(step
, inputrec
->nstlog
);
2271 do_ene
= do_per_step(step
, inputrec
->nstenergy
);
2273 imdSession
->fillEnergyRecord(step
, TRUE
);
2277 EnergyOutput::printHeader(fplog
, step
, step
);
2279 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), do_ene
, FALSE
, FALSE
,
2280 do_log
? fplog
: nullptr, step
, step
,
2281 fr
->fcdata
.get(), nullptr);
2284 /* Send x and E to IMD client, if bIMD is TRUE. */
2285 if (imdSession
->run(step
, TRUE
, state_global
->box
, state_global
->x
.rvec_array(), 0) && MASTER(cr
))
2287 imdSession
->sendPositionsAndEnergies();
2290 // Reset stepsize in we are doing more iterations
2293 /* Stop when the maximum force lies below tolerance.
2294 * If we have reached machine precision, converged is already set to true.
2296 converged
= converged
|| (ems
.fmax
< inputrec
->em_tol
);
2298 } /* End of the loop */
2302 step
--; /* we never took that last step in this case */
2304 if (ems
.fmax
> inputrec
->em_tol
)
2308 warn_step(fplog
, inputrec
->em_tol
, ems
.fmax
, step
- 1 == number_steps
, FALSE
);
2313 /* If we printed energy and/or logfile last step (which was the last step)
2314 * we don't have to do it again, but otherwise print the final values.
2316 if (!do_log
) /* Write final value to log since we didn't do anythin last step */
2318 EnergyOutput::printHeader(fplog
, step
, step
);
2320 if (!do_ene
|| !do_log
) /* Write final energy file entries */
2322 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), !do_ene
, FALSE
, FALSE
,
2323 !do_log
? fplog
: nullptr, step
, step
, fr
->fcdata
.get(),
2327 /* Print some stuff... */
2330 fprintf(stderr
, "\nwriting lowest energy coordinates.\n");
2334 * For accurate normal mode calculation it is imperative that we
2335 * store the last conformation into the full precision binary trajectory.
2337 * However, we should only do it if we did NOT already write this step
2338 * above (which we did if do_x or do_f was true).
2340 do_x
= !do_per_step(step
, inputrec
->nstxout
);
2341 do_f
= !do_per_step(step
, inputrec
->nstfout
);
2342 write_em_traj(fplog
, cr
, outf
, do_x
, do_f
, ftp2fn(efSTO
, nfile
, fnm
), top_global
, inputrec
,
2343 step
, &ems
, state_global
, observablesHistory
);
2347 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
2348 print_converged(stderr
, LBFGS
, inputrec
->em_tol
, step
, converged
, number_steps
, &ems
, sqrtNumAtoms
);
2349 print_converged(fplog
, LBFGS
, inputrec
->em_tol
, step
, converged
, number_steps
, &ems
, sqrtNumAtoms
);
2351 fprintf(fplog
, "\nPerformed %d energy evaluations in total.\n", neval
);
2354 finish_em(cr
, outf
, walltime_accounting
, wcycle
);
2356 /* To print the actual number of steps we needed somewhere */
2357 walltime_accounting_set_nsteps_done(walltime_accounting
, step
);
2360 void LegacySimulator::do_steep()
2362 const char* SD
= "Steepest Descents";
2363 gmx_localtop_t
top(top_global
->ffparams
);
2364 gmx_global_stat_t gstat
;
2367 gmx_bool bDone
, bAbort
, do_x
, do_f
;
2369 rvec mu_tot
= { 0 };
2372 int steps_accepted
= 0;
2373 auto mdatoms
= mdAtoms
->mdatoms();
2378 "Note that activating steepest-descent energy minimization via the "
2379 "integrator .mdp option and the command gmx mdrun may "
2380 "be available in a different form in a future version of GROMACS, "
2381 "e.g. gmx minimize and an .mdp option.");
2383 /* Create 2 states on the stack and extract pointers that we will swap */
2384 em_state_t s0
{}, s1
{};
2385 em_state_t
* s_min
= &s0
;
2386 em_state_t
* s_try
= &s1
;
2388 /* Init em and store the local state in s_try */
2389 init_em(fplog
, mdlog
, SD
, cr
, inputrec
, imdSession
, pull_work
, state_global
, top_global
, s_try
,
2390 &top
, nrnb
, fr
, mdAtoms
, &gstat
, vsite
, constr
, nullptr);
2391 const bool simulationsShareState
= false;
2392 gmx_mdoutf
* outf
= init_mdoutf(fplog
, nfile
, fnm
, mdrunOptions
, cr
, outputProvider
,
2393 mdModulesNotifier
, inputrec
, top_global
, nullptr, wcycle
,
2394 StartingBehavior::NewSimulation
, simulationsShareState
, ms
);
2395 gmx::EnergyOutput
energyOutput(mdoutf_get_fp_ene(outf
), top_global
, inputrec
, pull_work
,
2396 nullptr, false, StartingBehavior::NewSimulation
,
2397 simulationsShareState
, mdModulesNotifier
);
2399 /* Print to log file */
2400 print_em_start(fplog
, cr
, walltime_accounting
, wcycle
, SD
);
2402 /* Set variables for stepsize (in nm). This is the largest
2403 * step that we are going to make in any direction.
2405 ustep
= inputrec
->em_stepsize
;
2408 /* Max number of steps */
2409 nsteps
= inputrec
->nsteps
;
2413 /* Print to the screen */
2414 sp_header(stderr
, SD
, inputrec
->em_tol
, nsteps
);
2418 sp_header(fplog
, SD
, inputrec
->em_tol
, nsteps
);
2420 EnergyEvaluator energyEvaluator
{ fplog
, mdlog
, cr
, ms
, top_global
, &top
,
2421 inputrec
, imdSession
, pull_work
, nrnb
, wcycle
, gstat
,
2422 vsite
, constr
, mdAtoms
, fr
, runScheduleWork
, enerd
};
2424 /**** HERE STARTS THE LOOP ****
2425 * count is the counter for the number of steps
2426 * bDone will be TRUE when the minimization has converged
2427 * bAbort will be TRUE when nsteps steps have been performed or when
2428 * the stepsize becomes smaller than is reasonable for machine precision
2433 while (!bDone
&& !bAbort
)
2435 bAbort
= (nsteps
>= 0) && (count
== nsteps
);
2437 /* set new coordinates, except for first step */
2438 bool validStep
= true;
2441 validStep
= do_em_step(cr
, inputrec
, mdatoms
, s_min
, stepsize
,
2442 s_min
->f
.view().forceWithPadding(), s_try
, constr
, count
);
2447 energyEvaluator
.run(s_try
, mu_tot
, vir
, pres
, count
, count
== 0);
2451 // Signal constraint error during stepping with energy=inf
2452 s_try
->epot
= std::numeric_limits
<real
>::infinity();
2457 EnergyOutput::printHeader(fplog
, count
, count
);
2462 s_min
->epot
= s_try
->epot
;
2465 /* Print it if necessary */
2468 if (mdrunOptions
.verbose
)
2470 fprintf(stderr
, "Step=%5d, Dmax= %6.1e nm, Epot= %12.5e Fmax= %11.5e, atom= %d%c",
2471 count
, ustep
, s_try
->epot
, s_try
->fmax
, s_try
->a_fmax
+ 1,
2472 ((count
== 0) || (s_try
->epot
< s_min
->epot
)) ? '\n' : '\r');
2476 if ((count
== 0) || (s_try
->epot
< s_min
->epot
))
2478 /* Store the new (lower) energies */
2479 matrix nullBox
= {};
2480 energyOutput
.addDataAtEnergyStep(false, false, static_cast<double>(count
),
2481 mdatoms
->tmass
, enerd
, nullptr, nullptr, nullBox
,
2482 PTCouplingArrays(), 0, nullptr, nullptr, vir
, pres
,
2483 nullptr, mu_tot
, constr
);
2485 imdSession
->fillEnergyRecord(count
, TRUE
);
2487 const bool do_dr
= do_per_step(steps_accepted
, inputrec
->nstdisreout
);
2488 const bool do_or
= do_per_step(steps_accepted
, inputrec
->nstorireout
);
2489 energyOutput
.printStepToEnergyFile(mdoutf_get_fp_ene(outf
), TRUE
, do_dr
, do_or
,
2490 fplog
, count
, count
, fr
->fcdata
.get(), nullptr);
2495 /* Now if the new energy is smaller than the previous...
2496 * or if this is the first step!
2497 * or if we did random steps!
2500 if ((count
== 0) || (s_try
->epot
< s_min
->epot
))
2504 /* Test whether the convergence criterion is met... */
2505 bDone
= (s_try
->fmax
< inputrec
->em_tol
);
2507 /* Copy the arrays for force, positions and energy */
2508 /* The 'Min' array always holds the coords and forces of the minimal
2510 swap_em_state(&s_min
, &s_try
);
2516 /* Write to trn, if necessary */
2517 do_x
= do_per_step(steps_accepted
, inputrec
->nstxout
);
2518 do_f
= do_per_step(steps_accepted
, inputrec
->nstfout
);
2519 write_em_traj(fplog
, cr
, outf
, do_x
, do_f
, nullptr, top_global
, inputrec
, count
, s_min
,
2520 state_global
, observablesHistory
);
2524 /* If energy is not smaller make the step smaller... */
2527 if (DOMAINDECOMP(cr
) && s_min
->s
.ddp_count
!= cr
->dd
->ddp_count
)
2529 /* Reload the old state */
2530 em_dd_partition_system(fplog
, mdlog
, count
, cr
, top_global
, inputrec
, imdSession
,
2531 pull_work
, s_min
, &top
, mdAtoms
, fr
, vsite
, constr
, nrnb
, wcycle
);
2535 // If the force is very small after finishing minimization,
2536 // we risk dividing by zero when calculating the step size.
2537 // So we check first if the minimization has stopped before
2538 // trying to obtain a new step size.
2541 /* Determine new step */
2542 stepsize
= ustep
/ s_min
->fmax
;
2545 /* Check if stepsize is too small, with 1 nm as a characteristic length */
2547 if (count
== nsteps
|| ustep
< 1e-12)
2549 if (count
== nsteps
|| ustep
< 1e-6)
2554 warn_step(fplog
, inputrec
->em_tol
, s_min
->fmax
, count
== nsteps
, constr
!= nullptr);
2559 /* Send IMD energies and positions, if bIMD is TRUE. */
2560 if (imdSession
->run(count
, TRUE
, MASTER(cr
) ? state_global
->box
: nullptr,
2561 MASTER(cr
) ? state_global
->x
.rvec_array() : nullptr, 0)
2564 imdSession
->sendPositionsAndEnergies();
2568 } /* End of the loop */
2570 /* Print some data... */
2573 fprintf(stderr
, "\nwriting lowest energy coordinates.\n");
2575 write_em_traj(fplog
, cr
, outf
, TRUE
, inputrec
->nstfout
!= 0, ftp2fn(efSTO
, nfile
, fnm
),
2576 top_global
, inputrec
, count
, s_min
, state_global
, observablesHistory
);
2580 double sqrtNumAtoms
= sqrt(static_cast<double>(state_global
->natoms
));
2582 print_converged(stderr
, SD
, inputrec
->em_tol
, count
, bDone
, nsteps
, s_min
, sqrtNumAtoms
);
2583 print_converged(fplog
, SD
, inputrec
->em_tol
, count
, bDone
, nsteps
, s_min
, sqrtNumAtoms
);
2586 finish_em(cr
, outf
, walltime_accounting
, wcycle
);
2588 /* To print the actual number of steps we needed somewhere */
2589 inputrec
->nsteps
= count
;
2591 walltime_accounting_set_nsteps_done(walltime_accounting
, count
);
2594 void LegacySimulator::do_nm()
2596 const char* NM
= "Normal Mode Analysis";
2598 gmx_localtop_t
top(top_global
->ffparams
);
2599 gmx_global_stat_t gstat
;
2601 rvec mu_tot
= { 0 };
2603 gmx_bool bSparse
; /* use sparse matrix storage format */
2605 gmx_sparsematrix_t
* sparse_matrix
= nullptr;
2606 real
* full_matrix
= nullptr;
2608 /* added with respect to mdrun */
2610 real der_range
= 10.0 * std::sqrt(GMX_REAL_EPS
);
2612 bool bIsMaster
= MASTER(cr
);
2613 auto mdatoms
= mdAtoms
->mdatoms();
2618 "Note that activating normal-mode analysis via the integrator "
2619 ".mdp option and the command gmx mdrun may "
2620 "be available in a different form in a future version of GROMACS, "
2621 "e.g. gmx normal-modes.");
2623 if (constr
!= nullptr)
2627 "Constraints present with Normal Mode Analysis, this combination is not supported");
2630 gmx_shellfc_t
* shellfc
;
2632 em_state_t state_work
{};
2634 /* Init em and store the local state in state_minimum */
2635 init_em(fplog
, mdlog
, NM
, cr
, inputrec
, imdSession
, pull_work
, state_global
, top_global
,
2636 &state_work
, &top
, nrnb
, fr
, mdAtoms
, &gstat
, vsite
, constr
, &shellfc
);
2637 const bool simulationsShareState
= false;
2638 gmx_mdoutf
* outf
= init_mdoutf(fplog
, nfile
, fnm
, mdrunOptions
, cr
, outputProvider
,
2639 mdModulesNotifier
, inputrec
, top_global
, nullptr, wcycle
,
2640 StartingBehavior::NewSimulation
, simulationsShareState
, ms
);
2642 std::vector
<int> atom_index
= get_atom_index(top_global
);
2643 std::vector
<gmx::RVec
> fneg(atom_index
.size(), { 0, 0, 0 });
2644 snew(dfdx
, atom_index
.size());
2650 "NOTE: This version of GROMACS has been compiled in single precision,\n"
2651 " which MIGHT not be accurate enough for normal mode analysis.\n"
2652 " GROMACS now uses sparse matrix storage, so the memory requirements\n"
2653 " are fairly modest even if you recompile in double precision.\n\n");
2657 /* Check if we can/should use sparse storage format.
2659 * Sparse format is only useful when the Hessian itself is sparse, which it
2660 * will be when we use a cutoff.
2661 * For small systems (n<1000) it is easier to always use full matrix format, though.
2663 if (EEL_FULL(fr
->ic
->eeltype
) || fr
->rlist
== 0.0)
2665 GMX_LOG(mdlog
.warning
)
2666 .appendText("Non-cutoff electrostatics used, forcing full Hessian format.");
2669 else if (atom_index
.size() < 1000)
2671 GMX_LOG(mdlog
.warning
)
2672 .appendTextFormatted("Small system size (N=%zu), using full Hessian format.",
2678 GMX_LOG(mdlog
.warning
).appendText("Using compressed symmetric sparse Hessian format.");
2682 /* Number of dimensions, based on real atoms, that is not vsites or shell */
2683 sz
= DIM
* atom_index
.size();
2685 fprintf(stderr
, "Allocating Hessian memory...\n\n");
2689 sparse_matrix
= gmx_sparsematrix_init(sz
);
2690 sparse_matrix
->compressed_symmetric
= TRUE
;
2694 snew(full_matrix
, sz
* sz
);
2697 /* Write start time and temperature */
2698 print_em_start(fplog
, cr
, walltime_accounting
, wcycle
, NM
);
2700 /* fudge nr of steps to nr of atoms */
2701 inputrec
->nsteps
= atom_index
.size() * 2;
2705 fprintf(stderr
, "starting normal mode calculation '%s'\n%" PRId64
" steps.\n\n",
2706 *(top_global
->name
), inputrec
->nsteps
);
2709 nnodes
= cr
->nnodes
;
2711 /* Make evaluate_energy do a single node force calculation */
2713 EnergyEvaluator energyEvaluator
{ fplog
, mdlog
, cr
, ms
, top_global
, &top
,
2714 inputrec
, imdSession
, pull_work
, nrnb
, wcycle
, gstat
,
2715 vsite
, constr
, mdAtoms
, fr
, runScheduleWork
, enerd
};
2716 energyEvaluator
.run(&state_work
, mu_tot
, vir
, pres
, -1, TRUE
);
2717 cr
->nnodes
= nnodes
;
2719 /* if forces are not small, warn user */
2720 get_state_f_norm_max(cr
, &(inputrec
->opts
), mdatoms
, &state_work
);
2722 GMX_LOG(mdlog
.warning
).appendTextFormatted("Maximum force:%12.5e", state_work
.fmax
);
2723 if (state_work
.fmax
> 1.0e-3)
2725 GMX_LOG(mdlog
.warning
)
2727 "The force is probably not small enough to "
2728 "ensure that you are at a minimum.\n"
2729 "Be aware that negative eigenvalues may occur\n"
2730 "when the resulting matrix is diagonalized.");
2733 /***********************************************************
2735 * Loop over all pairs in matrix
2737 * do_force called twice. Once with positive and
2738 * once with negative displacement
2740 ************************************************************/
2742 /* Steps are divided one by one over the nodes */
2744 auto state_work_x
= makeArrayRef(state_work
.s
.x
);
2745 auto state_work_f
= state_work
.f
.view().force();
2746 for (index aid
= cr
->nodeid
; aid
< ssize(atom_index
); aid
+= nnodes
)
2748 size_t atom
= atom_index
[aid
];
2749 for (size_t d
= 0; d
< DIM
; d
++)
2752 int force_flags
= GMX_FORCE_STATECHANGED
| GMX_FORCE_ALLFORCES
;
2755 x_min
= state_work_x
[atom
][d
];
2757 for (unsigned int dx
= 0; (dx
< 2); dx
++)
2761 state_work_x
[atom
][d
] = x_min
- der_range
;
2765 state_work_x
[atom
][d
] = x_min
+ der_range
;
2768 /* Make evaluate_energy do a single node force calculation */
2772 /* Now is the time to relax the shells */
2773 relax_shell_flexcon(fplog
, cr
, ms
, mdrunOptions
.verbose
, nullptr, step
, inputrec
,
2774 imdSession
, pull_work
, bNS
, force_flags
, &top
, constr
, enerd
,
2775 state_work
.s
.natoms
, state_work
.s
.x
.arrayRefWithPadding(),
2776 state_work
.s
.v
.arrayRefWithPadding(), state_work
.s
.box
,
2777 state_work
.s
.lambda
, &state_work
.s
.hist
, &state_work
.f
.view(),
2778 vir
, mdatoms
, nrnb
, wcycle
, shellfc
, fr
, runScheduleWork
, t
,
2779 mu_tot
, vsite
, DDBalanceRegionHandler(nullptr));
2785 energyEvaluator
.run(&state_work
, mu_tot
, vir
, pres
, aid
* 2 + dx
, FALSE
);
2788 cr
->nnodes
= nnodes
;
2792 std::copy(state_work_f
.begin(), state_work_f
.begin() + atom_index
.size(),
2797 /* x is restored to original */
2798 state_work_x
[atom
][d
] = x_min
;
2800 for (size_t j
= 0; j
< atom_index
.size(); j
++)
2802 for (size_t k
= 0; (k
< DIM
); k
++)
2804 dfdx
[j
][k
] = -(state_work_f
[atom_index
[j
]][k
] - fneg
[j
][k
]) / (2 * der_range
);
2811 # define mpi_type GMX_MPI_REAL
2812 MPI_Send(dfdx
[0], atom_index
.size() * DIM
, mpi_type
, MASTER(cr
), cr
->nodeid
,
2813 cr
->mpi_comm_mygroup
);
2818 for (index node
= 0; (node
< nnodes
&& aid
+ node
< ssize(atom_index
)); node
++)
2824 MPI_Recv(dfdx
[0], atom_index
.size() * DIM
, mpi_type
, node
, node
,
2825 cr
->mpi_comm_mygroup
, &stat
);
2830 row
= (aid
+ node
) * DIM
+ d
;
2832 for (size_t j
= 0; j
< atom_index
.size(); j
++)
2834 for (size_t k
= 0; k
< DIM
; k
++)
2840 if (col
>= row
&& dfdx
[j
][k
] != 0.0)
2842 gmx_sparsematrix_increment_value(sparse_matrix
, row
, col
, dfdx
[j
][k
]);
2847 full_matrix
[row
* sz
+ col
] = dfdx
[j
][k
];
2854 if (mdrunOptions
.verbose
&& fplog
)
2859 /* write progress */
2860 if (bIsMaster
&& mdrunOptions
.verbose
)
2862 fprintf(stderr
, "\rFinished step %d out of %td",
2863 std::min
<int>(atom
+ nnodes
, atom_index
.size()), ssize(atom_index
));
2870 fprintf(stderr
, "\n\nWriting Hessian...\n");
2871 gmx_mtxio_write(ftp2fn(efMTX
, nfile
, fnm
), sz
, sz
, full_matrix
, sparse_matrix
);
2874 finish_em(cr
, outf
, walltime_accounting
, wcycle
);
2876 walltime_accounting_set_nsteps_done(walltime_accounting
, atom_index
.size() * 2);