Made distance restraints work with threads and DD
[gromacs.git] / src / gromacs / mdlib / force.cpp
blobfa592e1993b0a7736fe2c524975858c6f2c0bf29
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "force.h"
41 #include "config.h"
43 #include <assert.h>
44 #include <math.h>
45 #include <string.h>
47 #include "gromacs/domdec/domdec.h"
48 #include "gromacs/domdec/domdec_struct.h"
49 #include "gromacs/ewald/ewald.h"
50 #include "gromacs/ewald/long-range-correction.h"
51 #include "gromacs/ewald/pme.h"
52 #include "gromacs/gmxlib/network.h"
53 #include "gromacs/gmxlib/nrnb.h"
54 #include "gromacs/gmxlib/nonbonded/nonbonded.h"
55 #include "gromacs/listed-forces/listed-forces.h"
56 #include "gromacs/math/vec.h"
57 #include "gromacs/math/vecdump.h"
58 #include "gromacs/mdlib/forcerec-threading.h"
59 #include "gromacs/mdlib/genborn.h"
60 #include "gromacs/mdlib/mdrun.h"
61 #include "gromacs/mdlib/ns.h"
62 #include "gromacs/mdlib/qmmm.h"
63 #include "gromacs/mdtypes/commrec.h"
64 #include "gromacs/mdtypes/inputrec.h"
65 #include "gromacs/mdtypes/md_enums.h"
66 #include "gromacs/pbcutil/ishift.h"
67 #include "gromacs/pbcutil/mshift.h"
68 #include "gromacs/pbcutil/pbc.h"
69 #include "gromacs/timing/wallcycle.h"
70 #include "gromacs/utility/cstringutil.h"
71 #include "gromacs/utility/exceptions.h"
72 #include "gromacs/utility/fatalerror.h"
73 #include "gromacs/utility/smalloc.h"
75 void ns(FILE *fp,
76 t_forcerec *fr,
77 matrix box,
78 gmx_groups_t *groups,
79 gmx_localtop_t *top,
80 t_mdatoms *md,
81 t_commrec *cr,
82 t_nrnb *nrnb,
83 gmx_bool bFillGrid)
85 int nsearch;
88 if (!fr->ns->nblist_initialized)
90 init_neighbor_list(fp, fr, md->homenr);
93 nsearch = search_neighbours(fp, fr, box, top, groups, cr, nrnb, md,
94 bFillGrid);
95 if (debug)
97 fprintf(debug, "nsearch = %d\n", nsearch);
100 /* Check whether we have to do dynamic load balancing */
101 /*if ((nsb->nstDlb > 0) && (mod(step,nsb->nstDlb) == 0))
102 count_nb(cr,nsb,&(top->blocks[ebCGS]),nns,fr->nlr,
103 &(top->idef),opts->ngener);
105 if (fr->ns->dump_nl > 0)
107 dump_nblist(fp, cr, fr, fr->ns->dump_nl);
111 static void reduce_thread_energies(tensor vir_q, tensor vir_lj,
112 real *Vcorr_q, real *Vcorr_lj,
113 real *dvdl_q, real *dvdl_lj,
114 int nthreads,
115 ewald_corr_thread_t *ewc_t)
117 int t;
119 for (t = 1; t < nthreads; t++)
121 *Vcorr_q += ewc_t[t].Vcorr_q;
122 *Vcorr_lj += ewc_t[t].Vcorr_lj;
123 *dvdl_q += ewc_t[t].dvdl[efptCOUL];
124 *dvdl_lj += ewc_t[t].dvdl[efptVDW];
125 m_add(vir_q, ewc_t[t].vir_q, vir_q);
126 m_add(vir_lj, ewc_t[t].vir_lj, vir_lj);
130 void do_force_lowlevel(t_forcerec *fr, t_inputrec *ir,
131 t_idef *idef, t_commrec *cr,
132 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
133 t_mdatoms *md,
134 rvec x[], history_t *hist,
135 rvec f[],
136 gmx_enerdata_t *enerd,
137 t_fcdata *fcd,
138 gmx_localtop_t *top,
139 gmx_genborn_t *born,
140 gmx_bool bBornRadii,
141 matrix box,
142 t_lambda *fepvals,
143 real *lambda,
144 t_graph *graph,
145 t_blocka *excl,
146 rvec mu_tot[],
147 int flags,
148 float *cycles_pme)
150 int i, j;
151 int donb_flags;
152 gmx_bool bSB;
153 int pme_flags;
154 matrix boxs;
155 rvec box_size;
156 t_pbc pbc;
157 real dvdl_dum[efptNR], dvdl_nb[efptNR];
159 #if GMX_MPI
160 double t0 = 0.0, t1, t2, t3; /* time measurement for coarse load balancing */
161 #endif
163 set_pbc(&pbc, fr->ePBC, box);
165 /* reset free energy components */
166 for (i = 0; i < efptNR; i++)
168 dvdl_nb[i] = 0;
169 dvdl_dum[i] = 0;
172 /* Reset box */
173 for (i = 0; (i < DIM); i++)
175 box_size[i] = box[i][i];
178 /* do QMMM first if requested */
179 if (fr->bQMMM)
181 enerd->term[F_EQM] = calculate_QMMM(cr, x, f, fr);
184 /* Call the short range functions all in one go. */
186 #if GMX_MPI
187 /*#define TAKETIME ((cr->npmenodes) && (fr->timesteps < 12))*/
188 #define TAKETIME FALSE
189 if (TAKETIME)
191 MPI_Barrier(cr->mpi_comm_mygroup);
192 t0 = MPI_Wtime();
194 #endif
196 if (ir->nwall)
198 /* foreign lambda component for walls */
199 real dvdl_walls = do_walls(ir, fr, box, md, x, f, lambda[efptVDW],
200 enerd->grpp.ener[egLJSR], nrnb);
201 enerd->dvdl_lin[efptVDW] += dvdl_walls;
204 /* If doing GB, reset dvda and calculate the Born radii */
205 if (ir->implicit_solvent)
207 wallcycle_sub_start(wcycle, ewcsNONBONDED);
209 for (i = 0; i < born->nr; i++)
211 fr->dvda[i] = 0;
214 if (bBornRadii)
216 calc_gb_rad(cr, fr, ir, top, x, fr->gblist, born, md, nrnb);
219 wallcycle_sub_stop(wcycle, ewcsNONBONDED);
222 where();
223 /* We only do non-bonded calculation with group scheme here, the verlet
224 * calls are done from do_force_cutsVERLET(). */
225 if (fr->cutoff_scheme == ecutsGROUP && (flags & GMX_FORCE_NONBONDED))
227 donb_flags = 0;
228 /* Add short-range interactions */
229 donb_flags |= GMX_NONBONDED_DO_SR;
231 /* Currently all group scheme kernels always calculate (shift-)forces */
232 if (flags & GMX_FORCE_FORCES)
234 donb_flags |= GMX_NONBONDED_DO_FORCE;
236 if (flags & GMX_FORCE_VIRIAL)
238 donb_flags |= GMX_NONBONDED_DO_SHIFTFORCE;
240 if (flags & GMX_FORCE_ENERGY)
242 donb_flags |= GMX_NONBONDED_DO_POTENTIAL;
245 wallcycle_sub_start(wcycle, ewcsNONBONDED);
246 do_nonbonded(fr, x, f, md, excl,
247 &enerd->grpp, nrnb,
248 lambda, dvdl_nb, -1, -1, donb_flags);
250 /* If we do foreign lambda and we have soft-core interactions
251 * we have to recalculate the (non-linear) energies contributions.
253 if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && fepvals->sc_alpha != 0)
255 for (i = 0; i < enerd->n_lambda; i++)
257 real lam_i[efptNR];
259 for (j = 0; j < efptNR; j++)
261 lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
263 reset_foreign_enerdata(enerd);
264 do_nonbonded(fr, x, f, md, excl,
265 &(enerd->foreign_grpp), nrnb,
266 lam_i, dvdl_dum, -1, -1,
267 (donb_flags & ~GMX_NONBONDED_DO_FORCE) | GMX_NONBONDED_DO_FOREIGNLAMBDA);
268 sum_epot(&(enerd->foreign_grpp), enerd->foreign_term);
269 enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
272 wallcycle_sub_stop(wcycle, ewcsNONBONDED);
273 where();
276 /* If we are doing GB, calculate bonded forces and apply corrections
277 * to the solvation forces */
278 /* MRS: Eventually, many need to include free energy contribution here! */
279 if (ir->implicit_solvent)
281 wallcycle_sub_start(wcycle, ewcsLISTED);
282 calc_gb_forces(cr, md, born, top, x, f, fr, idef,
283 ir->gb_algorithm, ir->sa_algorithm, nrnb, &pbc, graph, enerd);
284 wallcycle_sub_stop(wcycle, ewcsLISTED);
287 #if GMX_MPI
288 if (TAKETIME)
290 t1 = MPI_Wtime();
291 fr->t_fnbf += t1-t0;
293 #endif
295 if (fepvals->sc_alpha != 0)
297 enerd->dvdl_nonlin[efptVDW] += dvdl_nb[efptVDW];
299 else
301 enerd->dvdl_lin[efptVDW] += dvdl_nb[efptVDW];
304 if (fepvals->sc_alpha != 0)
306 /* even though coulomb part is linear, we already added it, beacuse we
307 need to go through the vdw calculation anyway */
309 enerd->dvdl_nonlin[efptCOUL] += dvdl_nb[efptCOUL];
311 else
313 enerd->dvdl_lin[efptCOUL] += dvdl_nb[efptCOUL];
316 if (debug)
318 pr_rvecs(debug, 0, "fshift after SR", fr->fshift, SHIFTS);
321 /* Shift the coordinates. Must be done before listed forces and PPPM,
322 * but is also necessary for SHAKE and update, therefore it can NOT
323 * go when no listed forces have to be evaluated.
325 * The shifting and PBC code is deliberately not timed, since with
326 * the Verlet scheme it only takes non-zero time with triclinic
327 * boxes, and even then the time is around a factor of 100 less
328 * than the next smallest counter.
332 /* Here sometimes we would not need to shift with NBFonly,
333 * but we do so anyhow for consistency of the returned coordinates.
335 if (graph)
337 shift_self(graph, box, x);
338 if (TRICLINIC(box))
340 inc_nrnb(nrnb, eNR_SHIFTX, 2*graph->nnodes);
342 else
344 inc_nrnb(nrnb, eNR_SHIFTX, graph->nnodes);
347 /* Check whether we need to do listed interactions or correct for exclusions */
348 if (fr->bMolPBC &&
349 ((flags & GMX_FORCE_LISTED)
350 || EEL_RF(fr->eeltype) || EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype)))
352 /* TODO There are no electrostatics methods that require this
353 transformation, when using the Verlet scheme, so update the
354 above conditional. */
355 /* Since all atoms are in the rectangular or triclinic unit-cell,
356 * only single box vector shifts (2 in x) are required.
358 set_pbc_dd(&pbc, fr->ePBC, DOMAINDECOMP(cr) ? cr->dd->nc : nullptr,
359 TRUE, box);
362 do_force_listed(wcycle, box, ir->fepvals, cr,
363 idef, (const rvec *) x, hist, f, fr,
364 &pbc, graph, enerd, nrnb, lambda, md, fcd,
365 DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL,
366 flags);
368 where();
370 *cycles_pme = 0;
371 clear_mat(fr->vir_el_recip);
372 clear_mat(fr->vir_lj_recip);
374 /* Do long-range electrostatics and/or LJ-PME, including related short-range
375 * corrections.
377 if (EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype))
379 int status = 0;
380 real Vlr_q = 0, Vlr_lj = 0, Vcorr_q = 0, Vcorr_lj = 0;
381 real dvdl_long_range_q = 0, dvdl_long_range_lj = 0;
383 bSB = (ir->nwall == 2);
384 if (bSB)
386 copy_mat(box, boxs);
387 svmul(ir->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
388 box_size[ZZ] *= ir->wall_ewald_zfac;
391 if (EEL_PME_EWALD(fr->eeltype) || EVDW_PME(fr->vdwtype))
393 real dvdl_long_range_correction_q = 0;
394 real dvdl_long_range_correction_lj = 0;
395 /* With the Verlet scheme exclusion forces are calculated
396 * in the non-bonded kernel.
398 /* The TPI molecule does not have exclusions with the rest
399 * of the system and no intra-molecular PME grid
400 * contributions will be calculated in
401 * gmx_pme_calc_energy.
403 if ((ir->cutoff_scheme == ecutsGROUP && fr->n_tpi == 0) ||
404 ir->ewald_geometry != eewg3D ||
405 ir->epsilon_surface != 0)
407 int nthreads, t;
409 wallcycle_sub_start(wcycle, ewcsEWALD_CORRECTION);
411 if (fr->n_tpi > 0)
413 gmx_fatal(FARGS, "TPI with PME currently only works in a 3D geometry with tin-foil boundary conditions");
416 nthreads = fr->nthread_ewc;
417 #pragma omp parallel for num_threads(nthreads) schedule(static)
418 for (t = 0; t < nthreads; t++)
422 tensor *vir_q, *vir_lj;
423 real *Vcorrt_q, *Vcorrt_lj, *dvdlt_q, *dvdlt_lj;
424 if (t == 0)
426 vir_q = &fr->vir_el_recip;
427 vir_lj = &fr->vir_lj_recip;
428 Vcorrt_q = &Vcorr_q;
429 Vcorrt_lj = &Vcorr_lj;
430 dvdlt_q = &dvdl_long_range_correction_q;
431 dvdlt_lj = &dvdl_long_range_correction_lj;
433 else
435 vir_q = &fr->ewc_t[t].vir_q;
436 vir_lj = &fr->ewc_t[t].vir_lj;
437 Vcorrt_q = &fr->ewc_t[t].Vcorr_q;
438 Vcorrt_lj = &fr->ewc_t[t].Vcorr_lj;
439 dvdlt_q = &fr->ewc_t[t].dvdl[efptCOUL];
440 dvdlt_lj = &fr->ewc_t[t].dvdl[efptVDW];
441 clear_mat(*vir_q);
442 clear_mat(*vir_lj);
444 *dvdlt_q = 0;
445 *dvdlt_lj = 0;
447 /* Threading is only supported with the Verlet cut-off
448 * scheme and then only single particle forces (no
449 * exclusion forces) are calculated, so we can store
450 * the forces in the normal, single fr->f_novirsum array.
452 ewald_LRcorrection(md->homenr, cr, nthreads, t, fr,
453 md->chargeA, md->chargeB,
454 md->sqrt_c6A, md->sqrt_c6B,
455 md->sigmaA, md->sigmaB,
456 md->sigma3A, md->sigma3B,
457 md->nChargePerturbed || md->nTypePerturbed,
458 ir->cutoff_scheme != ecutsVERLET,
459 excl, x, bSB ? boxs : box, mu_tot,
460 ir->ewald_geometry,
461 ir->epsilon_surface,
462 fr->f_novirsum, *vir_q, *vir_lj,
463 Vcorrt_q, Vcorrt_lj,
464 lambda[efptCOUL], lambda[efptVDW],
465 dvdlt_q, dvdlt_lj);
467 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
469 if (nthreads > 1)
471 reduce_thread_energies(fr->vir_el_recip, fr->vir_lj_recip,
472 &Vcorr_q, &Vcorr_lj,
473 &dvdl_long_range_correction_q,
474 &dvdl_long_range_correction_lj,
475 nthreads, fr->ewc_t);
477 wallcycle_sub_stop(wcycle, ewcsEWALD_CORRECTION);
480 if (EEL_PME_EWALD(fr->eeltype) && fr->n_tpi == 0)
482 /* This is not in a subcounter because it takes a
483 negligible and constant-sized amount of time */
484 Vcorr_q += ewald_charge_correction(cr, fr, lambda[efptCOUL], box,
485 &dvdl_long_range_correction_q,
486 fr->vir_el_recip);
489 enerd->dvdl_lin[efptCOUL] += dvdl_long_range_correction_q;
490 enerd->dvdl_lin[efptVDW] += dvdl_long_range_correction_lj;
492 if ((EEL_PME(fr->eeltype) || EVDW_PME(fr->vdwtype)) && (cr->duty & DUTY_PME))
494 /* Do reciprocal PME for Coulomb and/or LJ. */
495 assert(fr->n_tpi >= 0);
496 if (fr->n_tpi == 0 || (flags & GMX_FORCE_STATECHANGED))
498 pme_flags = GMX_PME_SPREAD | GMX_PME_SOLVE;
499 if (EEL_PME(fr->eeltype))
501 pme_flags |= GMX_PME_DO_COULOMB;
503 if (EVDW_PME(fr->vdwtype))
505 pme_flags |= GMX_PME_DO_LJ;
507 if (flags & GMX_FORCE_FORCES)
509 pme_flags |= GMX_PME_CALC_F;
511 if (flags & GMX_FORCE_VIRIAL)
513 pme_flags |= GMX_PME_CALC_ENER_VIR;
515 if (fr->n_tpi > 0)
517 /* We don't calculate f, but we do want the potential */
518 pme_flags |= GMX_PME_CALC_POT;
520 wallcycle_start(wcycle, ewcPMEMESH);
521 status = gmx_pme_do(fr->pmedata,
522 0, md->homenr - fr->n_tpi,
523 x, fr->f_novirsum,
524 md->chargeA, md->chargeB,
525 md->sqrt_c6A, md->sqrt_c6B,
526 md->sigmaA, md->sigmaB,
527 bSB ? boxs : box, cr,
528 DOMAINDECOMP(cr) ? dd_pme_maxshift_x(cr->dd) : 0,
529 DOMAINDECOMP(cr) ? dd_pme_maxshift_y(cr->dd) : 0,
530 nrnb, wcycle,
531 fr->vir_el_recip, fr->ewaldcoeff_q,
532 fr->vir_lj_recip, fr->ewaldcoeff_lj,
533 &Vlr_q, &Vlr_lj,
534 lambda[efptCOUL], lambda[efptVDW],
535 &dvdl_long_range_q, &dvdl_long_range_lj, pme_flags);
536 *cycles_pme = wallcycle_stop(wcycle, ewcPMEMESH);
537 if (status != 0)
539 gmx_fatal(FARGS, "Error %d in reciprocal PME routine", status);
541 /* We should try to do as little computation after
542 * this as possible, because parallel PME synchronizes
543 * the nodes, so we want all load imbalance of the
544 * rest of the force calculation to be before the PME
545 * call. DD load balancing is done on the whole time
546 * of the force call (without PME).
549 if (fr->n_tpi > 0)
551 if (EVDW_PME(ir->vdwtype))
554 gmx_fatal(FARGS, "Test particle insertion not implemented with LJ-PME");
556 /* Determine the PME grid energy of the test molecule
557 * with the PME grid potential of the other charges.
559 gmx_pme_calc_energy(fr->pmedata, fr->n_tpi,
560 x + md->homenr - fr->n_tpi,
561 md->chargeA + md->homenr - fr->n_tpi,
562 &Vlr_q);
567 if (!EEL_PME(fr->eeltype) && EEL_PME_EWALD(fr->eeltype))
569 Vlr_q = do_ewald(ir, x, fr->f_novirsum,
570 md->chargeA, md->chargeB,
571 box_size, cr, md->homenr,
572 fr->vir_el_recip, fr->ewaldcoeff_q,
573 lambda[efptCOUL], &dvdl_long_range_q, fr->ewald_table);
576 /* Note that with separate PME nodes we get the real energies later */
577 enerd->dvdl_lin[efptCOUL] += dvdl_long_range_q;
578 enerd->dvdl_lin[efptVDW] += dvdl_long_range_lj;
579 enerd->term[F_COUL_RECIP] = Vlr_q + Vcorr_q;
580 enerd->term[F_LJ_RECIP] = Vlr_lj + Vcorr_lj;
581 if (debug)
583 fprintf(debug, "Vlr_q = %g, Vcorr_q = %g, Vlr_corr_q = %g\n",
584 Vlr_q, Vcorr_q, enerd->term[F_COUL_RECIP]);
585 pr_rvecs(debug, 0, "vir_el_recip after corr", fr->vir_el_recip, DIM);
586 pr_rvecs(debug, 0, "fshift after LR Corrections", fr->fshift, SHIFTS);
587 fprintf(debug, "Vlr_lj: %g, Vcorr_lj = %g, Vlr_corr_lj = %g\n",
588 Vlr_lj, Vcorr_lj, enerd->term[F_LJ_RECIP]);
589 pr_rvecs(debug, 0, "vir_lj_recip after corr", fr->vir_lj_recip, DIM);
592 else
594 /* Is there a reaction-field exclusion correction needed?
595 * With the Verlet scheme, exclusion forces are calculated
596 * in the non-bonded kernel.
598 if (ir->cutoff_scheme != ecutsVERLET && EEL_RF(fr->eeltype))
600 real dvdl_rf_excl = 0;
601 enerd->term[F_RF_EXCL] =
602 RF_excl_correction(fr, graph, md, excl, x, f,
603 fr->fshift, &pbc, lambda[efptCOUL], &dvdl_rf_excl);
605 enerd->dvdl_lin[efptCOUL] += dvdl_rf_excl;
608 where();
610 if (debug)
612 print_nrnb(debug, nrnb);
615 #if GMX_MPI
616 if (TAKETIME)
618 t2 = MPI_Wtime();
619 MPI_Barrier(cr->mpi_comm_mygroup);
620 t3 = MPI_Wtime();
621 fr->t_wait += t3-t2;
622 if (fr->timesteps == 11)
624 char buf[22];
625 fprintf(stderr, "* PP load balancing info: rank %d, step %s, rel wait time=%3.0f%% , load string value: %7.2f\n",
626 cr->nodeid, gmx_step_str(fr->timesteps, buf),
627 100*fr->t_wait/(fr->t_wait+fr->t_fnbf),
628 (fr->t_fnbf+fr->t_wait)/fr->t_fnbf);
630 fr->timesteps++;
632 #endif
634 if (debug)
636 pr_rvecs(debug, 0, "fshift after bondeds", fr->fshift, SHIFTS);
641 void init_enerdata(int ngener, int n_lambda, gmx_enerdata_t *enerd)
643 int i, n2;
645 for (i = 0; i < F_NRE; i++)
647 enerd->term[i] = 0;
648 enerd->foreign_term[i] = 0;
652 for (i = 0; i < efptNR; i++)
654 enerd->dvdl_lin[i] = 0;
655 enerd->dvdl_nonlin[i] = 0;
658 n2 = ngener*ngener;
659 if (debug)
661 fprintf(debug, "Creating %d sized group matrix for energies\n", n2);
663 enerd->grpp.nener = n2;
664 enerd->foreign_grpp.nener = n2;
665 for (i = 0; (i < egNR); i++)
667 snew(enerd->grpp.ener[i], n2);
668 snew(enerd->foreign_grpp.ener[i], n2);
671 if (n_lambda)
673 enerd->n_lambda = 1 + n_lambda;
674 snew(enerd->enerpart_lambda, enerd->n_lambda);
676 else
678 enerd->n_lambda = 0;
682 void destroy_enerdata(gmx_enerdata_t *enerd)
684 int i;
686 for (i = 0; (i < egNR); i++)
688 sfree(enerd->grpp.ener[i]);
691 for (i = 0; (i < egNR); i++)
693 sfree(enerd->foreign_grpp.ener[i]);
696 if (enerd->n_lambda)
698 sfree(enerd->enerpart_lambda);
702 static real sum_v(int n, real v[])
704 real t;
705 int i;
707 t = 0.0;
708 for (i = 0; (i < n); i++)
710 t = t + v[i];
713 return t;
716 void sum_epot(gmx_grppairener_t *grpp, real *epot)
718 int i;
720 /* Accumulate energies */
721 epot[F_COUL_SR] = sum_v(grpp->nener, grpp->ener[egCOULSR]);
722 epot[F_LJ] = sum_v(grpp->nener, grpp->ener[egLJSR]);
723 epot[F_LJ14] = sum_v(grpp->nener, grpp->ener[egLJ14]);
724 epot[F_COUL14] = sum_v(grpp->nener, grpp->ener[egCOUL14]);
725 /* We have already added 1-2,1-3, and 1-4 terms to F_GBPOL */
726 epot[F_GBPOL] += sum_v(grpp->nener, grpp->ener[egGB]);
728 /* lattice part of LR doesnt belong to any group
729 * and has been added earlier
731 epot[F_BHAM] = sum_v(grpp->nener, grpp->ener[egBHAMSR]);
733 epot[F_EPOT] = 0;
734 for (i = 0; (i < F_EPOT); i++)
736 if (i != F_DISRESVIOL && i != F_ORIRESDEV)
738 epot[F_EPOT] += epot[i];
743 void sum_dhdl(gmx_enerdata_t *enerd, real *lambda, t_lambda *fepvals)
745 int i, j, index;
746 double dlam;
748 enerd->dvdl_lin[efptVDW] += enerd->term[F_DVDL_VDW]; /* include dispersion correction */
749 enerd->term[F_DVDL] = 0.0;
750 for (i = 0; i < efptNR; i++)
752 if (fepvals->separate_dvdl[i])
754 /* could this be done more readably/compactly? */
755 switch (i)
757 case (efptMASS):
758 index = F_DKDL;
759 break;
760 case (efptCOUL):
761 index = F_DVDL_COUL;
762 break;
763 case (efptVDW):
764 index = F_DVDL_VDW;
765 break;
766 case (efptBONDED):
767 index = F_DVDL_BONDED;
768 break;
769 case (efptRESTRAINT):
770 index = F_DVDL_RESTRAINT;
771 break;
772 default:
773 index = F_DVDL;
774 break;
776 enerd->term[index] = enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i];
777 if (debug)
779 fprintf(debug, "dvdl-%s[%2d]: %f: non-linear %f + linear %f\n",
780 efpt_names[i], i, enerd->term[index], enerd->dvdl_nonlin[i], enerd->dvdl_lin[i]);
783 else
785 enerd->term[F_DVDL] += enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i];
786 if (debug)
788 fprintf(debug, "dvd-%sl[%2d]: %f: non-linear %f + linear %f\n",
789 efpt_names[0], i, enerd->term[F_DVDL], enerd->dvdl_nonlin[i], enerd->dvdl_lin[i]);
794 /* Notes on the foreign lambda free energy difference evaluation:
795 * Adding the potential and ekin terms that depend linearly on lambda
796 * as delta lam * dvdl to the energy differences is exact.
797 * For the constraints this is not exact, but we have no other option
798 * without literally changing the lengths and reevaluating the energies at each step.
799 * (try to remedy this post 4.6 - MRS)
801 if (fepvals->separate_dvdl[efptBONDED])
803 enerd->term[F_DVDL_BONDED] += enerd->term[F_DVDL_CONSTR];
805 else
807 enerd->term[F_DVDL] += enerd->term[F_DVDL_CONSTR];
809 enerd->term[F_DVDL_CONSTR] = 0;
811 for (i = 0; i < fepvals->n_lambda; i++)
813 /* note we are iterating over fepvals here!
814 For the current lam, dlam = 0 automatically,
815 so we don't need to add anything to the
816 enerd->enerpart_lambda[0] */
818 /* we don't need to worry about dvdl_lin contributions to dE at
819 current lambda, because the contributions to the current
820 lambda are automatically zeroed */
822 for (j = 0; j < efptNR; j++)
824 /* Note that this loop is over all dhdl components, not just the separated ones */
825 dlam = (fepvals->all_lambda[j][i]-lambda[j]);
826 enerd->enerpart_lambda[i+1] += dlam*enerd->dvdl_lin[j];
827 if (debug)
829 fprintf(debug, "enerdiff lam %g: (%15s), non-linear %f linear %f*%f\n",
830 fepvals->all_lambda[j][i], efpt_names[j],
831 (enerd->enerpart_lambda[i+1] - enerd->enerpart_lambda[0]),
832 dlam, enerd->dvdl_lin[j]);
839 void reset_foreign_enerdata(gmx_enerdata_t *enerd)
841 int i, j;
843 /* First reset all foreign energy components. Foreign energies always called on
844 neighbor search steps */
845 for (i = 0; (i < egNR); i++)
847 for (j = 0; (j < enerd->grpp.nener); j++)
849 enerd->foreign_grpp.ener[i][j] = 0.0;
853 /* potential energy components */
854 for (i = 0; (i <= F_EPOT); i++)
856 enerd->foreign_term[i] = 0.0;
860 void reset_enerdata(gmx_enerdata_t *enerd)
862 int i, j;
864 /* First reset all energy components. */
865 for (i = 0; (i < egNR); i++)
867 for (j = 0; (j < enerd->grpp.nener); j++)
869 enerd->grpp.ener[i][j] = 0.0;
872 for (i = 0; i < efptNR; i++)
874 enerd->dvdl_lin[i] = 0.0;
875 enerd->dvdl_nonlin[i] = 0.0;
878 /* Normal potential energy components */
879 for (i = 0; (i <= F_EPOT); i++)
881 enerd->term[i] = 0.0;
883 enerd->term[F_DVDL] = 0.0;
884 enerd->term[F_DVDL_COUL] = 0.0;
885 enerd->term[F_DVDL_VDW] = 0.0;
886 enerd->term[F_DVDL_BONDED] = 0.0;
887 enerd->term[F_DVDL_RESTRAINT] = 0.0;
888 enerd->term[F_DKDL] = 0.0;
889 if (enerd->n_lambda > 0)
891 for (i = 0; i < enerd->n_lambda; i++)
893 enerd->enerpart_lambda[i] = 0.0;
896 /* reset foreign energy data - separate function since we also call it elsewhere */
897 reset_foreign_enerdata(enerd);