2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2008, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
49 #include "gromacs/domdec/dlbtiming.h"
50 #include "gromacs/domdec/domdec.h"
51 #include "gromacs/domdec/domdec_struct.h"
52 #include "gromacs/gmxlib/chargegroup.h"
53 #include "gromacs/gmxlib/network.h"
54 #include "gromacs/math/functions.h"
55 #include "gromacs/math/units.h"
56 #include "gromacs/math/vec.h"
57 #include "gromacs/math/vecdump.h"
58 #include "gromacs/mdlib/constr.h"
59 #include "gromacs/mdlib/force.h"
60 #include "gromacs/mdlib/force_flags.h"
61 #include "gromacs/mdlib/gmx_omp_nthreads.h"
62 #include "gromacs/mdlib/mdatoms.h"
63 #include "gromacs/mdlib/vsite.h"
64 #include "gromacs/mdtypes/commrec.h"
65 #include "gromacs/mdtypes/enerdata.h"
66 #include "gromacs/mdtypes/forcerec.h"
67 #include "gromacs/mdtypes/inputrec.h"
68 #include "gromacs/mdtypes/md_enums.h"
69 #include "gromacs/mdtypes/state.h"
70 #include "gromacs/pbcutil/mshift.h"
71 #include "gromacs/pbcutil/pbc.h"
72 #include "gromacs/topology/ifunc.h"
73 #include "gromacs/topology/mtop_lookup.h"
74 #include "gromacs/topology/mtop_util.h"
75 #include "gromacs/utility/arrayref.h"
76 #include "gromacs/utility/arraysize.h"
77 #include "gromacs/utility/cstringutil.h"
78 #include "gromacs/utility/fatalerror.h"
79 #include "gromacs/utility/smalloc.h"
83 int shell
; /* The shell id */
84 int nucl1
, nucl2
, nucl3
; /* The nuclei connected to the shell */
85 /* gmx_bool bInterCG; */ /* Coupled to nuclei outside cg? */
86 real k
; /* force constant */
87 real k_1
; /* 1 over force constant */
93 struct gmx_shellfc_t
{
94 /* Shell counts, indices, parameters and working data */
95 int nshell_gl
; /* The number of shells in the system */
96 t_shell
*shell_gl
; /* All the shells (for DD only) */
97 int *shell_index_gl
; /* Global shell index (for DD only) */
98 gmx_bool bInterCG
; /* Are there inter charge-group shells? */
99 int nshell
; /* The number of local shells */
100 t_shell
*shell
; /* The local shells */
101 int shell_nalloc
; /* The allocation size of shell */
102 gmx_bool bPredict
; /* Predict shell positions */
103 gmx_bool bRequireInit
; /* Require initialization of shell positions */
104 int nflexcon
; /* The number of flexible constraints */
106 /* Temporary arrays, should be fixed size 2 when fully converted to C++ */
107 PaddedVector
<gmx::RVec
> *x
; /* Array for iterative minimization */
108 PaddedVector
<gmx::RVec
> *f
; /* Array for iterative minimization */
110 /* Flexible constraint working data */
111 rvec
*acc_dir
; /* Acceleration direction for flexcon */
112 rvec
*x_old
; /* Old coordinates for flexcon */
113 int flex_nalloc
; /* The allocation size of acc_dir and x_old */
114 rvec
*adir_xnold
; /* Work space for init_adir */
115 rvec
*adir_xnew
; /* Work space for init_adir */
116 int adir_nalloc
; /* Work space for init_adir */
117 std::int64_t numForceEvaluations
; /* Total number of force evaluations */
118 int numConvergedIterations
; /* Total number of iterations that converged */
122 static void pr_shell(FILE *fplog
, int ns
, t_shell s
[])
126 fprintf(fplog
, "SHELL DATA\n");
127 fprintf(fplog
, "%5s %8s %5s %5s %5s\n",
128 "Shell", "Force k", "Nucl1", "Nucl2", "Nucl3");
129 for (i
= 0; (i
< ns
); i
++)
131 fprintf(fplog
, "%5d %8.3f %5d", s
[i
].shell
, 1.0/s
[i
].k_1
, s
[i
].nucl1
);
134 fprintf(fplog
, " %5d\n", s
[i
].nucl2
);
136 else if (s
[i
].nnucl
== 3)
138 fprintf(fplog
, " %5d %5d\n", s
[i
].nucl2
, s
[i
].nucl3
);
142 fprintf(fplog
, "\n");
147 /* TODO The remain call of this function passes non-NULL mass and NULL
148 * mtop, so this routine can be simplified.
150 * The other code path supported doing prediction before the MD loop
151 * started, but even when called, the prediction was always
152 * over-written by a subsequent call in the MD loop, so has been
154 static void predict_shells(FILE *fplog
, rvec x
[], rvec v
[], real dt
,
156 const real mass
[], gmx_mtop_t
*mtop
, gmx_bool bInit
)
158 int i
, m
, s1
, n1
, n2
, n3
;
159 real dt_1
, fudge
, tm
, m1
, m2
, m3
;
162 /* We introduce a fudge factor for performance reasons: with this choice
163 * the initial force on the shells is about a factor of two lower than
172 fprintf(fplog
, "RELAX: Using prediction for initial shell placement\n");
184 for (i
= 0; (i
< ns
); i
++)
195 for (m
= 0; (m
< DIM
); m
++)
197 x
[s1
][m
] += ptr
[n1
][m
]*dt_1
;
210 /* Not the correct masses with FE, but it is just a prediction... */
211 m1
= mtopGetAtomMass(mtop
, n1
, &molb
);
212 m2
= mtopGetAtomMass(mtop
, n2
, &molb
);
215 for (m
= 0; (m
< DIM
); m
++)
217 x
[s1
][m
] += (m1
*ptr
[n1
][m
]+m2
*ptr
[n2
][m
])*tm
;
232 /* Not the correct masses with FE, but it is just a prediction... */
233 m1
= mtopGetAtomMass(mtop
, n1
, &molb
);
234 m2
= mtopGetAtomMass(mtop
, n2
, &molb
);
235 m3
= mtopGetAtomMass(mtop
, n3
, &molb
);
237 tm
= dt_1
/(m1
+m2
+m3
);
238 for (m
= 0; (m
< DIM
); m
++)
240 x
[s1
][m
] += (m1
*ptr
[n1
][m
]+m2
*ptr
[n2
][m
]+m3
*ptr
[n3
][m
])*tm
;
244 gmx_fatal(FARGS
, "Shell %d has %d nuclei!", i
, s
[i
].nnucl
);
249 /*! \brief Count the different particle types in a system
251 * Routine prints a warning to stderr in case an unknown particle type
253 * \param[in] fplog Print what we have found if not NULL
254 * \param[in] mtop Molecular topology.
255 * \returns Array holding the number of particles of a type
257 static std::array
<int, eptNR
> countPtypes(FILE *fplog
,
258 const gmx_mtop_t
*mtop
)
260 std::array
<int, eptNR
> nptype
= { { 0 } };
261 /* Count number of shells, and find their indices */
262 for (int i
= 0; (i
< eptNR
); i
++)
267 gmx_mtop_atomloop_block_t aloopb
= gmx_mtop_atomloop_block_init(mtop
);
270 while (gmx_mtop_atomloop_block_next(aloopb
, &atom
, &nmol
))
277 nptype
[atom
->ptype
] += nmol
;
280 fprintf(stderr
, "Warning unsupported particle type %d in countPtypes",
281 static_cast<int>(atom
->ptype
));
286 /* Print the number of each particle type */
288 for (const auto &i
: nptype
)
292 fprintf(fplog
, "There are: %d %ss\n", i
, ptype_str
[n
]);
300 gmx_shellfc_t
*init_shell_flexcon(FILE *fplog
,
301 const gmx_mtop_t
*mtop
, int nflexcon
,
303 bool usingDomainDecomposition
)
307 int *shell_index
= nullptr, *at2cg
;
310 int i
, j
, type
, a_offset
, cg
, mol
, ftype
, nra
;
312 int aS
, aN
= 0; /* Shell and nucleus */
313 int bondtypes
[] = { F_BONDS
, F_HARMONIC
, F_CUBICBONDS
, F_POLARIZATION
, F_ANHARM_POL
, F_WATER_POL
};
314 #define NBT asize(bondtypes)
315 const gmx_ffparams_t
*ffparams
;
317 std::array
<int, eptNR
> n
= countPtypes(fplog
, mtop
);
318 nshell
= n
[eptShell
];
320 if (nshell
== 0 && nflexcon
== 0)
322 /* We're not doing shells or flexible constraints */
327 shfc
->x
= new PaddedVector
<gmx::RVec
>[2] {};
328 shfc
->f
= new PaddedVector
<gmx::RVec
>[2] {};
329 shfc
->nflexcon
= nflexcon
;
333 /* Only flexible constraints, no shells.
334 * Note that make_local_shells() does not need to be called.
337 shfc
->bPredict
= FALSE
;
342 if (nstcalcenergy
!= 1)
344 gmx_fatal(FARGS
, "You have nstcalcenergy set to a value (%d) that is different from 1.\nThis is not supported in combination with shell particles.\nPlease make a new tpr file.", nstcalcenergy
);
346 if (usingDomainDecomposition
)
348 gmx_fatal(FARGS
, "Shell particles are not implemented with domain decomposition, use a single rank");
351 /* We have shells: fill the shell data structure */
353 /* Global system sized array, this should be avoided */
354 snew(shell_index
, mtop
->natoms
);
357 for (const AtomProxy atomP
: AtomRange(*mtop
))
359 const t_atom
&local
= atomP
.atom();
360 int i
= atomP
.globalAtomNumber();
361 if (local
.ptype
== eptShell
)
363 shell_index
[i
] = nshell
++;
369 /* Initiate the shell structures */
370 for (i
= 0; (i
< nshell
); i
++)
377 /* shell[i].bInterCG=FALSE; */
382 ffparams
= &mtop
->ffparams
;
384 /* Now fill the structures */
385 shfc
->bInterCG
= FALSE
;
388 for (size_t mb
= 0; mb
< mtop
->molblock
.size(); mb
++)
390 const gmx_molblock_t
*molb
= &mtop
->molblock
[mb
];
391 const gmx_moltype_t
*molt
= &mtop
->moltype
[molb
->type
];
392 const t_block
*cgs
= &molt
->cgs
;
394 snew(at2cg
, molt
->atoms
.nr
);
395 for (cg
= 0; cg
< cgs
->nr
; cg
++)
397 for (i
= cgs
->index
[cg
]; i
< cgs
->index
[cg
+1]; i
++)
403 const t_atom
*atom
= molt
->atoms
.atom
;
404 for (mol
= 0; mol
< molb
->nmol
; mol
++)
406 for (j
= 0; (j
< NBT
); j
++)
408 const int *ia
= molt
->ilist
[bondtypes
[j
]].iatoms
.data();
409 for (i
= 0; (i
< molt
->ilist
[bondtypes
[j
]].size()); )
412 ftype
= ffparams
->functype
[type
];
413 nra
= interaction_function
[ftype
].nratoms
;
415 /* Check whether we have a bond with a shell */
418 switch (bondtypes
[j
])
425 if (atom
[ia
[1]].ptype
== eptShell
)
430 else if (atom
[ia
[2]].ptype
== eptShell
)
437 aN
= ia
[4]; /* Dummy */
438 aS
= ia
[5]; /* Shell */
441 gmx_fatal(FARGS
, "Death Horror: %s, %d", __FILE__
, __LINE__
);
448 /* Check whether one of the particles is a shell... */
449 nsi
= shell_index
[a_offset
+aS
];
450 if ((nsi
< 0) || (nsi
>= nshell
))
452 gmx_fatal(FARGS
, "nsi is %d should be within 0 - %d. aS = %d",
455 if (shell
[nsi
].shell
== -1)
457 shell
[nsi
].shell
= a_offset
+ aS
;
460 else if (shell
[nsi
].shell
!= a_offset
+aS
)
462 gmx_fatal(FARGS
, "Weird stuff in %s, %d", __FILE__
, __LINE__
);
465 if (shell
[nsi
].nucl1
== -1)
467 shell
[nsi
].nucl1
= a_offset
+ aN
;
469 else if (shell
[nsi
].nucl2
== -1)
471 shell
[nsi
].nucl2
= a_offset
+ aN
;
473 else if (shell
[nsi
].nucl3
== -1)
475 shell
[nsi
].nucl3
= a_offset
+ aN
;
481 pr_shell(fplog
, ns
, shell
);
483 gmx_fatal(FARGS
, "Can not handle more than three bonds per shell\n");
485 if (at2cg
[aS
] != at2cg
[aN
])
487 /* shell[nsi].bInterCG = TRUE; */
488 shfc
->bInterCG
= TRUE
;
491 switch (bondtypes
[j
])
495 shell
[nsi
].k
+= ffparams
->iparams
[type
].harmonic
.krA
;
498 shell
[nsi
].k
+= ffparams
->iparams
[type
].cubic
.kb
;
502 if (!gmx_within_tol(qS
, atom
[aS
].qB
, GMX_REAL_EPS
*10))
504 gmx_fatal(FARGS
, "polarize can not be used with qA(%e) != qB(%e) for atom %d of molecule block %zu", qS
, atom
[aS
].qB
, aS
+1, mb
+1);
506 shell
[nsi
].k
+= gmx::square(qS
)*ONE_4PI_EPS0
/
507 ffparams
->iparams
[type
].polarize
.alpha
;
510 if (!gmx_within_tol(qS
, atom
[aS
].qB
, GMX_REAL_EPS
*10))
512 gmx_fatal(FARGS
, "water_pol can not be used with qA(%e) != qB(%e) for atom %d of molecule block %zu", qS
, atom
[aS
].qB
, aS
+1, mb
+1);
514 alpha
= (ffparams
->iparams
[type
].wpol
.al_x
+
515 ffparams
->iparams
[type
].wpol
.al_y
+
516 ffparams
->iparams
[type
].wpol
.al_z
)/3.0;
517 shell
[nsi
].k
+= gmx::square(qS
)*ONE_4PI_EPS0
/alpha
;
520 gmx_fatal(FARGS
, "Death Horror: %s, %d", __FILE__
, __LINE__
);
528 a_offset
+= molt
->atoms
.nr
;
530 /* Done with this molecule type */
534 /* Verify whether it's all correct */
537 gmx_fatal(FARGS
, "Something weird with shells. They may not be bonded to something");
540 for (i
= 0; (i
< ns
); i
++)
542 shell
[i
].k_1
= 1.0/shell
[i
].k
;
547 pr_shell(debug
, ns
, shell
);
551 shfc
->nshell_gl
= ns
;
552 shfc
->shell_gl
= shell
;
553 shfc
->shell_index_gl
= shell_index
;
555 shfc
->bPredict
= (getenv("GMX_NOPREDICT") == nullptr);
556 shfc
->bRequireInit
= FALSE
;
561 fprintf(fplog
, "\nWill never predict shell positions\n");
566 shfc
->bRequireInit
= (getenv("GMX_REQUIRE_SHELL_INIT") != nullptr);
567 if (shfc
->bRequireInit
&& fplog
)
569 fprintf(fplog
, "\nWill always initiate shell positions\n");
579 fprintf(fplog
, "\nNOTE: there are shells that are connected to particles outside their own charge group, will not predict shells positions during the run\n\n");
581 /* Prediction improves performance, so we should implement either:
582 * 1. communication for the atoms needed for prediction
583 * 2. prediction using the velocities of shells; currently the
584 * shell velocities are zeroed, it's a bit tricky to keep
585 * track of the shell displacements and thus the velocity.
587 shfc
->bPredict
= FALSE
;
594 void make_local_shells(const t_commrec
*cr
,
599 int a0
, a1
, *ind
, nshell
, i
;
600 gmx_domdec_t
*dd
= nullptr;
602 if (DOMAINDECOMP(cr
))
606 a1
= dd_numHomeAtoms(*dd
);
610 /* Single node: we need all shells, just copy the pointer */
611 shfc
->nshell
= shfc
->nshell_gl
;
612 shfc
->shell
= shfc
->shell_gl
;
617 ind
= shfc
->shell_index_gl
;
621 for (i
= a0
; i
< a1
; i
++)
623 if (md
->ptype
[i
] == eptShell
)
625 if (nshell
+1 > shfc
->shell_nalloc
)
627 shfc
->shell_nalloc
= over_alloc_dd(nshell
+1);
628 srenew(shell
, shfc
->shell_nalloc
);
632 shell
[nshell
] = shfc
->shell_gl
[ind
[dd
->globalAtomIndices
[i
]]];
636 shell
[nshell
] = shfc
->shell_gl
[ind
[i
]];
639 /* With inter-cg shells we can no do shell prediction,
640 * so we do not need the nuclei numbers.
644 shell
[nshell
].nucl1
= i
+ shell
[nshell
].nucl1
- shell
[nshell
].shell
;
645 if (shell
[nshell
].nnucl
> 1)
647 shell
[nshell
].nucl2
= i
+ shell
[nshell
].nucl2
- shell
[nshell
].shell
;
649 if (shell
[nshell
].nnucl
> 2)
651 shell
[nshell
].nucl3
= i
+ shell
[nshell
].nucl3
- shell
[nshell
].shell
;
654 shell
[nshell
].shell
= i
;
659 shfc
->nshell
= nshell
;
663 static void do_1pos(rvec xnew
, const rvec xold
, const rvec f
, real step
)
681 static void do_1pos3(rvec xnew
, const rvec xold
, const rvec f
, const rvec step
)
699 static void directional_sd(gmx::ArrayRef
<const gmx::RVec
> xold
,
700 gmx::ArrayRef
<gmx::RVec
> xnew
,
701 const rvec acc_dir
[], int homenr
, real step
)
703 const rvec
*xo
= as_rvec_array(xold
.data());
704 rvec
*xn
= as_rvec_array(xnew
.data());
706 for (int i
= 0; i
< homenr
; i
++)
708 do_1pos(xn
[i
], xo
[i
], acc_dir
[i
], step
);
712 static void shell_pos_sd(gmx::ArrayRef
<const gmx::RVec
> xcur
,
713 gmx::ArrayRef
<gmx::RVec
> xnew
,
714 gmx::ArrayRef
<const gmx::RVec
> f
,
715 int ns
, t_shell s
[], int count
)
717 const real step_scale_min
= 0.8,
718 step_scale_increment
= 0.2,
719 step_scale_max
= 1.2,
720 step_scale_multiple
= (step_scale_max
- step_scale_min
) / step_scale_increment
;
725 real step_min
, step_max
;
730 for (i
= 0; (i
< ns
); i
++)
735 for (d
= 0; d
< DIM
; d
++)
737 s
[i
].step
[d
] = s
[i
].k_1
;
739 step_min
= std::min(step_min
, s
[i
].step
[d
]);
740 step_max
= std::max(step_max
, s
[i
].step
[d
]);
746 for (d
= 0; d
< DIM
; d
++)
748 dx
= xcur
[shell
][d
] - s
[i
].xold
[d
];
749 df
= f
[shell
][d
] - s
[i
].fold
[d
];
750 /* -dx/df gets used to generate an interpolated value, but would
751 * cause a NaN if df were binary-equal to zero. Values close to
752 * zero won't cause problems (because of the min() and max()), so
753 * just testing for binary inequality is OK. */
757 /* Scale the step size by a factor interpolated from
758 * step_scale_min to step_scale_max, as k_est goes from 0 to
759 * step_scale_multiple * s[i].step[d] */
761 step_scale_min
* s
[i
].step
[d
] +
762 step_scale_increment
* std::min(step_scale_multiple
* s
[i
].step
[d
], std::max(k_est
, zero
));
767 if (gmx_numzero(dx
)) /* 0 == dx */
769 /* Likely this will never happen, but if it does just
770 * don't scale the step. */
774 s
[i
].step
[d
] *= step_scale_max
;
778 step_min
= std::min(step_min
, s
[i
].step
[d
]);
779 step_max
= std::max(step_max
, s
[i
].step
[d
]);
783 copy_rvec(xcur
[shell
], s
[i
].xold
);
784 copy_rvec(f
[shell
], s
[i
].fold
);
786 do_1pos3(xnew
[shell
], xcur
[shell
], f
[shell
], s
[i
].step
);
790 fprintf(debug
, "shell[%d] = %d\n", i
, shell
);
791 pr_rvec(debug
, 0, "fshell", f
[shell
], DIM
, TRUE
);
792 pr_rvec(debug
, 0, "xold", xcur
[shell
], DIM
, TRUE
);
793 pr_rvec(debug
, 0, "step", s
[i
].step
, DIM
, TRUE
);
794 pr_rvec(debug
, 0, "xnew", xnew
[shell
], DIM
, TRUE
);
798 printf("step %.3e %.3e\n", step_min
, step_max
);
802 static void decrease_step_size(int nshell
, t_shell s
[])
806 for (i
= 0; i
< nshell
; i
++)
808 svmul(0.8, s
[i
].step
, s
[i
].step
);
812 static void print_epot(FILE *fp
, int64_t mdstep
, int count
, real epot
, real df
,
813 int ndir
, real sf_dir
)
817 fprintf(fp
, "MDStep=%5s/%2d EPot: %12.8e, rmsF: %6.2e",
818 gmx_step_str(mdstep
, buf
), count
, epot
, df
);
821 fprintf(fp
, ", dir. rmsF: %6.2e\n", std::sqrt(sf_dir
/ndir
));
830 static real
rms_force(const t_commrec
*cr
, gmx::ArrayRef
<const gmx::RVec
> force
, int ns
, t_shell s
[],
831 int ndir
, real
*sf_dir
, real
*Epot
)
834 const rvec
*f
= as_rvec_array(force
.data());
837 for (int i
= 0; i
< ns
; i
++)
839 int shell
= s
[i
].shell
;
840 buf
[0] += norm2(f
[shell
]);
849 gmx_sumd(4, buf
, cr
);
850 ntot
= gmx::roundToInt(buf
[1]);
856 return (ntot
? std::sqrt(buf
[0]/ntot
) : 0);
859 static void dump_shells(FILE *fp
, gmx::ArrayRef
<gmx::RVec
> f
, real ftol
, int ns
, t_shell s
[])
864 ft2
= gmx::square(ftol
);
866 for (i
= 0; (i
< ns
); i
++)
869 ff2
= iprod(f
[shell
], f
[shell
]);
872 fprintf(fp
, "SHELL %5d, force %10.5f %10.5f %10.5f, |f| %10.5f\n",
873 shell
, f
[shell
][XX
], f
[shell
][YY
], f
[shell
][ZZ
], std::sqrt(ff2
));
878 static void init_adir(gmx_shellfc_t
*shfc
,
879 gmx::Constraints
*constr
,
880 const t_inputrec
*ir
,
892 gmx::ArrayRef
<const real
> lambda
,
898 unsigned short *ptype
;
900 if (DOMAINDECOMP(cr
))
908 if (n
> shfc
->adir_nalloc
)
910 shfc
->adir_nalloc
= over_alloc_dd(n
);
911 srenew(shfc
->adir_xnold
, shfc
->adir_nalloc
);
912 srenew(shfc
->adir_xnew
, shfc
->adir_nalloc
);
914 xnold
= shfc
->adir_xnold
;
915 xnew
= shfc
->adir_xnew
;
921 /* Does NOT work with freeze or acceleration groups (yet) */
922 for (n
= 0; n
< end
; n
++)
924 w_dt
= md
->invmass
[n
]*dt
;
926 for (d
= 0; d
< DIM
; d
++)
928 if ((ptype
[n
] != eptVSite
) && (ptype
[n
] != eptShell
))
930 xnold
[n
][d
] = x
[n
][d
] - (x_init
[n
][d
] - x_old
[n
][d
]);
931 xnew
[n
][d
] = 2*x
[n
][d
] - x_old
[n
][d
] + f
[n
][d
]*w_dt
*dt
;
935 xnold
[n
][d
] = x
[n
][d
];
936 xnew
[n
][d
] = x
[n
][d
];
940 constr
->apply(FALSE
, FALSE
, step
, 0, 1.0,
941 x
, xnold
, nullptr, box
,
942 lambda
[efptBONDED
], &(dvdlambda
[efptBONDED
]),
943 nullptr, nullptr, gmx::ConstraintVariable::Positions
);
944 constr
->apply(FALSE
, FALSE
, step
, 0, 1.0,
945 x
, xnew
, nullptr, box
,
946 lambda
[efptBONDED
], &(dvdlambda
[efptBONDED
]),
947 nullptr, nullptr, gmx::ConstraintVariable::Positions
);
949 for (n
= 0; n
< end
; n
++)
951 for (d
= 0; d
< DIM
; d
++)
954 -(2*x
[n
][d
]-xnold
[n
][d
]-xnew
[n
][d
])/gmx::square(dt
)
955 - f
[n
][d
]*md
->invmass
[n
];
957 clear_rvec(acc_dir
[n
]);
960 /* Project the acceleration on the old bond directions */
961 constr
->apply(FALSE
, FALSE
, step
, 0, 1.0,
962 x_old
, xnew
, acc_dir
, box
,
963 lambda
[efptBONDED
], &(dvdlambda
[efptBONDED
]),
964 nullptr, nullptr, gmx::ConstraintVariable::Deriv_FlexCon
);
967 void relax_shell_flexcon(FILE *fplog
,
969 const gmx_multisim_t
*ms
,
971 gmx_enfrot
*enforcedRotation
,
973 const t_inputrec
*inputrec
,
977 gmx::Constraints
*constr
,
978 gmx_enerdata_t
*enerd
,
981 gmx::ArrayRefWithPadding
<gmx::RVec
> f
,
985 gmx_wallcycle_t wcycle
,
987 const SimulationGroups
*groups
,
990 gmx::PpForceWorkload
*ppForceWorkload
,
993 const gmx_vsite_t
*vsite
,
994 const DDBalanceRegionHandler
&ddBalanceRegionHandler
)
999 rvec
*acc_dir
= nullptr, *x_old
= nullptr;
1000 real Epot
[2], df
[2];
1004 gmx_bool bCont
, bInit
, bConverged
;
1005 int nat
, dd_ac0
, dd_ac1
= 0, i
;
1006 int homenr
= md
->homenr
, end
= homenr
, cg0
, cg1
;
1007 int nflexcon
, number_steps
, d
, Min
= 0, count
= 0;
1008 #define Try (1-Min) /* At start Try = 1 */
1010 bCont
= (mdstep
== inputrec
->init_step
) && inputrec
->bContinuation
;
1011 bInit
= (mdstep
== inputrec
->init_step
) || shfc
->bRequireInit
;
1012 ftol
= inputrec
->em_tol
;
1013 number_steps
= inputrec
->niter
;
1014 nshell
= shfc
->nshell
;
1015 shell
= shfc
->shell
;
1016 nflexcon
= shfc
->nflexcon
;
1020 if (DOMAINDECOMP(cr
))
1022 nat
= dd_natoms_vsite(cr
->dd
);
1025 dd_get_constraint_range(cr
->dd
, &dd_ac0
, &dd_ac1
);
1026 nat
= std::max(nat
, dd_ac1
);
1031 nat
= state
->natoms
;
1034 for (i
= 0; (i
< 2); i
++)
1036 shfc
->x
[i
].resizeWithPadding(nat
);
1037 shfc
->f
[i
].resizeWithPadding(nat
);
1040 /* Create views that we can swap */
1041 gmx::ArrayRefWithPadding
<gmx::RVec
> posWithPadding
[2];
1042 gmx::ArrayRefWithPadding
<gmx::RVec
> forceWithPadding
[2];
1043 gmx::ArrayRef
<gmx::RVec
> pos
[2];
1044 gmx::ArrayRef
<gmx::RVec
> force
[2];
1045 for (i
= 0; (i
< 2); i
++)
1047 posWithPadding
[i
] = shfc
->x
[i
].arrayRefWithPadding();
1048 pos
[i
] = posWithPadding
[i
].paddedArrayRef();
1049 forceWithPadding
[i
] = shfc
->f
[i
].arrayRefWithPadding();
1050 force
[i
] = forceWithPadding
[i
].paddedArrayRef();
1053 if (bDoNS
&& inputrec
->ePBC
!= epbcNONE
&& !DOMAINDECOMP(cr
))
1055 /* This is the only time where the coordinates are used
1056 * before do_force is called, which normally puts all
1057 * charge groups in the box.
1059 if (inputrec
->cutoff_scheme
== ecutsVERLET
)
1061 auto xRef
= state
->x
.arrayRefWithPadding().paddedArrayRef();
1062 put_atoms_in_box_omp(fr
->ePBC
, state
->box
, xRef
.subArray(0, md
->homenr
), gmx_omp_nthreads_get(emntDefault
));
1068 put_charge_groups_in_box(fplog
, cg0
, cg1
, fr
->ePBC
, state
->box
,
1069 &(top
->cgs
), state
->x
.rvec_array(), fr
->cg_cm
);
1074 mk_mshift(fplog
, graph
, fr
->ePBC
, state
->box
, state
->x
.rvec_array());
1078 /* After this all coordinate arrays will contain whole charge groups */
1081 shift_self(graph
, state
->box
, state
->x
.rvec_array());
1086 if (nat
> shfc
->flex_nalloc
)
1088 shfc
->flex_nalloc
= over_alloc_dd(nat
);
1089 srenew(shfc
->acc_dir
, shfc
->flex_nalloc
);
1090 srenew(shfc
->x_old
, shfc
->flex_nalloc
);
1092 acc_dir
= shfc
->acc_dir
;
1093 x_old
= shfc
->x_old
;
1094 auto x
= makeArrayRef(state
->x
);
1095 auto v
= makeArrayRef(state
->v
);
1096 for (i
= 0; i
< homenr
; i
++)
1098 for (d
= 0; d
< DIM
; d
++)
1101 x
[i
][d
] - v
[i
][d
]*inputrec
->delta_t
;
1106 /* Do a prediction of the shell positions, when appropriate.
1107 * Without velocities (EM, NM, BD) we only do initial prediction.
1109 if (shfc
->bPredict
&& !bCont
&& (EI_STATE_VELOCITY(inputrec
->eI
) || bInit
))
1111 predict_shells(fplog
, state
->x
.rvec_array(), state
->v
.rvec_array(), inputrec
->delta_t
, nshell
, shell
,
1112 md
->massT
, nullptr, bInit
);
1115 /* do_force expected the charge groups to be in the box */
1118 unshift_self(graph
, state
->box
, state
->x
.rvec_array());
1121 /* Calculate the forces first time around */
1124 pr_rvecs(debug
, 0, "x b4 do_force", state
->x
.rvec_array(), homenr
);
1126 int shellfc_flags
= force_flags
| (bVerbose
? GMX_FORCE_ENERGY
: 0);
1127 do_force(fplog
, cr
, ms
, inputrec
, nullptr, enforcedRotation
,
1128 mdstep
, nrnb
, wcycle
, top
, groups
,
1129 state
->box
, state
->x
.arrayRefWithPadding(), &state
->hist
,
1130 forceWithPadding
[Min
], force_vir
, md
, enerd
, fcd
,
1131 state
->lambda
, graph
,
1132 fr
, ppForceWorkload
, vsite
, mu_tot
, t
, nullptr,
1133 (bDoNS
? GMX_FORCE_NS
: 0) | shellfc_flags
,
1134 ddBalanceRegionHandler
);
1140 constr
, inputrec
, cr
, dd_ac1
, mdstep
, md
, end
,
1141 shfc
->x_old
, state
->x
.rvec_array(), state
->x
.rvec_array(), as_rvec_array(force
[Min
].data()),
1143 state
->box
, state
->lambda
, &dum
);
1145 for (i
= 0; i
< end
; i
++)
1147 sf_dir
+= md
->massT
[i
]*norm2(shfc
->acc_dir
[i
]);
1150 sum_epot(&(enerd
->grpp
), enerd
->term
);
1151 Epot
[Min
] = enerd
->term
[F_EPOT
];
1153 df
[Min
] = rms_force(cr
, forceWithPadding
[Min
].paddedArrayRef(), nshell
, shell
, nflexcon
, &sf_dir
, &Epot
[Min
]);
1157 fprintf(debug
, "df = %g %g\n", df
[Min
], df
[Try
]);
1162 pr_rvecs(debug
, 0, "force0", as_rvec_array(force
[Min
].data()), md
->nr
);
1165 if (nshell
+nflexcon
> 0)
1167 /* Copy x to pos[Min] & pos[Try]: during minimization only the
1168 * shell positions are updated, therefore the other particles must
1169 * be set here, in advance.
1171 std::copy(state
->x
.begin(),
1173 posWithPadding
[Min
].paddedArrayRef().begin());
1174 std::copy(state
->x
.begin(),
1176 posWithPadding
[Try
].paddedArrayRef().begin());
1179 if (bVerbose
&& MASTER(cr
))
1181 print_epot(stdout
, mdstep
, 0, Epot
[Min
], df
[Min
], nflexcon
, sf_dir
);
1186 fprintf(debug
, "%17s: %14.10e\n",
1187 interaction_function
[F_EKIN
].longname
, enerd
->term
[F_EKIN
]);
1188 fprintf(debug
, "%17s: %14.10e\n",
1189 interaction_function
[F_EPOT
].longname
, enerd
->term
[F_EPOT
]);
1190 fprintf(debug
, "%17s: %14.10e\n",
1191 interaction_function
[F_ETOT
].longname
, enerd
->term
[F_ETOT
]);
1192 fprintf(debug
, "SHELLSTEP %s\n", gmx_step_str(mdstep
, sbuf
));
1195 /* First check whether we should do shells, or whether the force is
1196 * low enough even without minimization.
1198 bConverged
= (df
[Min
] < ftol
);
1200 for (count
= 1; (!(bConverged
) && (count
< number_steps
)); count
++)
1204 construct_vsites(vsite
, as_rvec_array(pos
[Min
].data()),
1205 inputrec
->delta_t
, state
->v
.rvec_array(),
1206 idef
->iparams
, idef
->il
,
1207 fr
->ePBC
, fr
->bMolPBC
, cr
, state
->box
);
1213 constr
, inputrec
, cr
, dd_ac1
, mdstep
, md
, end
,
1214 x_old
, state
->x
.rvec_array(),
1215 as_rvec_array(pos
[Min
].data()),
1216 as_rvec_array(force
[Min
].data()), acc_dir
,
1217 state
->box
, state
->lambda
, &dum
);
1219 directional_sd(pos
[Min
], pos
[Try
], acc_dir
, end
, fr
->fc_stepsize
);
1222 /* New positions, Steepest descent */
1223 shell_pos_sd(pos
[Min
], pos
[Try
], force
[Min
], nshell
, shell
, count
);
1225 /* do_force expected the charge groups to be in the box */
1228 unshift_self(graph
, state
->box
, as_rvec_array(pos
[Try
].data()));
1233 pr_rvecs(debug
, 0, "RELAX: pos[Min] ", as_rvec_array(pos
[Min
].data()), homenr
);
1234 pr_rvecs(debug
, 0, "RELAX: pos[Try] ", as_rvec_array(pos
[Try
].data()), homenr
);
1236 /* Try the new positions */
1237 do_force(fplog
, cr
, ms
, inputrec
, nullptr, enforcedRotation
,
1239 top
, groups
, state
->box
, posWithPadding
[Try
], &state
->hist
,
1240 forceWithPadding
[Try
], force_vir
,
1241 md
, enerd
, fcd
, state
->lambda
, graph
,
1242 fr
, ppForceWorkload
, vsite
, mu_tot
, t
, nullptr,
1244 ddBalanceRegionHandler
);
1245 sum_epot(&(enerd
->grpp
), enerd
->term
);
1248 pr_rvecs(debug
, 0, "RELAX: force[Min]", as_rvec_array(force
[Min
].data()), homenr
);
1249 pr_rvecs(debug
, 0, "RELAX: force[Try]", as_rvec_array(force
[Try
].data()), homenr
);
1255 constr
, inputrec
, cr
, dd_ac1
, mdstep
, md
, end
,
1256 x_old
, state
->x
.rvec_array(),
1257 as_rvec_array(pos
[Try
].data()),
1258 as_rvec_array(force
[Try
].data()),
1259 acc_dir
, state
->box
, state
->lambda
, &dum
);
1261 for (i
= 0; i
< end
; i
++)
1263 sf_dir
+= md
->massT
[i
]*norm2(acc_dir
[i
]);
1267 Epot
[Try
] = enerd
->term
[F_EPOT
];
1269 df
[Try
] = rms_force(cr
, force
[Try
], nshell
, shell
, nflexcon
, &sf_dir
, &Epot
[Try
]);
1273 fprintf(debug
, "df = %g %g\n", df
[Min
], df
[Try
]);
1280 pr_rvecs(debug
, 0, "F na do_force", as_rvec_array(force
[Try
].data()), homenr
);
1284 fprintf(debug
, "SHELL ITER %d\n", count
);
1285 dump_shells(debug
, force
[Try
], ftol
, nshell
, shell
);
1289 if (bVerbose
&& MASTER(cr
))
1291 print_epot(stdout
, mdstep
, count
, Epot
[Try
], df
[Try
], nflexcon
, sf_dir
);
1294 bConverged
= (df
[Try
] < ftol
);
1296 if ((df
[Try
] < df
[Min
]))
1300 fprintf(debug
, "Swapping Min and Try\n");
1304 /* Correct the velocities for the flexible constraints */
1305 invdt
= 1/inputrec
->delta_t
;
1306 auto v
= makeArrayRef(state
->v
);
1307 for (i
= 0; i
< end
; i
++)
1309 for (d
= 0; d
< DIM
; d
++)
1311 v
[i
][d
] += (pos
[Try
][i
][d
] - pos
[Min
][i
][d
])*invdt
;
1319 decrease_step_size(nshell
, shell
);
1322 shfc
->numForceEvaluations
+= count
;
1325 shfc
->numConvergedIterations
++;
1327 if (MASTER(cr
) && !(bConverged
))
1329 /* Note that the energies and virial are incorrect when not converged */
1333 "step %s: EM did not converge in %d iterations, RMS force %6.2e\n",
1334 gmx_step_str(mdstep
, sbuf
), number_steps
, df
[Min
]);
1337 "step %s: EM did not converge in %d iterations, RMS force %6.2e\n",
1338 gmx_step_str(mdstep
, sbuf
), number_steps
, df
[Min
]);
1341 /* Copy back the coordinates and the forces */
1342 std::copy(pos
[Min
].begin(), pos
[Min
].end(), makeArrayRef(state
->x
).data());
1343 std::copy(force
[Min
].begin(), force
[Min
].end(), f
.unpaddedArrayRef().begin());
1346 void done_shellfc(FILE *fplog
, gmx_shellfc_t
*shfc
, int64_t numSteps
)
1348 if (shfc
&& fplog
&& numSteps
> 0)
1350 double numStepsAsDouble
= static_cast<double>(numSteps
);
1351 fprintf(fplog
, "Fraction of iterations that converged: %.2f %%\n",
1352 (shfc
->numConvergedIterations
*100.0)/numStepsAsDouble
);
1353 fprintf(fplog
, "Average number of force evaluations per MD step: %.2f\n\n",
1354 shfc
->numForceEvaluations
/numStepsAsDouble
);
1357 // TODO Deallocate memory in shfc