2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
47 #include "gromacs/mdtypes/commrec.h"
48 #include "gromacs/mdtypes/md_enums.h"
49 #include "gromacs/utility/arraysize.h"
57 static const t_nrnb_data nbdata
[eNRNB
] = {
58 /* These are re-used for different NB kernels, since there are so many.
59 * The actual number of flops is set dynamically.
61 { "NB VdW [V&F]", 1 },
63 { "NB Elec. [V&F]", 1 },
64 { "NB Elec. [F]", 1 },
65 { "NB Elec. [W3,V&F]", 1 },
66 { "NB Elec. [W3,F]", 1 },
67 { "NB Elec. [W3-W3,V&F]", 1 },
68 { "NB Elec. [W3-W3,F]", 1 },
69 { "NB Elec. [W4,V&F]", 1 },
70 { "NB Elec. [W4,F]", 1 },
71 { "NB Elec. [W4-W4,V&F]", 1 },
72 { "NB Elec. [W4-W4,F]", 1 },
73 { "NB VdW & Elec. [V&F]", 1 },
74 { "NB VdW & Elec. [F]", 1 },
75 { "NB VdW & Elec. [W3,V&F]", 1 },
76 { "NB VdW & Elec. [W3,F]", 1 },
77 { "NB VdW & Elec. [W3-W3,V&F]", 1 },
78 { "NB VdW & Elec. [W3-W3,F]", 1 },
79 { "NB VdW & Elec. [W4,V&F]", 1 },
80 { "NB VdW & Elec. [W4,F]", 1 },
81 { "NB VdW & Elec. [W4-W4,V&F]", 1 },
82 { "NB VdW & Elec. [W4-W4,F]", 1 },
84 { "NB Generic kernel", 1 },
85 { "NB Generic charge grp kernel", 1 },
86 { "NB Free energy kernel", 1 },
88 { "Pair Search distance check", 9 }, /* nbnxn pair dist. check */
89 /* nbnxn kernel flops are based on inner-loops without exclusion checks.
90 * Plain Coulomb runs through the RF kernels, except with GPUs.
91 * invsqrt is counted as 6 flops: 1 for _mm_rsqt_ps + 5 for iteration.
92 * The flops are equal for plain-C, x86 SIMD and GPUs, except for:
93 * - plain-C kernel uses one flop more for Coulomb-only (F) than listed
94 * - x86 SIMD LJ geom-comb.rule kernels (fastest) use 2 more flops
95 * - x86 SIMD LJ LB-comb.rule kernels (fast) use 3 (8 for F+E) more flops
96 * - GPU always does exclusions, which requires 2-4 flops, but as invsqrt
97 * is always counted as 6 flops, this roughly compensates.
99 { "NxN RF Elec. + LJ [F]", 38 }, /* nbnxn kernel LJ+RF, no ener */
100 { "NxN RF Elec. + LJ [V&F]", 54 },
101 { "NxN QSTab Elec. + LJ [F]", 41 }, /* nbnxn kernel LJ+tab, no en */
102 { "NxN QSTab Elec. + LJ [V&F]", 59 },
103 { "NxN Ewald Elec. + LJ [F]", 66 }, /* nbnxn kernel LJ+Ewald, no en */
104 { "NxN Ewald Elec. + LJ [V&F]", 107 },
105 { "NxN LJ [F]", 33 }, /* nbnxn kernel LJ, no ener */
106 { "NxN LJ [V&F]", 43 },
107 { "NxN RF Electrostatics [F]", 31 }, /* nbnxn kernel RF, no ener */
108 { "NxN RF Electrostatics [V&F]", 36 },
109 { "NxN QSTab Elec. [F]", 34 }, /* nbnxn kernel tab, no ener */
110 { "NxN QSTab Elec. [V&F]", 41 },
111 { "NxN Ewald Elec. [F]", 61 }, /* nbnxn kernel Ewald, no ener */
112 { "NxN Ewald Elec. [V&F]", 84 },
113 /* The switch function flops should be added to the LJ kernels above */
114 { "NxN LJ add F-switch [F]", 12 }, /* extra cost for LJ F-switch */
115 { "NxN LJ add F-switch [V&F]", 22 },
116 { "NxN LJ add P-switch [F]", 27 }, /* extra cost for LJ P-switch */
117 { "NxN LJ add P-switch [V&F]", 20 },
118 { "NxN LJ add LJ Ewald [F]", 36 }, /* extra cost for LJ Ewald */
119 { "NxN LJ add LJ Ewald [V&F]", 33 },
120 { "1,4 nonbonded interactions", 90 },
121 { "Calc Weights", 36 },
123 { "Spread Q Bspline", 2 },
125 { "Gather F Bspline", 6 },
127 { "Convolution", 4 },
130 { "Reset In Box", 3 },
136 { "FENE Bonds", 58 },
137 { "Tab. Bonds", 62 },
138 { "Restraint Potential", 86 },
139 { "Linear Angles", 57 },
141 { "G96Angles", 150 },
142 { "Quartic Angles", 160 },
143 { "Tab. Angles", 169 },
145 { "Impropers", 208 },
146 { "RB-Dihedrals", 247 },
147 { "Four. Dihedrals", 247 },
148 { "Tab. Dihedrals", 227 },
149 { "Dist. Restr.", 200 },
150 { "Orient. Restr.", 200 },
151 { "Dihedral Restr.", 200 },
152 { "Pos. Restr.", 50 },
153 { "Flat-bottom posres", 50 },
154 { "Angle Restr.", 191 },
155 { "Angle Restr. Z", 164 },
156 { "Morse Potent.", 83 },
157 { "Cubic Bonds", 54 },
159 { "Polarization", 59 },
160 { "Anharmonic Polarization", 72 },
161 { "Water Pol.", 62 },
162 { "Thole Pol.", 296 },
165 { "Ext.ens. Update", 54 },
172 { "Constraint-V", 8 },
173 { "Shake-Init", 10 },
174 { "Constraint-Vir", 24 },
176 { "Virtual Site 2", 23 },
177 { "Virtual Site 3", 37 },
178 { "Virtual Site 3fd", 95 },
179 { "Virtual Site 3fad", 176 },
180 { "Virtual Site 3out", 87 },
181 { "Virtual Site 4fd", 110 },
182 { "Virtual Site 4fdn", 254 },
183 { "Virtual Site N", 15 },
184 { "CMAP", 1700 }, // Estimate!
185 { "Urey-Bradley", 183 },
186 { "Cross-Bond-Bond", 163 },
187 { "Cross-Bond-Angle", 163 }
190 static void pr_two(FILE *out
, int c
, int i
)
194 fprintf(out
, "%c0%1d", c
, i
);
198 fprintf(out
, "%c%2d", c
, i
);
202 static void pr_difftime(FILE *out
, double dt
)
204 int ndays
, nhours
, nmins
, nsecs
;
205 gmx_bool bPrint
, bPrinted
;
207 ndays
= static_cast<int>(dt
/(24*3600));
208 dt
= dt
-24*3600*ndays
;
209 nhours
= static_cast<int>(dt
/3600);
211 nmins
= static_cast<int>(dt
/60);
213 nsecs
= static_cast<int>(dt
);
214 bPrint
= (ndays
> 0);
218 fprintf(out
, "%d", ndays
);
220 bPrint
= bPrint
|| (nhours
> 0);
225 pr_two(out
, 'd', nhours
);
229 fprintf(out
, "%d", nhours
);
232 bPrinted
= bPrinted
|| bPrint
;
233 bPrint
= bPrint
|| (nmins
> 0);
238 pr_two(out
, 'h', nmins
);
242 fprintf(out
, "%d", nmins
);
245 bPrinted
= bPrinted
|| bPrint
;
248 pr_two(out
, ':', nsecs
);
252 fprintf(out
, "%ds", nsecs
);
257 void clear_nrnb(t_nrnb
*nrnb
)
261 for (i
= 0; (i
< eNRNB
); i
++)
267 void add_nrnb(t_nrnb
*dest
, t_nrnb
*s1
, t_nrnb
*s2
)
271 for (i
= 0; (i
< eNRNB
); i
++)
273 dest
->n
[i
] = s1
->n
[i
]+s2
->n
[i
];
277 void print_nrnb(FILE *out
, t_nrnb
*nrnb
)
281 for (i
= 0; (i
< eNRNB
); i
++)
285 fprintf(out
, " %-26s %10.0f.\n", nbdata
[i
].name
, nrnb
->n
[i
]);
290 void _inc_nrnb(t_nrnb
*nrnb
, int enr
, int inc
, char gmx_unused
*file
, int gmx_unused line
)
294 printf("nrnb %15s(%2d) incremented with %8d from file %s line %d\n",
295 nbdata
[enr
].name
, enr
, inc
, file
, line
);
299 /* Returns in enr is the index of a full nbnxn VdW kernel */
300 static gmx_bool
nrnb_is_nbnxn_vdw_kernel(int enr
)
302 return (enr
>= eNR_NBNXN_LJ_RF
&& enr
<= eNR_NBNXN_LJ_E
);
305 /* Returns in enr is the index of an nbnxn kernel addition (LJ modification) */
306 static gmx_bool
nrnb_is_nbnxn_kernel_addition(int enr
)
308 return (enr
>= eNR_NBNXN_ADD_LJ_FSW
&& enr
<= eNR_NBNXN_ADD_LJ_EWALD_E
);
311 void print_flop(FILE *out
, t_nrnb
*nrnb
, double *nbfs
, double *mflop
)
314 double mni
, frac
, tfrac
, tflop
;
315 const char *myline
= "-----------------------------------------------------------------------------";
318 for (i
= 0; (i
< eNR_NBKERNEL_TOTAL_NR
); i
++)
320 if (std::strstr(nbdata
[i
].name
, "W3-W3") != nullptr)
322 *nbfs
+= 9e-6*nrnb
->n
[i
];
324 else if (std::strstr(nbdata
[i
].name
, "W3") != nullptr)
326 *nbfs
+= 3e-6*nrnb
->n
[i
];
328 else if (std::strstr(nbdata
[i
].name
, "W4-W4") != nullptr)
330 *nbfs
+= 10e-6*nrnb
->n
[i
];
332 else if (std::strstr(nbdata
[i
].name
, "W4") != nullptr)
334 *nbfs
+= 4e-6*nrnb
->n
[i
];
338 *nbfs
+= 1e-6*nrnb
->n
[i
];
342 for (i
= 0; (i
< eNRNB
); i
++)
344 tflop
+= 1e-6*nrnb
->n
[i
]*nbdata
[i
].flop
;
349 fprintf(out
, "No MEGA Flopsen this time\n");
354 fprintf(out
, "\n\tM E G A - F L O P S A C C O U N T I N G\n\n");
359 fprintf(out
, " NB=Group-cutoff nonbonded kernels NxN=N-by-N cluster Verlet kernels\n");
360 fprintf(out
, " RF=Reaction-Field VdW=Van der Waals QSTab=quadratic-spline table\n");
361 fprintf(out
, " W3=SPC/TIP3p W4=TIP4p (single or pairs)\n");
362 fprintf(out
, " V&F=Potential and force V=Potential only F=Force only\n\n");
364 fprintf(out
, " %-32s %16s %15s %7s\n",
365 "Computing:", "M-Number", "M-Flops", "% Flops");
366 fprintf(out
, "%s\n", myline
);
370 for (i
= 0; (i
< eNRNB
); i
++)
372 mni
= 1e-6*nrnb
->n
[i
];
373 /* Skip empty entries and nbnxn additional flops,
374 * which have been added to the kernel entry.
376 if (mni
> 0 && !nrnb_is_nbnxn_kernel_addition(i
))
380 flop
= nbdata
[i
].flop
;
381 if (nrnb_is_nbnxn_vdw_kernel(i
))
383 /* Possibly add the cost of an LJ switch/Ewald function */
384 for (j
= eNR_NBNXN_ADD_LJ_FSW
; j
<= eNR_NBNXN_ADD_LJ_EWALD
; j
+= 2)
388 /* Select the force or energy flop count */
389 e_kernel_add
= j
+ ((i
- eNR_NBNXN_LJ_RF
) % 2);
391 if (nrnb
->n
[e_kernel_add
] > 0)
393 flop
+= nbdata
[e_kernel_add
].flop
;
398 frac
= 100.0*mni
*flop
/tflop
;
402 fprintf(out
, " %-32s %16.6f %15.3f %6.1f\n",
403 nbdata
[i
].name
, mni
, mni
*flop
, frac
);
409 fprintf(out
, "%s\n", myline
);
410 fprintf(out
, " %-32s %16s %15.3f %6.1f\n",
411 "Total", "", *mflop
, tfrac
);
412 fprintf(out
, "%s\n\n", myline
);
414 if (nrnb
->n
[eNR_NBKERNEL_GENERIC
] > 0)
417 "WARNING: Using the slow generic C kernel. This is fine if you are\n"
418 "comparing different implementations or MD software. Routine\n"
419 "simulations should use a different non-bonded setup for much better\n"
425 void print_perf(FILE *out
, double time_per_thread
, double time_per_node
,
426 int64_t nsteps
, double delta_t
,
427 double nbfs
, double mflop
)
429 double wallclocktime
;
433 if (time_per_node
> 0)
435 fprintf(out
, "%12s %12s %12s %10s\n", "", "Core t (s)", "Wall t (s)", "(%)");
436 fprintf(out
, "%12s %12.3f %12.3f %10.1f\n", "Time:",
437 time_per_thread
, time_per_node
, 100.0*time_per_thread
/time_per_node
);
438 /* only print day-hour-sec format if time_per_node is more than 30 min */
439 if (time_per_node
> 30*60)
441 fprintf(out
, "%12s %12s", "", "");
442 pr_difftime(out
, time_per_node
);
446 mflop
= mflop
/time_per_node
;
447 wallclocktime
= nsteps
*delta_t
;
449 if (getenv("GMX_DETAILED_PERF_STATS") == nullptr)
451 fprintf(out
, "%12s %12s %12s\n",
452 "", "(ns/day)", "(hour/ns)");
453 fprintf(out
, "%12s %12.3f %12.3f\n", "Performance:",
454 wallclocktime
*24*3.6/time_per_node
, 1000*time_per_node
/(3600*wallclocktime
));
458 fprintf(out
, "%12s %12s %12s %12s %12s\n",
459 "", "(Mnbf/s)", (mflop
> 1000) ? "(GFlops)" : "(MFlops)",
460 "(ns/day)", "(hour/ns)");
461 fprintf(out
, "%12s %12.3f %12.3f %12.3f %12.3f\n", "Performance:",
462 nbfs
/time_per_node
, (mflop
> 1000) ? (mflop
/1000) : mflop
,
463 wallclocktime
*24*3.6/time_per_node
, 1000*time_per_node
/(3600*wallclocktime
));
468 if (getenv("GMX_DETAILED_PERF_STATS") == nullptr)
470 fprintf(out
, "%12s %14s\n",
472 fprintf(out
, "%12s %14.1f\n", "Performance:",
473 nsteps
*3600.0/time_per_node
);
477 fprintf(out
, "%12s %12s %12s %14s\n",
478 "", "(Mnbf/s)", (mflop
> 1000) ? "(GFlops)" : "(MFlops)",
480 fprintf(out
, "%12s %12.3f %12.3f %14.1f\n", "Performance:",
481 nbfs
/time_per_node
, (mflop
> 1000) ? (mflop
/1000) : mflop
,
482 nsteps
*3600.0/time_per_node
);
488 int cost_nrnb(int enr
)
490 return nbdata
[enr
].flop
;
493 const char *nrnb_str(int enr
)
495 return nbdata
[enr
].name
;
498 static const int force_index
[] = {
499 eNR_BONDS
, eNR_ANGLES
, eNR_PROPER
, eNR_IMPROPER
,
500 eNR_RB
, eNR_DISRES
, eNR_ORIRES
, eNR_POSRES
,
501 eNR_FBPOSRES
, eNR_NS
,
503 #define NFORCE_INDEX asize(force_index)
505 static const int constr_index
[] = {
506 eNR_SHAKE
, eNR_SHAKE_RIJ
, eNR_SETTLE
, eNR_UPDATE
, eNR_PCOUPL
,
507 eNR_CONSTR_VIR
, eNR_CONSTR_V
509 #define NCONSTR_INDEX asize(constr_index)
511 static double pr_av(FILE *log
, t_commrec
*cr
,
512 double fav
, const double ftot
[], const char *title
)
520 fav
/= cr
->nnodes
- cr
->npmenodes
;
521 fprintf(log
, "\n %-26s", title
);
522 for (i
= 0; (i
< cr
->nnodes
); i
++)
524 dperc
= (100.0*ftot
[i
])/fav
;
525 unb
= std::max(unb
, dperc
);
526 perc
= static_cast<int>(dperc
);
527 fprintf(log
, "%3d ", perc
);
531 perc
= static_cast<int>(10000.0/unb
);
532 fprintf(log
, "%6d%%\n\n", perc
);
536 fprintf(log
, "\n\n");
542 void pr_load(FILE *log
, t_commrec
*cr
, t_nrnb nrnb
[])
546 std::vector
<double> ftot(cr
->nnodes
);
547 std::vector
<double> stot(cr
->nnodes
);
548 for (int i
= 0; (i
< cr
->nnodes
); i
++)
550 add_nrnb(&av
, &av
, &(nrnb
[i
]));
551 /* Cost due to forces */
552 for (int j
= 0; (j
< eNR_NBKERNEL_TOTAL_NR
); j
++)
554 ftot
[i
] += nrnb
[i
].n
[j
]*cost_nrnb(j
);
556 for (int j
= 0; (j
< NFORCE_INDEX
); j
++)
558 ftot
[i
] += nrnb
[i
].n
[force_index
[j
]]*cost_nrnb(force_index
[j
]);
561 for (int j
= 0; (j
< NCONSTR_INDEX
); j
++)
563 stot
[i
] += nrnb
[i
].n
[constr_index
[j
]]*cost_nrnb(constr_index
[j
]);
566 for (int j
= 0; (j
< eNRNB
); j
++)
568 av
.n
[j
] = av
.n
[j
]/static_cast<double>(cr
->nnodes
- cr
->npmenodes
);
571 fprintf(log
, "\nDetailed load balancing info in percentage of average\n");
573 fprintf(log
, " Type RANK:");
574 for (int i
= 0; (i
< cr
->nnodes
); i
++)
576 fprintf(log
, "%3d ", i
);
578 fprintf(log
, "Scaling\n");
579 fprintf(log
, "---------------------------");
580 for (int i
= 0; (i
< cr
->nnodes
); i
++)
582 fprintf(log
, "----");
584 fprintf(log
, "-------\n");
586 for (int j
= 0; (j
< eNRNB
); j
++)
593 fprintf(log
, " %-26s", nrnb_str(j
));
594 for (int i
= 0; (i
< cr
->nnodes
); i
++)
596 dperc
= (100.0*nrnb
[i
].n
[j
])/av
.n
[j
];
597 unb
= std::max(unb
, dperc
);
598 perc
= static_cast<int>(dperc
);
599 fprintf(log
, "%3d ", perc
);
603 perc
= static_cast<int>(10000.0/unb
);
604 fprintf(log
, "%6d%%\n", perc
);
614 for (int i
= 0; (i
< cr
->nnodes
); i
++)
619 double uf
= pr_av(log
, cr
, fav
, ftot
.data(), "Total Force");
620 double us
= pr_av(log
, cr
, sav
, stot
.data(), "Total Constr.");
622 double unb
= (uf
*fav
+us
*sav
)/(fav
+sav
);
626 fprintf(log
, "\nTotal Scaling: %.0f%% of max performance\n\n", unb
);