2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2008, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
49 #include "gromacs/domdec/dlbtiming.h"
50 #include "gromacs/domdec/domdec.h"
51 #include "gromacs/domdec/domdec_struct.h"
52 #include "gromacs/domdec/mdsetup.h"
53 #include "gromacs/gmxlib/chargegroup.h"
54 #include "gromacs/gmxlib/network.h"
55 #include "gromacs/math/functions.h"
56 #include "gromacs/math/units.h"
57 #include "gromacs/math/vec.h"
58 #include "gromacs/math/vecdump.h"
59 #include "gromacs/mdlib/constr.h"
60 #include "gromacs/mdlib/enerdata_utils.h"
61 #include "gromacs/mdlib/force.h"
62 #include "gromacs/mdlib/force_flags.h"
63 #include "gromacs/mdlib/gmx_omp_nthreads.h"
64 #include "gromacs/mdlib/mdatoms.h"
65 #include "gromacs/mdlib/vsite.h"
66 #include "gromacs/mdtypes/commrec.h"
67 #include "gromacs/mdtypes/enerdata.h"
68 #include "gromacs/mdtypes/forcerec.h"
69 #include "gromacs/mdtypes/inputrec.h"
70 #include "gromacs/mdtypes/md_enums.h"
71 #include "gromacs/mdtypes/state.h"
72 #include "gromacs/pbcutil/mshift.h"
73 #include "gromacs/pbcutil/pbc.h"
74 #include "gromacs/topology/ifunc.h"
75 #include "gromacs/topology/mtop_lookup.h"
76 #include "gromacs/topology/mtop_util.h"
77 #include "gromacs/utility/arrayref.h"
78 #include "gromacs/utility/arraysize.h"
79 #include "gromacs/utility/cstringutil.h"
80 #include "gromacs/utility/fatalerror.h"
81 #include "gromacs/utility/smalloc.h"
85 int shell
; /* The shell id */
86 int nucl1
, nucl2
, nucl3
; /* The nuclei connected to the shell */
87 /* gmx_bool bInterCG; */ /* Coupled to nuclei outside cg? */
88 real k
; /* force constant */
89 real k_1
; /* 1 over force constant */
95 struct gmx_shellfc_t
{
96 /* Shell counts, indices, parameters and working data */
97 int nshell_gl
; /* The number of shells in the system */
98 t_shell
*shell_gl
; /* All the shells (for DD only) */
99 int *shell_index_gl
; /* Global shell index (for DD only) */
100 gmx_bool bInterCG
; /* Are there inter charge-group shells? */
101 int nshell
; /* The number of local shells */
102 t_shell
*shell
; /* The local shells */
103 int shell_nalloc
; /* The allocation size of shell */
104 gmx_bool bPredict
; /* Predict shell positions */
105 gmx_bool bRequireInit
; /* Require initialization of shell positions */
106 int nflexcon
; /* The number of flexible constraints */
108 /* Temporary arrays, should be fixed size 2 when fully converted to C++ */
109 PaddedVector
<gmx::RVec
> *x
; /* Array for iterative minimization */
110 PaddedVector
<gmx::RVec
> *f
; /* Array for iterative minimization */
112 /* Flexible constraint working data */
113 rvec
*acc_dir
; /* Acceleration direction for flexcon */
114 rvec
*x_old
; /* Old coordinates for flexcon */
115 int flex_nalloc
; /* The allocation size of acc_dir and x_old */
116 rvec
*adir_xnold
; /* Work space for init_adir */
117 rvec
*adir_xnew
; /* Work space for init_adir */
118 int adir_nalloc
; /* Work space for init_adir */
119 std::int64_t numForceEvaluations
; /* Total number of force evaluations */
120 int numConvergedIterations
; /* Total number of iterations that converged */
124 static void pr_shell(FILE *fplog
, int ns
, t_shell s
[])
128 fprintf(fplog
, "SHELL DATA\n");
129 fprintf(fplog
, "%5s %8s %5s %5s %5s\n",
130 "Shell", "Force k", "Nucl1", "Nucl2", "Nucl3");
131 for (i
= 0; (i
< ns
); i
++)
133 fprintf(fplog
, "%5d %8.3f %5d", s
[i
].shell
, 1.0/s
[i
].k_1
, s
[i
].nucl1
);
136 fprintf(fplog
, " %5d\n", s
[i
].nucl2
);
138 else if (s
[i
].nnucl
== 3)
140 fprintf(fplog
, " %5d %5d\n", s
[i
].nucl2
, s
[i
].nucl3
);
144 fprintf(fplog
, "\n");
149 /* TODO The remain call of this function passes non-NULL mass and NULL
150 * mtop, so this routine can be simplified.
152 * The other code path supported doing prediction before the MD loop
153 * started, but even when called, the prediction was always
154 * over-written by a subsequent call in the MD loop, so has been
156 static void predict_shells(FILE *fplog
, rvec x
[], rvec v
[], real dt
,
158 const real mass
[], gmx_mtop_t
*mtop
, gmx_bool bInit
)
160 int i
, m
, s1
, n1
, n2
, n3
;
161 real dt_1
, fudge
, tm
, m1
, m2
, m3
;
164 /* We introduce a fudge factor for performance reasons: with this choice
165 * the initial force on the shells is about a factor of two lower than
174 fprintf(fplog
, "RELAX: Using prediction for initial shell placement\n");
186 for (i
= 0; (i
< ns
); i
++)
197 for (m
= 0; (m
< DIM
); m
++)
199 x
[s1
][m
] += ptr
[n1
][m
]*dt_1
;
212 /* Not the correct masses with FE, but it is just a prediction... */
213 m1
= mtopGetAtomMass(mtop
, n1
, &molb
);
214 m2
= mtopGetAtomMass(mtop
, n2
, &molb
);
217 for (m
= 0; (m
< DIM
); m
++)
219 x
[s1
][m
] += (m1
*ptr
[n1
][m
]+m2
*ptr
[n2
][m
])*tm
;
234 /* Not the correct masses with FE, but it is just a prediction... */
235 m1
= mtopGetAtomMass(mtop
, n1
, &molb
);
236 m2
= mtopGetAtomMass(mtop
, n2
, &molb
);
237 m3
= mtopGetAtomMass(mtop
, n3
, &molb
);
239 tm
= dt_1
/(m1
+m2
+m3
);
240 for (m
= 0; (m
< DIM
); m
++)
242 x
[s1
][m
] += (m1
*ptr
[n1
][m
]+m2
*ptr
[n2
][m
]+m3
*ptr
[n3
][m
])*tm
;
246 gmx_fatal(FARGS
, "Shell %d has %d nuclei!", i
, s
[i
].nnucl
);
251 /*! \brief Count the different particle types in a system
253 * Routine prints a warning to stderr in case an unknown particle type
255 * \param[in] fplog Print what we have found if not NULL
256 * \param[in] mtop Molecular topology.
257 * \returns Array holding the number of particles of a type
259 static std::array
<int, eptNR
> countPtypes(FILE *fplog
,
260 const gmx_mtop_t
*mtop
)
262 std::array
<int, eptNR
> nptype
= { { 0 } };
263 /* Count number of shells, and find their indices */
264 for (int i
= 0; (i
< eptNR
); i
++)
269 gmx_mtop_atomloop_block_t aloopb
= gmx_mtop_atomloop_block_init(mtop
);
272 while (gmx_mtop_atomloop_block_next(aloopb
, &atom
, &nmol
))
279 nptype
[atom
->ptype
] += nmol
;
282 fprintf(stderr
, "Warning unsupported particle type %d in countPtypes",
283 static_cast<int>(atom
->ptype
));
288 /* Print the number of each particle type */
290 for (const auto &i
: nptype
)
294 fprintf(fplog
, "There are: %d %ss\n", i
, ptype_str
[n
]);
302 gmx_shellfc_t
*init_shell_flexcon(FILE *fplog
,
303 const gmx_mtop_t
*mtop
, int nflexcon
,
305 bool usingDomainDecomposition
)
309 int *shell_index
= nullptr, *at2cg
;
312 int i
, j
, type
, a_offset
, cg
, mol
, ftype
, nra
;
314 int aS
, aN
= 0; /* Shell and nucleus */
315 int bondtypes
[] = { F_BONDS
, F_HARMONIC
, F_CUBICBONDS
, F_POLARIZATION
, F_ANHARM_POL
, F_WATER_POL
};
316 #define NBT asize(bondtypes)
317 const gmx_ffparams_t
*ffparams
;
319 std::array
<int, eptNR
> n
= countPtypes(fplog
, mtop
);
320 nshell
= n
[eptShell
];
322 if (nshell
== 0 && nflexcon
== 0)
324 /* We're not doing shells or flexible constraints */
329 shfc
->x
= new PaddedVector
<gmx::RVec
>[2] {};
330 shfc
->f
= new PaddedVector
<gmx::RVec
>[2] {};
331 shfc
->nflexcon
= nflexcon
;
335 /* Only flexible constraints, no shells.
336 * Note that make_local_shells() does not need to be called.
339 shfc
->bPredict
= FALSE
;
344 if (nstcalcenergy
!= 1)
346 gmx_fatal(FARGS
, "You have nstcalcenergy set to a value (%d) that is different from 1.\nThis is not supported in combination with shell particles.\nPlease make a new tpr file.", nstcalcenergy
);
348 if (usingDomainDecomposition
)
350 gmx_fatal(FARGS
, "Shell particles are not implemented with domain decomposition, use a single rank");
353 /* We have shells: fill the shell data structure */
355 /* Global system sized array, this should be avoided */
356 snew(shell_index
, mtop
->natoms
);
359 for (const AtomProxy atomP
: AtomRange(*mtop
))
361 const t_atom
&local
= atomP
.atom();
362 int i
= atomP
.globalAtomNumber();
363 if (local
.ptype
== eptShell
)
365 shell_index
[i
] = nshell
++;
371 /* Initiate the shell structures */
372 for (i
= 0; (i
< nshell
); i
++)
379 /* shell[i].bInterCG=FALSE; */
384 ffparams
= &mtop
->ffparams
;
386 /* Now fill the structures */
387 shfc
->bInterCG
= FALSE
;
390 for (size_t mb
= 0; mb
< mtop
->molblock
.size(); mb
++)
392 const gmx_molblock_t
*molb
= &mtop
->molblock
[mb
];
393 const gmx_moltype_t
*molt
= &mtop
->moltype
[molb
->type
];
394 const t_block
*cgs
= &molt
->cgs
;
396 snew(at2cg
, molt
->atoms
.nr
);
397 for (cg
= 0; cg
< cgs
->nr
; cg
++)
399 for (i
= cgs
->index
[cg
]; i
< cgs
->index
[cg
+1]; i
++)
405 const t_atom
*atom
= molt
->atoms
.atom
;
406 for (mol
= 0; mol
< molb
->nmol
; mol
++)
408 for (j
= 0; (j
< NBT
); j
++)
410 const int *ia
= molt
->ilist
[bondtypes
[j
]].iatoms
.data();
411 for (i
= 0; (i
< molt
->ilist
[bondtypes
[j
]].size()); )
414 ftype
= ffparams
->functype
[type
];
415 nra
= interaction_function
[ftype
].nratoms
;
417 /* Check whether we have a bond with a shell */
420 switch (bondtypes
[j
])
427 if (atom
[ia
[1]].ptype
== eptShell
)
432 else if (atom
[ia
[2]].ptype
== eptShell
)
439 aN
= ia
[4]; /* Dummy */
440 aS
= ia
[5]; /* Shell */
443 gmx_fatal(FARGS
, "Death Horror: %s, %d", __FILE__
, __LINE__
);
450 /* Check whether one of the particles is a shell... */
451 nsi
= shell_index
[a_offset
+aS
];
452 if ((nsi
< 0) || (nsi
>= nshell
))
454 gmx_fatal(FARGS
, "nsi is %d should be within 0 - %d. aS = %d",
457 if (shell
[nsi
].shell
== -1)
459 shell
[nsi
].shell
= a_offset
+ aS
;
462 else if (shell
[nsi
].shell
!= a_offset
+aS
)
464 gmx_fatal(FARGS
, "Weird stuff in %s, %d", __FILE__
, __LINE__
);
467 if (shell
[nsi
].nucl1
== -1)
469 shell
[nsi
].nucl1
= a_offset
+ aN
;
471 else if (shell
[nsi
].nucl2
== -1)
473 shell
[nsi
].nucl2
= a_offset
+ aN
;
475 else if (shell
[nsi
].nucl3
== -1)
477 shell
[nsi
].nucl3
= a_offset
+ aN
;
483 pr_shell(fplog
, ns
, shell
);
485 gmx_fatal(FARGS
, "Can not handle more than three bonds per shell\n");
487 if (at2cg
[aS
] != at2cg
[aN
])
489 /* shell[nsi].bInterCG = TRUE; */
490 shfc
->bInterCG
= TRUE
;
493 switch (bondtypes
[j
])
497 shell
[nsi
].k
+= ffparams
->iparams
[type
].harmonic
.krA
;
500 shell
[nsi
].k
+= ffparams
->iparams
[type
].cubic
.kb
;
504 if (!gmx_within_tol(qS
, atom
[aS
].qB
, GMX_REAL_EPS
*10))
506 gmx_fatal(FARGS
, "polarize can not be used with qA(%e) != qB(%e) for atom %d of molecule block %zu", qS
, atom
[aS
].qB
, aS
+1, mb
+1);
508 shell
[nsi
].k
+= gmx::square(qS
)*ONE_4PI_EPS0
/
509 ffparams
->iparams
[type
].polarize
.alpha
;
512 if (!gmx_within_tol(qS
, atom
[aS
].qB
, GMX_REAL_EPS
*10))
514 gmx_fatal(FARGS
, "water_pol can not be used with qA(%e) != qB(%e) for atom %d of molecule block %zu", qS
, atom
[aS
].qB
, aS
+1, mb
+1);
516 alpha
= (ffparams
->iparams
[type
].wpol
.al_x
+
517 ffparams
->iparams
[type
].wpol
.al_y
+
518 ffparams
->iparams
[type
].wpol
.al_z
)/3.0;
519 shell
[nsi
].k
+= gmx::square(qS
)*ONE_4PI_EPS0
/alpha
;
522 gmx_fatal(FARGS
, "Death Horror: %s, %d", __FILE__
, __LINE__
);
530 a_offset
+= molt
->atoms
.nr
;
532 /* Done with this molecule type */
536 /* Verify whether it's all correct */
539 gmx_fatal(FARGS
, "Something weird with shells. They may not be bonded to something");
542 for (i
= 0; (i
< ns
); i
++)
544 shell
[i
].k_1
= 1.0/shell
[i
].k
;
549 pr_shell(debug
, ns
, shell
);
553 shfc
->nshell_gl
= ns
;
554 shfc
->shell_gl
= shell
;
555 shfc
->shell_index_gl
= shell_index
;
557 shfc
->bPredict
= (getenv("GMX_NOPREDICT") == nullptr);
558 shfc
->bRequireInit
= FALSE
;
563 fprintf(fplog
, "\nWill never predict shell positions\n");
568 shfc
->bRequireInit
= (getenv("GMX_REQUIRE_SHELL_INIT") != nullptr);
569 if (shfc
->bRequireInit
&& fplog
)
571 fprintf(fplog
, "\nWill always initiate shell positions\n");
581 fprintf(fplog
, "\nNOTE: there are shells that are connected to particles outside their own charge group, will not predict shells positions during the run\n\n");
583 /* Prediction improves performance, so we should implement either:
584 * 1. communication for the atoms needed for prediction
585 * 2. prediction using the velocities of shells; currently the
586 * shell velocities are zeroed, it's a bit tricky to keep
587 * track of the shell displacements and thus the velocity.
589 shfc
->bPredict
= FALSE
;
596 void make_local_shells(const t_commrec
*cr
,
601 int a0
, a1
, *ind
, nshell
, i
;
602 gmx_domdec_t
*dd
= nullptr;
604 if (DOMAINDECOMP(cr
))
608 a1
= dd_numHomeAtoms(*dd
);
612 /* Single node: we need all shells, just copy the pointer */
613 shfc
->nshell
= shfc
->nshell_gl
;
614 shfc
->shell
= shfc
->shell_gl
;
619 ind
= shfc
->shell_index_gl
;
623 for (i
= a0
; i
< a1
; i
++)
625 if (md
->ptype
[i
] == eptShell
)
627 if (nshell
+1 > shfc
->shell_nalloc
)
629 shfc
->shell_nalloc
= over_alloc_dd(nshell
+1);
630 srenew(shell
, shfc
->shell_nalloc
);
634 shell
[nshell
] = shfc
->shell_gl
[ind
[dd
->globalAtomIndices
[i
]]];
638 shell
[nshell
] = shfc
->shell_gl
[ind
[i
]];
641 /* With inter-cg shells we can no do shell prediction,
642 * so we do not need the nuclei numbers.
646 shell
[nshell
].nucl1
= i
+ shell
[nshell
].nucl1
- shell
[nshell
].shell
;
647 if (shell
[nshell
].nnucl
> 1)
649 shell
[nshell
].nucl2
= i
+ shell
[nshell
].nucl2
- shell
[nshell
].shell
;
651 if (shell
[nshell
].nnucl
> 2)
653 shell
[nshell
].nucl3
= i
+ shell
[nshell
].nucl3
- shell
[nshell
].shell
;
656 shell
[nshell
].shell
= i
;
661 shfc
->nshell
= nshell
;
665 static void do_1pos(rvec xnew
, const rvec xold
, const rvec f
, real step
)
683 static void do_1pos3(rvec xnew
, const rvec xold
, const rvec f
, const rvec step
)
701 static void directional_sd(gmx::ArrayRef
<const gmx::RVec
> xold
,
702 gmx::ArrayRef
<gmx::RVec
> xnew
,
703 const rvec acc_dir
[], int homenr
, real step
)
705 const rvec
*xo
= as_rvec_array(xold
.data());
706 rvec
*xn
= as_rvec_array(xnew
.data());
708 for (int i
= 0; i
< homenr
; i
++)
710 do_1pos(xn
[i
], xo
[i
], acc_dir
[i
], step
);
714 static void shell_pos_sd(gmx::ArrayRef
<const gmx::RVec
> xcur
,
715 gmx::ArrayRef
<gmx::RVec
> xnew
,
716 gmx::ArrayRef
<const gmx::RVec
> f
,
717 int ns
, t_shell s
[], int count
)
719 const real step_scale_min
= 0.8,
720 step_scale_increment
= 0.2,
721 step_scale_max
= 1.2,
722 step_scale_multiple
= (step_scale_max
- step_scale_min
) / step_scale_increment
;
727 real step_min
, step_max
;
732 for (i
= 0; (i
< ns
); i
++)
737 for (d
= 0; d
< DIM
; d
++)
739 s
[i
].step
[d
] = s
[i
].k_1
;
741 step_min
= std::min(step_min
, s
[i
].step
[d
]);
742 step_max
= std::max(step_max
, s
[i
].step
[d
]);
748 for (d
= 0; d
< DIM
; d
++)
750 dx
= xcur
[shell
][d
] - s
[i
].xold
[d
];
751 df
= f
[shell
][d
] - s
[i
].fold
[d
];
752 /* -dx/df gets used to generate an interpolated value, but would
753 * cause a NaN if df were binary-equal to zero. Values close to
754 * zero won't cause problems (because of the min() and max()), so
755 * just testing for binary inequality is OK. */
759 /* Scale the step size by a factor interpolated from
760 * step_scale_min to step_scale_max, as k_est goes from 0 to
761 * step_scale_multiple * s[i].step[d] */
763 step_scale_min
* s
[i
].step
[d
] +
764 step_scale_increment
* std::min(step_scale_multiple
* s
[i
].step
[d
], std::max(k_est
, zero
));
769 if (gmx_numzero(dx
)) /* 0 == dx */
771 /* Likely this will never happen, but if it does just
772 * don't scale the step. */
776 s
[i
].step
[d
] *= step_scale_max
;
780 step_min
= std::min(step_min
, s
[i
].step
[d
]);
781 step_max
= std::max(step_max
, s
[i
].step
[d
]);
785 copy_rvec(xcur
[shell
], s
[i
].xold
);
786 copy_rvec(f
[shell
], s
[i
].fold
);
788 do_1pos3(xnew
[shell
], xcur
[shell
], f
[shell
], s
[i
].step
);
792 fprintf(debug
, "shell[%d] = %d\n", i
, shell
);
793 pr_rvec(debug
, 0, "fshell", f
[shell
], DIM
, TRUE
);
794 pr_rvec(debug
, 0, "xold", xcur
[shell
], DIM
, TRUE
);
795 pr_rvec(debug
, 0, "step", s
[i
].step
, DIM
, TRUE
);
796 pr_rvec(debug
, 0, "xnew", xnew
[shell
], DIM
, TRUE
);
800 printf("step %.3e %.3e\n", step_min
, step_max
);
804 static void decrease_step_size(int nshell
, t_shell s
[])
808 for (i
= 0; i
< nshell
; i
++)
810 svmul(0.8, s
[i
].step
, s
[i
].step
);
814 static void print_epot(FILE *fp
, int64_t mdstep
, int count
, real epot
, real df
,
815 int ndir
, real sf_dir
)
819 fprintf(fp
, "MDStep=%5s/%2d EPot: %12.8e, rmsF: %6.2e",
820 gmx_step_str(mdstep
, buf
), count
, epot
, df
);
823 fprintf(fp
, ", dir. rmsF: %6.2e\n", std::sqrt(sf_dir
/ndir
));
832 static real
rms_force(const t_commrec
*cr
, gmx::ArrayRef
<const gmx::RVec
> force
, int ns
, t_shell s
[],
833 int ndir
, real
*sf_dir
, real
*Epot
)
836 const rvec
*f
= as_rvec_array(force
.data());
839 for (int i
= 0; i
< ns
; i
++)
841 int shell
= s
[i
].shell
;
842 buf
[0] += norm2(f
[shell
]);
851 gmx_sumd(4, buf
, cr
);
852 ntot
= gmx::roundToInt(buf
[1]);
858 return (ntot
? std::sqrt(buf
[0]/ntot
) : 0);
861 static void dump_shells(FILE *fp
, gmx::ArrayRef
<gmx::RVec
> f
, real ftol
, int ns
, t_shell s
[])
866 ft2
= gmx::square(ftol
);
868 for (i
= 0; (i
< ns
); i
++)
871 ff2
= iprod(f
[shell
], f
[shell
]);
874 fprintf(fp
, "SHELL %5d, force %10.5f %10.5f %10.5f, |f| %10.5f\n",
875 shell
, f
[shell
][XX
], f
[shell
][YY
], f
[shell
][ZZ
], std::sqrt(ff2
));
880 static void init_adir(gmx_shellfc_t
*shfc
,
881 gmx::Constraints
*constr
,
882 const t_inputrec
*ir
,
894 gmx::ArrayRef
<const real
> lambda
,
900 unsigned short *ptype
;
902 if (DOMAINDECOMP(cr
))
910 if (n
> shfc
->adir_nalloc
)
912 shfc
->adir_nalloc
= over_alloc_dd(n
);
913 srenew(shfc
->adir_xnold
, shfc
->adir_nalloc
);
914 srenew(shfc
->adir_xnew
, shfc
->adir_nalloc
);
916 xnold
= shfc
->adir_xnold
;
917 xnew
= shfc
->adir_xnew
;
923 /* Does NOT work with freeze or acceleration groups (yet) */
924 for (n
= 0; n
< end
; n
++)
926 w_dt
= md
->invmass
[n
]*dt
;
928 for (d
= 0; d
< DIM
; d
++)
930 if ((ptype
[n
] != eptVSite
) && (ptype
[n
] != eptShell
))
932 xnold
[n
][d
] = x
[n
][d
] - (x_init
[n
][d
] - x_old
[n
][d
]);
933 xnew
[n
][d
] = 2*x
[n
][d
] - x_old
[n
][d
] + f
[n
][d
]*w_dt
*dt
;
937 xnold
[n
][d
] = x
[n
][d
];
938 xnew
[n
][d
] = x
[n
][d
];
942 constr
->apply(FALSE
, FALSE
, step
, 0, 1.0,
943 x
, xnold
, nullptr, box
,
944 lambda
[efptBONDED
], &(dvdlambda
[efptBONDED
]),
945 nullptr, nullptr, gmx::ConstraintVariable::Positions
);
946 constr
->apply(FALSE
, FALSE
, step
, 0, 1.0,
947 x
, xnew
, nullptr, box
,
948 lambda
[efptBONDED
], &(dvdlambda
[efptBONDED
]),
949 nullptr, nullptr, gmx::ConstraintVariable::Positions
);
951 for (n
= 0; n
< end
; n
++)
953 for (d
= 0; d
< DIM
; d
++)
956 -(2*x
[n
][d
]-xnold
[n
][d
]-xnew
[n
][d
])/gmx::square(dt
)
957 - f
[n
][d
]*md
->invmass
[n
];
959 clear_rvec(acc_dir
[n
]);
962 /* Project the acceleration on the old bond directions */
963 constr
->apply(FALSE
, FALSE
, step
, 0, 1.0,
964 x_old
, xnew
, acc_dir
, box
,
965 lambda
[efptBONDED
], &(dvdlambda
[efptBONDED
]),
966 nullptr, nullptr, gmx::ConstraintVariable::Deriv_FlexCon
);
969 void relax_shell_flexcon(FILE *fplog
,
971 const gmx_multisim_t
*ms
,
973 gmx_enfrot
*enforcedRotation
,
975 const t_inputrec
*inputrec
,
976 gmx::ImdSession
*imdSession
,
980 const gmx_localtop_t
*top
,
981 gmx::Constraints
*constr
,
982 gmx_enerdata_t
*enerd
,
985 gmx::ArrayRefWithPadding
<gmx::RVec
> x
,
986 gmx::ArrayRefWithPadding
<gmx::RVec
> v
,
988 gmx::ArrayRef
<real
> lambda
,
990 gmx::ArrayRefWithPadding
<gmx::RVec
> f
,
994 gmx_wallcycle_t wcycle
,
998 gmx::PpForceWorkload
*ppForceWorkload
,
1001 const gmx_vsite_t
*vsite
,
1002 const DDBalanceRegionHandler
&ddBalanceRegionHandler
)
1004 auto xRvec
= as_rvec_array(x
.paddedArrayRef().data());
1005 auto vRvec
= as_rvec_array(v
.paddedArrayRef().data());
1010 rvec
*acc_dir
= nullptr, *x_old
= nullptr;
1011 real Epot
[2], df
[2];
1015 gmx_bool bCont
, bInit
, bConverged
;
1016 int nat
, dd_ac0
, dd_ac1
= 0, i
;
1017 int homenr
= md
->homenr
, end
= homenr
;
1018 int nflexcon
, number_steps
, d
, Min
= 0, count
= 0;
1019 #define Try (1-Min) /* At start Try = 1 */
1021 bCont
= (mdstep
== inputrec
->init_step
) && inputrec
->bContinuation
;
1022 bInit
= (mdstep
== inputrec
->init_step
) || shfc
->bRequireInit
;
1023 ftol
= inputrec
->em_tol
;
1024 number_steps
= inputrec
->niter
;
1025 nshell
= shfc
->nshell
;
1026 shell
= shfc
->shell
;
1027 nflexcon
= shfc
->nflexcon
;
1031 if (DOMAINDECOMP(cr
))
1033 nat
= dd_natoms_vsite(cr
->dd
);
1036 dd_get_constraint_range(cr
->dd
, &dd_ac0
, &dd_ac1
);
1037 nat
= std::max(nat
, dd_ac1
);
1045 for (i
= 0; (i
< 2); i
++)
1047 shfc
->x
[i
].resizeWithPadding(nat
);
1048 shfc
->f
[i
].resizeWithPadding(nat
);
1051 /* Create views that we can swap */
1052 gmx::ArrayRefWithPadding
<gmx::RVec
> posWithPadding
[2];
1053 gmx::ArrayRefWithPadding
<gmx::RVec
> forceWithPadding
[2];
1054 gmx::ArrayRef
<gmx::RVec
> pos
[2];
1055 gmx::ArrayRef
<gmx::RVec
> force
[2];
1056 for (i
= 0; (i
< 2); i
++)
1058 posWithPadding
[i
] = shfc
->x
[i
].arrayRefWithPadding();
1059 pos
[i
] = posWithPadding
[i
].paddedArrayRef();
1060 forceWithPadding
[i
] = shfc
->f
[i
].arrayRefWithPadding();
1061 force
[i
] = forceWithPadding
[i
].paddedArrayRef();
1064 if (bDoNS
&& inputrec
->ePBC
!= epbcNONE
&& !DOMAINDECOMP(cr
))
1066 /* This is the only time where the coordinates are used
1067 * before do_force is called, which normally puts all
1068 * charge groups in the box.
1070 auto xRef
= x
.paddedArrayRef();
1071 put_atoms_in_box_omp(fr
->ePBC
, box
, xRef
.subArray(0, md
->homenr
), gmx_omp_nthreads_get(emntDefault
));
1075 mk_mshift(fplog
, graph
, fr
->ePBC
, box
, xRvec
);
1079 /* After this all coordinate arrays will contain whole charge groups */
1082 shift_self(graph
, box
, xRvec
);
1087 if (nat
> shfc
->flex_nalloc
)
1089 shfc
->flex_nalloc
= over_alloc_dd(nat
);
1090 srenew(shfc
->acc_dir
, shfc
->flex_nalloc
);
1091 srenew(shfc
->x_old
, shfc
->flex_nalloc
);
1093 acc_dir
= shfc
->acc_dir
;
1094 x_old
= shfc
->x_old
;
1095 auto xArrayRef
= x
.paddedArrayRef();
1096 auto vArrayRef
= v
.paddedArrayRef();
1097 for (i
= 0; i
< homenr
; i
++)
1099 for (d
= 0; d
< DIM
; d
++)
1102 xArrayRef
[i
][d
] - vArrayRef
[i
][d
]*inputrec
->delta_t
;
1107 /* Do a prediction of the shell positions, when appropriate.
1108 * Without velocities (EM, NM, BD) we only do initial prediction.
1110 if (shfc
->bPredict
&& !bCont
&& (EI_STATE_VELOCITY(inputrec
->eI
) || bInit
))
1112 predict_shells(fplog
, xRvec
, vRvec
, inputrec
->delta_t
, nshell
, shell
,
1113 md
->massT
, nullptr, bInit
);
1116 /* do_force expected the charge groups to be in the box */
1119 unshift_self(graph
, box
, xRvec
);
1122 /* Calculate the forces first time around */
1125 pr_rvecs(debug
, 0, "x b4 do_force", xRvec
, homenr
);
1127 int shellfc_flags
= force_flags
| (bVerbose
? GMX_FORCE_ENERGY
: 0);
1128 do_force(fplog
, cr
, ms
, inputrec
, nullptr, enforcedRotation
, imdSession
,
1130 mdstep
, nrnb
, wcycle
, top
,
1132 forceWithPadding
[Min
], force_vir
, md
, enerd
, fcd
,
1134 fr
, ppForceWorkload
, vsite
, mu_tot
, t
, nullptr,
1135 (bDoNS
? GMX_FORCE_NS
: 0) | shellfc_flags
,
1136 ddBalanceRegionHandler
);
1142 constr
, inputrec
, cr
, dd_ac1
, mdstep
, md
, end
,
1143 shfc
->x_old
, xRvec
, xRvec
, as_rvec_array(force
[Min
].data()),
1147 for (i
= 0; i
< end
; i
++)
1149 sf_dir
+= md
->massT
[i
]*norm2(shfc
->acc_dir
[i
]);
1152 sum_epot(&(enerd
->grpp
), enerd
->term
);
1153 Epot
[Min
] = enerd
->term
[F_EPOT
];
1155 df
[Min
] = rms_force(cr
, forceWithPadding
[Min
].paddedArrayRef(), nshell
, shell
, nflexcon
, &sf_dir
, &Epot
[Min
]);
1159 fprintf(debug
, "df = %g %g\n", df
[Min
], df
[Try
]);
1164 pr_rvecs(debug
, 0, "force0", as_rvec_array(force
[Min
].data()), md
->nr
);
1167 if (nshell
+nflexcon
> 0)
1169 /* Copy x to pos[Min] & pos[Try]: during minimization only the
1170 * shell positions are updated, therefore the other particles must
1171 * be set here, in advance.
1173 std::copy(x
.paddedArrayRef().begin(),
1174 x
.paddedArrayRef().end(),
1175 posWithPadding
[Min
].paddedArrayRef().begin());
1176 std::copy(x
.paddedArrayRef().begin(),
1177 x
.paddedArrayRef().end(),
1178 posWithPadding
[Try
].paddedArrayRef().begin());
1181 if (bVerbose
&& MASTER(cr
))
1183 print_epot(stdout
, mdstep
, 0, Epot
[Min
], df
[Min
], nflexcon
, sf_dir
);
1188 fprintf(debug
, "%17s: %14.10e\n",
1189 interaction_function
[F_EKIN
].longname
, enerd
->term
[F_EKIN
]);
1190 fprintf(debug
, "%17s: %14.10e\n",
1191 interaction_function
[F_EPOT
].longname
, enerd
->term
[F_EPOT
]);
1192 fprintf(debug
, "%17s: %14.10e\n",
1193 interaction_function
[F_ETOT
].longname
, enerd
->term
[F_ETOT
]);
1194 fprintf(debug
, "SHELLSTEP %s\n", gmx_step_str(mdstep
, sbuf
));
1197 /* First check whether we should do shells, or whether the force is
1198 * low enough even without minimization.
1200 bConverged
= (df
[Min
] < ftol
);
1202 for (count
= 1; (!(bConverged
) && (count
< number_steps
)); count
++)
1206 construct_vsites(vsite
, as_rvec_array(pos
[Min
].data()),
1207 inputrec
->delta_t
, vRvec
,
1208 idef
->iparams
, idef
->il
,
1209 fr
->ePBC
, fr
->bMolPBC
, cr
, box
);
1215 constr
, inputrec
, cr
, dd_ac1
, mdstep
, md
, end
,
1217 as_rvec_array(pos
[Min
].data()),
1218 as_rvec_array(force
[Min
].data()), acc_dir
,
1221 directional_sd(pos
[Min
], pos
[Try
], acc_dir
, end
, fr
->fc_stepsize
);
1224 /* New positions, Steepest descent */
1225 shell_pos_sd(pos
[Min
], pos
[Try
], force
[Min
], nshell
, shell
, count
);
1227 /* do_force expected the charge groups to be in the box */
1230 unshift_self(graph
, box
, as_rvec_array(pos
[Try
].data()));
1235 pr_rvecs(debug
, 0, "RELAX: pos[Min] ", as_rvec_array(pos
[Min
].data()), homenr
);
1236 pr_rvecs(debug
, 0, "RELAX: pos[Try] ", as_rvec_array(pos
[Try
].data()), homenr
);
1238 /* Try the new positions */
1239 do_force(fplog
, cr
, ms
, inputrec
, nullptr, enforcedRotation
, imdSession
,
1242 top
, box
, posWithPadding
[Try
], hist
,
1243 forceWithPadding
[Try
], force_vir
,
1244 md
, enerd
, fcd
, lambda
, graph
,
1245 fr
, ppForceWorkload
, vsite
, mu_tot
, t
, nullptr,
1247 ddBalanceRegionHandler
);
1248 sum_epot(&(enerd
->grpp
), enerd
->term
);
1251 pr_rvecs(debug
, 0, "RELAX: force[Min]", as_rvec_array(force
[Min
].data()), homenr
);
1252 pr_rvecs(debug
, 0, "RELAX: force[Try]", as_rvec_array(force
[Try
].data()), homenr
);
1258 constr
, inputrec
, cr
, dd_ac1
, mdstep
, md
, end
,
1260 as_rvec_array(pos
[Try
].data()),
1261 as_rvec_array(force
[Try
].data()),
1262 acc_dir
, box
, lambda
, &dum
);
1264 for (i
= 0; i
< end
; i
++)
1266 sf_dir
+= md
->massT
[i
]*norm2(acc_dir
[i
]);
1270 Epot
[Try
] = enerd
->term
[F_EPOT
];
1272 df
[Try
] = rms_force(cr
, force
[Try
], nshell
, shell
, nflexcon
, &sf_dir
, &Epot
[Try
]);
1276 fprintf(debug
, "df = %g %g\n", df
[Min
], df
[Try
]);
1283 pr_rvecs(debug
, 0, "F na do_force", as_rvec_array(force
[Try
].data()), homenr
);
1287 fprintf(debug
, "SHELL ITER %d\n", count
);
1288 dump_shells(debug
, force
[Try
], ftol
, nshell
, shell
);
1292 if (bVerbose
&& MASTER(cr
))
1294 print_epot(stdout
, mdstep
, count
, Epot
[Try
], df
[Try
], nflexcon
, sf_dir
);
1297 bConverged
= (df
[Try
] < ftol
);
1299 if ((df
[Try
] < df
[Min
]))
1303 fprintf(debug
, "Swapping Min and Try\n");
1307 /* Correct the velocities for the flexible constraints */
1308 invdt
= 1/inputrec
->delta_t
;
1309 auto vArrayRef
= v
.paddedArrayRef();
1310 for (i
= 0; i
< end
; i
++)
1312 for (d
= 0; d
< DIM
; d
++)
1314 vArrayRef
[i
][d
] += (pos
[Try
][i
][d
] - pos
[Min
][i
][d
])*invdt
;
1322 decrease_step_size(nshell
, shell
);
1325 shfc
->numForceEvaluations
+= count
;
1328 shfc
->numConvergedIterations
++;
1330 if (MASTER(cr
) && !(bConverged
))
1332 /* Note that the energies and virial are incorrect when not converged */
1336 "step %s: EM did not converge in %d iterations, RMS force %6.2e\n",
1337 gmx_step_str(mdstep
, sbuf
), number_steps
, df
[Min
]);
1340 "step %s: EM did not converge in %d iterations, RMS force %6.2e\n",
1341 gmx_step_str(mdstep
, sbuf
), number_steps
, df
[Min
]);
1344 /* Copy back the coordinates and the forces */
1345 std::copy(pos
[Min
].begin(), pos
[Min
].end(), x
.paddedArrayRef().data());
1346 std::copy(force
[Min
].begin(), force
[Min
].end(), f
.unpaddedArrayRef().begin());
1349 void done_shellfc(FILE *fplog
, gmx_shellfc_t
*shfc
, int64_t numSteps
)
1351 if (shfc
&& fplog
&& numSteps
> 0)
1353 double numStepsAsDouble
= static_cast<double>(numSteps
);
1354 fprintf(fplog
, "Fraction of iterations that converged: %.2f %%\n",
1355 (shfc
->numConvergedIterations
*100.0)/numStepsAsDouble
);
1356 fprintf(fplog
, "Average number of force evaluations per MD step: %.2f\n\n",
1357 shfc
->numForceEvaluations
/numStepsAsDouble
);
1360 // TODO Deallocate memory in shfc