Introduce SimulatorBuilder
[gromacs.git] / src / gromacs / simd / simd_math.h
bloba45ba4b84d2bb092e676c5f6c4babe00747b8108
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
35 #ifndef GMX_SIMD_SIMD_MATH_H
36 #define GMX_SIMD_SIMD_MATH_H
38 /*! \libinternal \file
40 * \brief Math functions for SIMD datatypes.
42 * \attention This file is generic for all SIMD architectures, so you cannot
43 * assume that any of the optional SIMD features (as defined in simd.h) are
44 * present. In particular, this means you cannot assume support for integers,
45 * logical operations (neither on floating-point nor integer values), shifts,
46 * and the architecture might only have SIMD for either float or double.
47 * Second, to keep this file clean and general, any additions to this file
48 * must work for all possible SIMD architectures in both single and double
49 * precision (if they support it), and you cannot make any assumptions about
50 * SIMD width.
52 * \author Erik Lindahl <erik.lindahl@scilifelab.se>
54 * \inlibraryapi
55 * \ingroup module_simd
58 #include "config.h"
60 #include <cmath>
62 #include <limits>
64 #include "gromacs/math/utilities.h"
65 #include "gromacs/simd/simd.h"
66 #include "gromacs/utility/basedefinitions.h"
67 #include "gromacs/utility/real.h"
69 namespace gmx
72 #if GMX_SIMD
74 /*! \cond libapi */
75 /*! \addtogroup module_simd */
76 /*! \{ */
78 /*! \name Implementation accuracy settings
79 * \{
82 /*! \} */
84 #if GMX_SIMD_HAVE_FLOAT
86 /*! \name Single precision SIMD math functions
88 * \note In most cases you should use the real-precision functions instead.
89 * \{
92 /****************************************
93 * SINGLE PRECISION SIMD MATH FUNCTIONS *
94 ****************************************/
96 #if !GMX_SIMD_HAVE_NATIVE_COPYSIGN_FLOAT
97 /*! \brief Composes floating point value with the magnitude of x and the sign of y.
99 * \param x Values to set sign for
100 * \param y Values used to set sign
101 * \return Magnitude of x, sign of y
103 static inline SimdFloat gmx_simdcall
104 copysign(SimdFloat x, SimdFloat y)
106 #if GMX_SIMD_HAVE_LOGICAL
107 return abs(x) | ( SimdFloat(GMX_FLOAT_NEGZERO) & y );
108 #else
109 return blend(abs(x), -abs(x), y < setZero());
110 #endif
112 #endif
114 #if !GMX_SIMD_HAVE_NATIVE_RSQRT_ITER_FLOAT
115 /*! \brief Perform one Newton-Raphson iteration to improve 1/sqrt(x) for SIMD float.
117 * This is a low-level routine that should only be used by SIMD math routine
118 * that evaluates the inverse square root.
120 * \param lu Approximation of 1/sqrt(x), typically obtained from lookup.
121 * \param x The reference (starting) value x for which we want 1/sqrt(x).
122 * \return An improved approximation with roughly twice as many bits of accuracy.
124 static inline SimdFloat gmx_simdcall
125 rsqrtIter(SimdFloat lu, SimdFloat x)
127 SimdFloat tmp1 = x*lu;
128 SimdFloat tmp2 = SimdFloat(-0.5f)*lu;
129 tmp1 = fma(tmp1, lu, SimdFloat(-3.0f));
130 return tmp1*tmp2;
132 #endif
134 /*! \brief Calculate 1/sqrt(x) for SIMD float.
136 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
137 * GMX_FLOAT_MAX, i.e. within the range of single precision.
138 * For the single precision implementation this is obviously always
139 * true for positive values, but for double precision it adds an
140 * extra restriction since the first lookup step might have to be
141 * performed in single precision on some architectures. Note that the
142 * responsibility for checking falls on you - this routine does not
143 * check arguments.
145 * \return 1/sqrt(x). Result is undefined if your argument was invalid.
147 static inline SimdFloat gmx_simdcall
148 invsqrt(SimdFloat x)
150 SimdFloat lu = rsqrt(x);
151 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
152 lu = rsqrtIter(lu, x);
153 #endif
154 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
155 lu = rsqrtIter(lu, x);
156 #endif
157 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
158 lu = rsqrtIter(lu, x);
159 #endif
160 return lu;
163 /*! \brief Calculate 1/sqrt(x) for two SIMD floats.
165 * \param x0 First set of arguments, x0 must be in single range (see below).
166 * \param x1 Second set of arguments, x1 must be in single range (see below).
167 * \param[out] out0 Result 1/sqrt(x0)
168 * \param[out] out1 Result 1/sqrt(x1)
170 * In particular for double precision we can sometimes calculate square root
171 * pairs slightly faster by using single precision until the very last step.
173 * \note Both arguments must be larger than GMX_FLOAT_MIN and smaller than
174 * GMX_FLOAT_MAX, i.e. within the range of single precision.
175 * For the single precision implementation this is obviously always
176 * true for positive values, but for double precision it adds an
177 * extra restriction since the first lookup step might have to be
178 * performed in single precision on some architectures. Note that the
179 * responsibility for checking falls on you - this routine does not
180 * check arguments.
182 static inline void gmx_simdcall
183 invsqrtPair(SimdFloat x0, SimdFloat x1,
184 SimdFloat *out0, SimdFloat *out1)
186 *out0 = invsqrt(x0);
187 *out1 = invsqrt(x1);
190 #if !GMX_SIMD_HAVE_NATIVE_RCP_ITER_FLOAT
191 /*! \brief Perform one Newton-Raphson iteration to improve 1/x for SIMD float.
193 * This is a low-level routine that should only be used by SIMD math routine
194 * that evaluates the reciprocal.
196 * \param lu Approximation of 1/x, typically obtained from lookup.
197 * \param x The reference (starting) value x for which we want 1/x.
198 * \return An improved approximation with roughly twice as many bits of accuracy.
200 static inline SimdFloat gmx_simdcall
201 rcpIter(SimdFloat lu, SimdFloat x)
203 return lu*fnma(lu, x, SimdFloat(2.0f));
205 #endif
207 /*! \brief Calculate 1/x for SIMD float.
209 * \param x Argument with magnitude larger than GMX_FLOAT_MIN and smaller than
210 * GMX_FLOAT_MAX, i.e. within the range of single precision.
211 * For the single precision implementation this is obviously always
212 * true for positive values, but for double precision it adds an
213 * extra restriction since the first lookup step might have to be
214 * performed in single precision on some architectures. Note that the
215 * responsibility for checking falls on you - this routine does not
216 * check arguments.
218 * \return 1/x. Result is undefined if your argument was invalid.
220 static inline SimdFloat gmx_simdcall
221 inv(SimdFloat x)
223 SimdFloat lu = rcp(x);
224 #if (GMX_SIMD_RCP_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
225 lu = rcpIter(lu, x);
226 #endif
227 #if (GMX_SIMD_RCP_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
228 lu = rcpIter(lu, x);
229 #endif
230 #if (GMX_SIMD_RCP_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
231 lu = rcpIter(lu, x);
232 #endif
233 return lu;
236 /*! \brief Division for SIMD floats
238 * \param nom Nominator
239 * \param denom Denominator, with magnitude in range (GMX_FLOAT_MIN,GMX_FLOAT_MAX).
240 * For single precision this is equivalent to a nonzero argument,
241 * but in double precision it adds an extra restriction since
242 * the first lookup step might have to be performed in single
243 * precision on some architectures. Note that the responsibility
244 * for checking falls on you - this routine does not check arguments.
246 * \return nom/denom
248 * \note This function does not use any masking to avoid problems with
249 * zero values in the denominator.
251 static inline SimdFloat gmx_simdcall
252 operator/(SimdFloat nom, SimdFloat denom)
254 return nom*inv(denom);
257 /*! \brief Calculate 1/sqrt(x) for masked entries of SIMD float.
259 * This routine only evaluates 1/sqrt(x) for elements for which mask is true.
260 * Illegal values in the masked-out elements will not lead to
261 * floating-point exceptions.
263 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
264 * GMX_FLOAT_MAX for masked-in entries.
265 * See \ref invsqrt for the discussion about argument restrictions.
266 * \param m Mask
267 * \return 1/sqrt(x). Result is undefined if your argument was invalid or
268 * entry was not masked, and 0.0 for masked-out entries.
270 static inline SimdFloat
271 maskzInvsqrt(SimdFloat x, SimdFBool m)
273 SimdFloat lu = maskzRsqrt(x, m);
274 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
275 lu = rsqrtIter(lu, x);
276 #endif
277 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
278 lu = rsqrtIter(lu, x);
279 #endif
280 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
281 lu = rsqrtIter(lu, x);
282 #endif
283 return lu;
286 /*! \brief Calculate 1/x for SIMD float, masked version.
288 * \param x Argument with magnitude larger than GMX_FLOAT_MIN and smaller than
289 * GMX_FLOAT_MAX for masked-in entries.
290 * See \ref invsqrt for the discussion about argument restrictions.
291 * \param m Mask
292 * \return 1/x for elements where m is true, or 0.0 for masked-out entries.
294 static inline SimdFloat gmx_simdcall
295 maskzInv(SimdFloat x, SimdFBool m)
297 SimdFloat lu = maskzRcp(x, m);
298 #if (GMX_SIMD_RCP_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
299 lu = rcpIter(lu, x);
300 #endif
301 #if (GMX_SIMD_RCP_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
302 lu = rcpIter(lu, x);
303 #endif
304 #if (GMX_SIMD_RCP_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
305 lu = rcpIter(lu, x);
306 #endif
307 return lu;
310 /*! \brief Calculate sqrt(x) for SIMD floats
312 * \tparam opt By default, this function checks if the input value is 0.0
313 * and masks this to return the correct result. If you are certain
314 * your argument will never be zero, and you know you need to save
315 * every single cycle you can, you can alternatively call the
316 * function as sqrt<MathOptimization::Unsafe>(x).
318 * \param x Argument that must be in range 0 <=x <= GMX_FLOAT_MAX, since the
319 * lookup step often has to be implemented in single precision.
320 * Arguments smaller than GMX_FLOAT_MIN will always lead to a zero
321 * result, even in double precision. If you are using the unsafe
322 * math optimization parameter, the argument must be in the range
323 * GMX_FLOAT_MIN <= x <= GMX_FLOAT_MAX.
325 * \return sqrt(x). The result is undefined if the input value does not fall
326 * in the allowed range specified for the argument.
328 template <MathOptimization opt = MathOptimization::Safe>
329 static inline SimdFloat gmx_simdcall
330 sqrt(SimdFloat x)
332 if (opt == MathOptimization::Safe)
334 SimdFloat res = maskzInvsqrt(x, setZero() < x);
335 return res*x;
337 else
339 return x * invsqrt(x);
343 #if !GMX_SIMD_HAVE_NATIVE_LOG_FLOAT
344 /*! \brief SIMD float log(x). This is the natural logarithm.
346 * \param x Argument, should be >0.
347 * \result The natural logarithm of x. Undefined if argument is invalid.
349 static inline SimdFloat gmx_simdcall
350 log(SimdFloat x)
352 const SimdFloat one(1.0f);
353 const SimdFloat two(2.0f);
354 const SimdFloat invsqrt2(1.0f/std::sqrt(2.0f));
355 const SimdFloat corr(0.693147180559945286226764f);
356 const SimdFloat CL9(0.2371599674224853515625f);
357 const SimdFloat CL7(0.285279005765914916992188f);
358 const SimdFloat CL5(0.400005519390106201171875f);
359 const SimdFloat CL3(0.666666567325592041015625f);
360 const SimdFloat CL1(2.0f);
361 SimdFloat fExp, x2, p;
362 SimdFBool m;
363 SimdFInt32 iExp;
365 x = frexp(x, &iExp);
366 fExp = cvtI2R(iExp);
368 m = x < invsqrt2;
369 // Adjust to non-IEEE format for x<1/sqrt(2): exponent -= 1, mantissa *= 2.0
370 fExp = fExp - selectByMask(one, m);
371 x = x * blend(one, two, m);
373 x = (x-one) * inv( x+one );
374 x2 = x * x;
376 p = fma(CL9, x2, CL7);
377 p = fma(p, x2, CL5);
378 p = fma(p, x2, CL3);
379 p = fma(p, x2, CL1);
380 p = fma(p, x, corr*fExp);
382 return p;
384 #endif
386 #if !GMX_SIMD_HAVE_NATIVE_EXP2_FLOAT
387 /*! \brief SIMD float 2^x
389 * \tparam opt If this is changed from the default (safe) into the unsafe
390 * option, input values that would otherwise lead to zero-clamped
391 * results are not allowed and will lead to undefined results.
393 * \param x Argument. For the default (safe) function version this can be
394 * arbitrarily small value, but the routine might clamp the result to
395 * zero for arguments that would produce subnormal IEEE754-2008 results.
396 * This corresponds to inputs below -126 in single or -1022 in double,
397 * and it might overflow for arguments reaching 127 (single) or
398 * 1023 (double). If you enable the unsafe math optimization,
399 * very small arguments will not necessarily be zero-clamped, but
400 * can produce undefined results.
402 * \result 2^x. The result is undefined for very large arguments that cause
403 * internal floating-point overflow. If unsafe optimizations are enabled,
404 * this is also true for very small values.
406 * \note The definition range of this function is just-so-slightly smaller
407 * than the allowed IEEE exponents for many architectures. This is due
408 * to the implementation, which will hopefully improve in the future.
410 * \warning You cannot rely on this implementation returning inf for arguments
411 * that cause overflow. If you have some very large
412 * values and need to rely on getting a valid numerical output,
413 * take the minimum of your variable and the largest valid argument
414 * before calling this routine.
416 template <MathOptimization opt = MathOptimization::Safe>
417 static inline SimdFloat gmx_simdcall
418 exp2(SimdFloat x)
420 const SimdFloat CC6(0.0001534581200287996416911311f);
421 const SimdFloat CC5(0.001339993121934088894618990f);
422 const SimdFloat CC4(0.009618488957115180159497841f);
423 const SimdFloat CC3(0.05550328776964726865751735f);
424 const SimdFloat CC2(0.2402264689063408646490722f);
425 const SimdFloat CC1(0.6931472057372680777553816f);
426 const SimdFloat one(1.0f);
428 SimdFloat intpart;
429 SimdFloat fexppart;
430 SimdFloat p;
432 // Large negative values are valid arguments to exp2(), so there are two
433 // things we need to account for:
434 // 1. When the exponents reaches -127, the (biased) exponent field will be
435 // zero and we can no longer multiply with it. There are special IEEE
436 // formats to handle this range, but for now we have to accept that
437 // we cannot handle those arguments. If input value becomes even more
438 // negative, it will start to loop and we would end up with invalid
439 // exponents. Thus, we need to limit or mask this.
440 // 2. For VERY large negative values, we will have problems that the
441 // subtraction to get the fractional part loses accuracy, and then we
442 // can end up with overflows in the polynomial.
444 // For now, we handle this by forwarding the math optimization setting to
445 // ldexp, where the routine will return zero for very small arguments.
447 // However, before doing that we need to make sure we do not call cvtR2I
448 // with an argument that is so negative it cannot be converted to an integer.
449 if (opt == MathOptimization::Safe)
451 x = max(x, SimdFloat(std::numeric_limits<std::int32_t>::lowest()));
454 fexppart = ldexp<opt>(one, cvtR2I(x));
455 intpart = round(x);
456 x = x - intpart;
458 p = fma(CC6, x, CC5);
459 p = fma(p, x, CC4);
460 p = fma(p, x, CC3);
461 p = fma(p, x, CC2);
462 p = fma(p, x, CC1);
463 p = fma(p, x, one);
464 x = p * fexppart;
465 return x;
467 #endif
469 #if !GMX_SIMD_HAVE_NATIVE_EXP_FLOAT
470 /*! \brief SIMD float exp(x).
472 * In addition to scaling the argument for 2^x this routine correctly does
473 * extended precision arithmetics to improve accuracy.
475 * \tparam opt If this is changed from the default (safe) into the unsafe
476 * option, input values that would otherwise lead to zero-clamped
477 * results are not allowed and will lead to undefined results.
479 * \param x Argument. For the default (safe) function version this can be
480 * arbitrarily small value, but the routine might clamp the result to
481 * zero for arguments that would produce subnormal IEEE754-2008 results.
482 * This corresponds to input arguments reaching
483 * -126*ln(2)=-87.3 in single, or -1022*ln(2)=-708.4 (double).
484 * Similarly, it might overflow for arguments reaching
485 * 127*ln(2)=88.0 (single) or 1023*ln(2)=709.1 (double). If the
486 * unsafe math optimizations are enabled, small input values that would
487 * result in zero-clamped output are not allowed.
489 * \result exp(x). Overflowing arguments are likely to either return 0 or inf,
490 * depending on the underlying implementation. If unsafe optimizations
491 * are enabled, this is also true for very small values.
493 * \note The definition range of this function is just-so-slightly smaller
494 * than the allowed IEEE exponents for many architectures. This is due
495 * to the implementation, which will hopefully improve in the future.
497 * \warning You cannot rely on this implementation returning inf for arguments
498 * that cause overflow. If you have some very large
499 * values and need to rely on getting a valid numerical output,
500 * take the minimum of your variable and the largest valid argument
501 * before calling this routine.
503 template <MathOptimization opt = MathOptimization::Safe>
504 static inline SimdFloat gmx_simdcall
505 exp(SimdFloat x)
507 const SimdFloat argscale(1.44269504088896341f);
508 const SimdFloat invargscale0(-0.693145751953125f);
509 const SimdFloat invargscale1(-1.428606765330187045e-06f);
510 const SimdFloat CC4(0.00136324646882712841033936f);
511 const SimdFloat CC3(0.00836596917361021041870117f);
512 const SimdFloat CC2(0.0416710823774337768554688f);
513 const SimdFloat CC1(0.166665524244308471679688f);
514 const SimdFloat CC0(0.499999850988388061523438f);
515 const SimdFloat one(1.0f);
516 SimdFloat fexppart;
517 SimdFloat intpart;
518 SimdFloat y, p;
520 // Large negative values are valid arguments to exp2(), so there are two
521 // things we need to account for:
522 // 1. When the exponents reaches -127, the (biased) exponent field will be
523 // zero and we can no longer multiply with it. There are special IEEE
524 // formats to handle this range, but for now we have to accept that
525 // we cannot handle those arguments. If input value becomes even more
526 // negative, it will start to loop and we would end up with invalid
527 // exponents. Thus, we need to limit or mask this.
528 // 2. For VERY large negative values, we will have problems that the
529 // subtraction to get the fractional part loses accuracy, and then we
530 // can end up with overflows in the polynomial.
532 // For now, we handle this by forwarding the math optimization setting to
533 // ldexp, where the routine will return zero for very small arguments.
535 // However, before doing that we need to make sure we do not call cvtR2I
536 // with an argument that is so negative it cannot be converted to an integer
537 // after being multiplied by argscale.
539 if (opt == MathOptimization::Safe)
541 x = max(x, SimdFloat(std::numeric_limits<std::int32_t>::lowest())/argscale);
544 y = x * argscale;
547 fexppart = ldexp<opt>(one, cvtR2I(y));
548 intpart = round(y);
550 // Extended precision arithmetics
551 x = fma(invargscale0, intpart, x);
552 x = fma(invargscale1, intpart, x);
554 p = fma(CC4, x, CC3);
555 p = fma(p, x, CC2);
556 p = fma(p, x, CC1);
557 p = fma(p, x, CC0);
558 p = fma(x*x, p, x);
559 x = fma(p, fexppart, fexppart);
560 return x;
562 #endif
564 /*! \brief SIMD float erf(x).
566 * \param x The value to calculate erf(x) for.
567 * \result erf(x)
569 * This routine achieves very close to full precision, but we do not care about
570 * the last bit or the subnormal result range.
572 static inline SimdFloat gmx_simdcall
573 erf(SimdFloat x)
575 // Coefficients for minimax approximation of erf(x)=x*P(x^2) in range [-1,1]
576 const SimdFloat CA6(7.853861353153693e-5f);
577 const SimdFloat CA5(-8.010193625184903e-4f);
578 const SimdFloat CA4(5.188327685732524e-3f);
579 const SimdFloat CA3(-2.685381193529856e-2f);
580 const SimdFloat CA2(1.128358514861418e-1f);
581 const SimdFloat CA1(-3.761262582423300e-1f);
582 const SimdFloat CA0(1.128379165726710f);
583 // Coefficients for minimax approximation of erfc(x)=Exp(-x^2)*P((1/(x-1))^2) in range [0.67,2]
584 const SimdFloat CB9(-0.0018629930017603923f);
585 const SimdFloat CB8(0.003909821287598495f);
586 const SimdFloat CB7(-0.0052094582210355615f);
587 const SimdFloat CB6(0.005685614362160572f);
588 const SimdFloat CB5(-0.0025367682853477272f);
589 const SimdFloat CB4(-0.010199799682318782f);
590 const SimdFloat CB3(0.04369575504816542f);
591 const SimdFloat CB2(-0.11884063474674492f);
592 const SimdFloat CB1(0.2732120154030589f);
593 const SimdFloat CB0(0.42758357702025784f);
594 // Coefficients for minimax approximation of erfc(x)=Exp(-x^2)*(1/x)*P((1/x)^2) in range [2,9.19]
595 const SimdFloat CC10(-0.0445555913112064f);
596 const SimdFloat CC9(0.21376355144663348f);
597 const SimdFloat CC8(-0.3473187200259257f);
598 const SimdFloat CC7(0.016690861551248114f);
599 const SimdFloat CC6(0.7560973182491192f);
600 const SimdFloat CC5(-1.2137903600145787f);
601 const SimdFloat CC4(0.8411872321232948f);
602 const SimdFloat CC3(-0.08670413896296343f);
603 const SimdFloat CC2(-0.27124782687240334f);
604 const SimdFloat CC1(-0.0007502488047806069f);
605 const SimdFloat CC0(0.5642114853803148f);
606 const SimdFloat one(1.0f);
607 const SimdFloat two(2.0f);
609 SimdFloat x2, x4, y;
610 SimdFloat t, t2, w, w2;
611 SimdFloat pA0, pA1, pB0, pB1, pC0, pC1;
612 SimdFloat expmx2;
613 SimdFloat res_erf, res_erfc, res;
614 SimdFBool m, maskErf;
616 // Calculate erf()
617 x2 = x * x;
618 x4 = x2 * x2;
620 pA0 = fma(CA6, x4, CA4);
621 pA1 = fma(CA5, x4, CA3);
622 pA0 = fma(pA0, x4, CA2);
623 pA1 = fma(pA1, x4, CA1);
624 pA0 = pA0*x4;
625 pA0 = fma(pA1, x2, pA0);
626 // Constant term must come last for precision reasons
627 pA0 = pA0+CA0;
629 res_erf = x*pA0;
631 // Calculate erfc
632 y = abs(x);
633 maskErf = SimdFloat(0.75f) <= y;
634 t = maskzInv(y, maskErf);
635 w = t-one;
636 t2 = t*t;
637 w2 = w*w;
639 // No need for a floating-point sieve here (as in erfc), since erf()
640 // will never return values that are extremely small for large args.
641 expmx2 = exp( -y*y );
643 pB1 = fma(CB9, w2, CB7);
644 pB0 = fma(CB8, w2, CB6);
645 pB1 = fma(pB1, w2, CB5);
646 pB0 = fma(pB0, w2, CB4);
647 pB1 = fma(pB1, w2, CB3);
648 pB0 = fma(pB0, w2, CB2);
649 pB1 = fma(pB1, w2, CB1);
650 pB0 = fma(pB0, w2, CB0);
651 pB0 = fma(pB1, w, pB0);
653 pC0 = fma(CC10, t2, CC8);
654 pC1 = fma(CC9, t2, CC7);
655 pC0 = fma(pC0, t2, CC6);
656 pC1 = fma(pC1, t2, CC5);
657 pC0 = fma(pC0, t2, CC4);
658 pC1 = fma(pC1, t2, CC3);
659 pC0 = fma(pC0, t2, CC2);
660 pC1 = fma(pC1, t2, CC1);
662 pC0 = fma(pC0, t2, CC0);
663 pC0 = fma(pC1, t, pC0);
664 pC0 = pC0*t;
666 // Select pB0 or pC0 for erfc()
667 m = two < y;
668 res_erfc = blend(pB0, pC0, m);
669 res_erfc = res_erfc * expmx2;
671 // erfc(x<0) = 2-erfc(|x|)
672 m = x < setZero();
673 res_erfc = blend(res_erfc, two-res_erfc, m);
675 // Select erf() or erfc()
676 res = blend(res_erf, one-res_erfc, maskErf);
678 return res;
681 /*! \brief SIMD float erfc(x).
683 * \param x The value to calculate erfc(x) for.
684 * \result erfc(x)
686 * This routine achieves full precision (bar the last bit) over most of the
687 * input range, but for large arguments where the result is getting close
688 * to the minimum representable numbers we accept slightly larger errors
689 * (think results that are in the ballpark of 10^-30 for single precision)
690 * since that is not relevant for MD.
692 static inline SimdFloat gmx_simdcall
693 erfc(SimdFloat x)
695 // Coefficients for minimax approximation of erf(x)=x*P(x^2) in range [-1,1]
696 const SimdFloat CA6(7.853861353153693e-5f);
697 const SimdFloat CA5(-8.010193625184903e-4f);
698 const SimdFloat CA4(5.188327685732524e-3f);
699 const SimdFloat CA3(-2.685381193529856e-2f);
700 const SimdFloat CA2(1.128358514861418e-1f);
701 const SimdFloat CA1(-3.761262582423300e-1f);
702 const SimdFloat CA0(1.128379165726710f);
703 // Coefficients for minimax approximation of erfc(x)=Exp(-x^2)*P((1/(x-1))^2) in range [0.67,2]
704 const SimdFloat CB9(-0.0018629930017603923f);
705 const SimdFloat CB8(0.003909821287598495f);
706 const SimdFloat CB7(-0.0052094582210355615f);
707 const SimdFloat CB6(0.005685614362160572f);
708 const SimdFloat CB5(-0.0025367682853477272f);
709 const SimdFloat CB4(-0.010199799682318782f);
710 const SimdFloat CB3(0.04369575504816542f);
711 const SimdFloat CB2(-0.11884063474674492f);
712 const SimdFloat CB1(0.2732120154030589f);
713 const SimdFloat CB0(0.42758357702025784f);
714 // Coefficients for minimax approximation of erfc(x)=Exp(-x^2)*(1/x)*P((1/x)^2) in range [2,9.19]
715 const SimdFloat CC10(-0.0445555913112064f);
716 const SimdFloat CC9(0.21376355144663348f);
717 const SimdFloat CC8(-0.3473187200259257f);
718 const SimdFloat CC7(0.016690861551248114f);
719 const SimdFloat CC6(0.7560973182491192f);
720 const SimdFloat CC5(-1.2137903600145787f);
721 const SimdFloat CC4(0.8411872321232948f);
722 const SimdFloat CC3(-0.08670413896296343f);
723 const SimdFloat CC2(-0.27124782687240334f);
724 const SimdFloat CC1(-0.0007502488047806069f);
725 const SimdFloat CC0(0.5642114853803148f);
726 // Coefficients for expansion of exp(x) in [0,0.1]
727 // CD0 and CD1 are both 1.0, so no need to declare them separately
728 const SimdFloat CD2(0.5000066608081202f);
729 const SimdFloat CD3(0.1664795422874624f);
730 const SimdFloat CD4(0.04379839977652482f);
731 const SimdFloat one(1.0f);
732 const SimdFloat two(2.0f);
734 /* We need to use a small trick here, since we cannot assume all SIMD
735 * architectures support integers, and the flag we want (0xfffff000) would
736 * evaluate to NaN (i.e., it cannot be expressed as a floating-point num).
737 * Instead, we represent the flags 0xf0f0f000 and 0x0f0f0000 as valid
738 * fp numbers, and perform a logical or. Since the expression is constant,
739 * we can at least hope it is evaluated at compile-time.
741 #if GMX_SIMD_HAVE_LOGICAL
742 const SimdFloat sieve(SimdFloat(-5.965323564e+29f) | SimdFloat(7.05044434e-30f));
743 #else
744 const int isieve = 0xFFFFF000;
745 alignas(GMX_SIMD_ALIGNMENT) float mem[GMX_SIMD_FLOAT_WIDTH];
747 union {
748 float f; int i;
749 } conv;
750 int i;
751 #endif
753 SimdFloat x2, x4, y;
754 SimdFloat q, z, t, t2, w, w2;
755 SimdFloat pA0, pA1, pB0, pB1, pC0, pC1;
756 SimdFloat expmx2, corr;
757 SimdFloat res_erf, res_erfc, res;
758 SimdFBool m, msk_erf;
760 // Calculate erf()
761 x2 = x * x;
762 x4 = x2 * x2;
764 pA0 = fma(CA6, x4, CA4);
765 pA1 = fma(CA5, x4, CA3);
766 pA0 = fma(pA0, x4, CA2);
767 pA1 = fma(pA1, x4, CA1);
768 pA1 = pA1 * x2;
769 pA0 = fma(pA0, x4, pA1);
770 // Constant term must come last for precision reasons
771 pA0 = pA0 + CA0;
773 res_erf = x * pA0;
775 // Calculate erfc
776 y = abs(x);
777 msk_erf = SimdFloat(0.75f) <= y;
778 t = maskzInv(y, msk_erf);
779 w = t - one;
780 t2 = t * t;
781 w2 = w * w;
783 * We cannot simply calculate exp(-y2) directly in single precision, since
784 * that will lose a couple of bits of precision due to the multiplication.
785 * Instead, we introduce y=z+w, where the last 12 bits of precision are in w.
786 * Then we get exp(-y2) = exp(-z2)*exp((z-y)*(z+y)).
788 * The only drawback with this is that it requires TWO separate exponential
789 * evaluations, which would be horrible performance-wise. However, the argument
790 * for the second exp() call is always small, so there we simply use a
791 * low-order minimax expansion on [0,0.1].
793 * However, this neat idea requires support for logical ops (and) on
794 * FP numbers, which some vendors decided isn't necessary in their SIMD
795 * instruction sets (Hi, IBM VSX!). In principle we could use some tricks
796 * in double, but we still need memory as a backup when that is not available,
797 * and this case is rare enough that we go directly there...
799 #if GMX_SIMD_HAVE_LOGICAL
800 z = y & sieve;
801 #else
802 store(mem, y);
803 for (i = 0; i < GMX_SIMD_FLOAT_WIDTH; i++)
805 conv.f = mem[i];
806 conv.i = conv.i & isieve;
807 mem[i] = conv.f;
809 z = load<SimdFloat>(mem);
810 #endif
811 q = (z-y) * (z+y);
812 corr = fma(CD4, q, CD3);
813 corr = fma(corr, q, CD2);
814 corr = fma(corr, q, one);
815 corr = fma(corr, q, one);
817 expmx2 = exp( -z*z );
818 expmx2 = expmx2 * corr;
820 pB1 = fma(CB9, w2, CB7);
821 pB0 = fma(CB8, w2, CB6);
822 pB1 = fma(pB1, w2, CB5);
823 pB0 = fma(pB0, w2, CB4);
824 pB1 = fma(pB1, w2, CB3);
825 pB0 = fma(pB0, w2, CB2);
826 pB1 = fma(pB1, w2, CB1);
827 pB0 = fma(pB0, w2, CB0);
828 pB0 = fma(pB1, w, pB0);
830 pC0 = fma(CC10, t2, CC8);
831 pC1 = fma(CC9, t2, CC7);
832 pC0 = fma(pC0, t2, CC6);
833 pC1 = fma(pC1, t2, CC5);
834 pC0 = fma(pC0, t2, CC4);
835 pC1 = fma(pC1, t2, CC3);
836 pC0 = fma(pC0, t2, CC2);
837 pC1 = fma(pC1, t2, CC1);
839 pC0 = fma(pC0, t2, CC0);
840 pC0 = fma(pC1, t, pC0);
841 pC0 = pC0 * t;
843 // Select pB0 or pC0 for erfc()
844 m = two < y;
845 res_erfc = blend(pB0, pC0, m);
846 res_erfc = res_erfc * expmx2;
848 // erfc(x<0) = 2-erfc(|x|)
849 m = x < setZero();
850 res_erfc = blend(res_erfc, two-res_erfc, m);
852 // Select erf() or erfc()
853 res = blend(one-res_erf, res_erfc, msk_erf);
855 return res;
858 /*! \brief SIMD float sin \& cos.
860 * \param x The argument to evaluate sin/cos for
861 * \param[out] sinval Sin(x)
862 * \param[out] cosval Cos(x)
864 * This version achieves close to machine precision, but for very large
865 * magnitudes of the argument we inherently begin to lose accuracy due to the
866 * argument reduction, despite using extended precision arithmetics internally.
868 static inline void gmx_simdcall
869 sincos(SimdFloat x, SimdFloat *sinval, SimdFloat *cosval)
871 // Constants to subtract Pi/4*x from y while minimizing precision loss
872 const SimdFloat argred0(-1.5703125);
873 const SimdFloat argred1(-4.83751296997070312500e-04f);
874 const SimdFloat argred2(-7.54953362047672271729e-08f);
875 const SimdFloat argred3(-2.56334406825708960298e-12f);
876 const SimdFloat two_over_pi(static_cast<float>(2.0f/M_PI));
877 const SimdFloat const_sin2(-1.9515295891e-4f);
878 const SimdFloat const_sin1( 8.3321608736e-3f);
879 const SimdFloat const_sin0(-1.6666654611e-1f);
880 const SimdFloat const_cos2( 2.443315711809948e-5f);
881 const SimdFloat const_cos1(-1.388731625493765e-3f);
882 const SimdFloat const_cos0( 4.166664568298827e-2f);
883 const SimdFloat half(0.5f);
884 const SimdFloat one(1.0f);
885 SimdFloat ssign, csign;
886 SimdFloat x2, y, z, psin, pcos, sss, ccc;
887 SimdFBool m;
889 #if GMX_SIMD_HAVE_FINT32_ARITHMETICS && GMX_SIMD_HAVE_LOGICAL
890 const SimdFInt32 ione(1);
891 const SimdFInt32 itwo(2);
892 SimdFInt32 iy;
894 z = x * two_over_pi;
895 iy = cvtR2I(z);
896 y = round(z);
898 m = cvtIB2B((iy & ione) == SimdFInt32(0));
899 ssign = selectByMask(SimdFloat(GMX_FLOAT_NEGZERO), cvtIB2B((iy & itwo) == itwo));
900 csign = selectByMask(SimdFloat(GMX_FLOAT_NEGZERO), cvtIB2B(((iy+ione) & itwo) == itwo));
901 #else
902 const SimdFloat quarter(0.25f);
903 const SimdFloat minusquarter(-0.25f);
904 SimdFloat q;
905 SimdFBool m1, m2, m3;
907 /* The most obvious way to find the arguments quadrant in the unit circle
908 * to calculate the sign is to use integer arithmetic, but that is not
909 * present in all SIMD implementations. As an alternative, we have devised a
910 * pure floating-point algorithm that uses truncation for argument reduction
911 * so that we get a new value 0<=q<1 over the unit circle, and then
912 * do floating-point comparisons with fractions. This is likely to be
913 * slightly slower (~10%) due to the longer latencies of floating-point, so
914 * we only use it when integer SIMD arithmetic is not present.
916 ssign = x;
917 x = abs(x);
918 // It is critical that half-way cases are rounded down
919 z = fma(x, two_over_pi, half);
920 y = trunc(z);
921 q = z * quarter;
922 q = q - trunc(q);
923 /* z now starts at 0.0 for x=-pi/4 (although neg. values cannot occur), and
924 * then increased by 1.0 as x increases by 2*Pi, when it resets to 0.0.
925 * This removes the 2*Pi periodicity without using any integer arithmetic.
926 * First check if y had the value 2 or 3, set csign if true.
928 q = q - half;
929 /* If we have logical operations we can work directly on the signbit, which
930 * saves instructions. Otherwise we need to represent signs as +1.0/-1.0.
931 * Thus, if you are altering defines to debug alternative code paths, the
932 * two GMX_SIMD_HAVE_LOGICAL sections in this routine must either both be
933 * active or inactive - you will get errors if only one is used.
935 # if GMX_SIMD_HAVE_LOGICAL
936 ssign = ssign & SimdFloat(GMX_FLOAT_NEGZERO);
937 csign = andNot(q, SimdFloat(GMX_FLOAT_NEGZERO));
938 ssign = ssign ^ csign;
939 # else
940 ssign = copysign(SimdFloat(1.0f), ssign);
941 csign = copysign(SimdFloat(1.0f), q);
942 csign = -csign;
943 ssign = ssign * csign; // swap ssign if csign was set.
944 # endif
945 // Check if y had value 1 or 3 (remember we subtracted 0.5 from q)
946 m1 = (q < minusquarter);
947 m2 = (setZero() <= q);
948 m3 = (q < quarter);
949 m2 = m2 && m3;
950 m = m1 || m2;
951 // where mask is FALSE, swap sign.
952 csign = csign * blend(SimdFloat(-1.0f), one, m);
953 #endif
954 x = fma(y, argred0, x);
955 x = fma(y, argred1, x);
956 x = fma(y, argred2, x);
957 x = fma(y, argred3, x);
958 x2 = x * x;
960 psin = fma(const_sin2, x2, const_sin1);
961 psin = fma(psin, x2, const_sin0);
962 psin = fma(psin, x * x2, x);
963 pcos = fma(const_cos2, x2, const_cos1);
964 pcos = fma(pcos, x2, const_cos0);
965 pcos = fms(pcos, x2, half);
966 pcos = fma(pcos, x2, one);
968 sss = blend(pcos, psin, m);
969 ccc = blend(psin, pcos, m);
970 // See comment for GMX_SIMD_HAVE_LOGICAL section above.
971 #if GMX_SIMD_HAVE_LOGICAL
972 *sinval = sss ^ ssign;
973 *cosval = ccc ^ csign;
974 #else
975 *sinval = sss * ssign;
976 *cosval = ccc * csign;
977 #endif
980 /*! \brief SIMD float sin(x).
982 * \param x The argument to evaluate sin for
983 * \result Sin(x)
985 * \attention Do NOT call both sin & cos if you need both results, since each of them
986 * will then call \ref sincos and waste a factor 2 in performance.
988 static inline SimdFloat gmx_simdcall
989 sin(SimdFloat x)
991 SimdFloat s, c;
992 sincos(x, &s, &c);
993 return s;
996 /*! \brief SIMD float cos(x).
998 * \param x The argument to evaluate cos for
999 * \result Cos(x)
1001 * \attention Do NOT call both sin & cos if you need both results, since each of them
1002 * will then call \ref sincos and waste a factor 2 in performance.
1004 static inline SimdFloat gmx_simdcall
1005 cos(SimdFloat x)
1007 SimdFloat s, c;
1008 sincos(x, &s, &c);
1009 return c;
1012 /*! \brief SIMD float tan(x).
1014 * \param x The argument to evaluate tan for
1015 * \result Tan(x)
1017 static inline SimdFloat gmx_simdcall
1018 tan(SimdFloat x)
1020 const SimdFloat argred0(-1.5703125);
1021 const SimdFloat argred1(-4.83751296997070312500e-04f);
1022 const SimdFloat argred2(-7.54953362047672271729e-08f);
1023 const SimdFloat argred3(-2.56334406825708960298e-12f);
1024 const SimdFloat two_over_pi(static_cast<float>(2.0f/M_PI));
1025 const SimdFloat CT6(0.009498288995810566122993911);
1026 const SimdFloat CT5(0.002895755790837379295226923);
1027 const SimdFloat CT4(0.02460087336161924491836265);
1028 const SimdFloat CT3(0.05334912882656359828045988);
1029 const SimdFloat CT2(0.1333989091464957704418495);
1030 const SimdFloat CT1(0.3333307599244198227797507);
1032 SimdFloat x2, p, y, z;
1033 SimdFBool m;
1035 #if GMX_SIMD_HAVE_FINT32_ARITHMETICS && GMX_SIMD_HAVE_LOGICAL
1036 SimdFInt32 iy;
1037 SimdFInt32 ione(1);
1039 z = x * two_over_pi;
1040 iy = cvtR2I(z);
1041 y = round(z);
1042 m = cvtIB2B((iy & ione) == ione);
1044 x = fma(y, argred0, x);
1045 x = fma(y, argred1, x);
1046 x = fma(y, argred2, x);
1047 x = fma(y, argred3, x);
1048 x = selectByMask(SimdFloat(GMX_FLOAT_NEGZERO), m) ^ x;
1049 #else
1050 const SimdFloat quarter(0.25f);
1051 const SimdFloat half(0.5f);
1052 const SimdFloat threequarter(0.75f);
1053 SimdFloat w, q;
1054 SimdFBool m1, m2, m3;
1056 w = abs(x);
1057 z = fma(w, two_over_pi, half);
1058 y = trunc(z);
1059 q = z * quarter;
1060 q = q - trunc(q);
1061 m1 = quarter <= q;
1062 m2 = q < half;
1063 m3 = threequarter <= q;
1064 m1 = m1 && m2;
1065 m = m1 || m3;
1066 w = fma(y, argred0, w);
1067 w = fma(y, argred1, w);
1068 w = fma(y, argred2, w);
1069 w = fma(y, argred3, w);
1070 w = blend(w, -w, m);
1071 x = w * copysign( SimdFloat(1.0), x );
1072 #endif
1073 x2 = x * x;
1074 p = fma(CT6, x2, CT5);
1075 p = fma(p, x2, CT4);
1076 p = fma(p, x2, CT3);
1077 p = fma(p, x2, CT2);
1078 p = fma(p, x2, CT1);
1079 p = fma(x2 * p, x, x);
1081 p = blend( p, maskzInv(p, m), m);
1082 return p;
1085 /*! \brief SIMD float asin(x).
1087 * \param x The argument to evaluate asin for
1088 * \result Asin(x)
1090 static inline SimdFloat gmx_simdcall
1091 asin(SimdFloat x)
1093 const SimdFloat limitlow(1e-4f);
1094 const SimdFloat half(0.5f);
1095 const SimdFloat one(1.0f);
1096 const SimdFloat halfpi(static_cast<float>(M_PI/2.0f));
1097 const SimdFloat CC5(4.2163199048E-2f);
1098 const SimdFloat CC4(2.4181311049E-2f);
1099 const SimdFloat CC3(4.5470025998E-2f);
1100 const SimdFloat CC2(7.4953002686E-2f);
1101 const SimdFloat CC1(1.6666752422E-1f);
1102 SimdFloat xabs;
1103 SimdFloat z, z1, z2, q, q1, q2;
1104 SimdFloat pA, pB;
1105 SimdFBool m, m2;
1107 xabs = abs(x);
1108 m = half < xabs;
1109 z1 = half * (one-xabs);
1110 m2 = xabs < one;
1111 q1 = z1 * maskzInvsqrt(z1, m2);
1112 q2 = xabs;
1113 z2 = q2 * q2;
1114 z = blend(z2, z1, m);
1115 q = blend(q2, q1, m);
1117 z2 = z * z;
1118 pA = fma(CC5, z2, CC3);
1119 pB = fma(CC4, z2, CC2);
1120 pA = fma(pA, z2, CC1);
1121 pA = pA * z;
1122 z = fma(pB, z2, pA);
1123 z = fma(z, q, q);
1124 q2 = halfpi - z;
1125 q2 = q2 - z;
1126 z = blend(z, q2, m);
1128 m = limitlow < xabs;
1129 z = blend( xabs, z, m );
1130 z = copysign(z, x);
1132 return z;
1135 /*! \brief SIMD float acos(x).
1137 * \param x The argument to evaluate acos for
1138 * \result Acos(x)
1140 static inline SimdFloat gmx_simdcall
1141 acos(SimdFloat x)
1143 const SimdFloat one(1.0f);
1144 const SimdFloat half(0.5f);
1145 const SimdFloat pi(static_cast<float>(M_PI));
1146 const SimdFloat halfpi(static_cast<float>(M_PI/2.0f));
1147 SimdFloat xabs;
1148 SimdFloat z, z1, z2, z3;
1149 SimdFBool m1, m2, m3;
1151 xabs = abs(x);
1152 m1 = half < xabs;
1153 m2 = setZero() < x;
1155 z = fnma(half, xabs, half);
1156 m3 = xabs < one;
1157 z = z * maskzInvsqrt(z, m3);
1158 z = blend(x, z, m1);
1159 z = asin(z);
1161 z2 = z + z;
1162 z1 = pi - z2;
1163 z3 = halfpi - z;
1164 z = blend(z1, z2, m2);
1165 z = blend(z3, z, m1);
1167 return z;
1170 /*! \brief SIMD float asin(x).
1172 * \param x The argument to evaluate atan for
1173 * \result Atan(x), same argument/value range as standard math library.
1175 static inline SimdFloat gmx_simdcall
1176 atan(SimdFloat x)
1178 const SimdFloat halfpi(static_cast<float>(M_PI/2.0f));
1179 const SimdFloat CA17(0.002823638962581753730774f);
1180 const SimdFloat CA15(-0.01595690287649631500244f);
1181 const SimdFloat CA13(0.04250498861074447631836f);
1182 const SimdFloat CA11(-0.07489009201526641845703f);
1183 const SimdFloat CA9 (0.1063479334115982055664f);
1184 const SimdFloat CA7 (-0.1420273631811141967773f);
1185 const SimdFloat CA5 (0.1999269574880599975585f);
1186 const SimdFloat CA3 (-0.3333310186862945556640f);
1187 const SimdFloat one (1.0f);
1188 SimdFloat x2, x3, x4, pA, pB;
1189 SimdFBool m, m2;
1191 m = x < setZero();
1192 x = abs(x);
1193 m2 = one < x;
1194 x = blend(x, maskzInv(x, m2), m2);
1196 x2 = x * x;
1197 x3 = x2 * x;
1198 x4 = x2 * x2;
1199 pA = fma(CA17, x4, CA13);
1200 pB = fma(CA15, x4, CA11);
1201 pA = fma(pA, x4, CA9);
1202 pB = fma(pB, x4, CA7);
1203 pA = fma(pA, x4, CA5);
1204 pB = fma(pB, x4, CA3);
1205 pA = fma(pA, x2, pB);
1206 pA = fma(pA, x3, x);
1208 pA = blend(pA, halfpi-pA, m2);
1209 pA = blend(pA, -pA, m);
1211 return pA;
1214 /*! \brief SIMD float atan2(y,x).
1216 * \param y Y component of vector, any quartile
1217 * \param x X component of vector, any quartile
1218 * \result Atan(y,x), same argument/value range as standard math library.
1220 * \note This routine should provide correct results for all finite
1221 * non-zero or positive-zero arguments. However, negative zero arguments will
1222 * be treated as positive zero, which means the return value will deviate from
1223 * the standard math library atan2(y,x) for those cases. That should not be
1224 * of any concern in Gromacs, and in particular it will not affect calculations
1225 * of angles from vectors.
1227 static inline SimdFloat gmx_simdcall
1228 atan2(SimdFloat y, SimdFloat x)
1230 const SimdFloat pi(static_cast<float>(M_PI));
1231 const SimdFloat halfpi(static_cast<float>(M_PI/2.0));
1232 SimdFloat xinv, p, aoffset;
1233 SimdFBool mask_xnz, mask_ynz, mask_xlt0, mask_ylt0;
1235 mask_xnz = x != setZero();
1236 mask_ynz = y != setZero();
1237 mask_xlt0 = x < setZero();
1238 mask_ylt0 = y < setZero();
1240 aoffset = selectByNotMask(halfpi, mask_xnz);
1241 aoffset = selectByMask(aoffset, mask_ynz);
1243 aoffset = blend(aoffset, pi, mask_xlt0);
1244 aoffset = blend(aoffset, -aoffset, mask_ylt0);
1246 xinv = maskzInv(x, mask_xnz);
1247 p = y * xinv;
1248 p = atan(p);
1249 p = p + aoffset;
1251 return p;
1254 /*! \brief Calculate the force correction due to PME analytically in SIMD float.
1256 * \param z2 \f$(r \beta)^2\f$ - see below for details.
1257 * \result Correction factor to coulomb force - see below for details.
1259 * This routine is meant to enable analytical evaluation of the
1260 * direct-space PME electrostatic force to avoid tables.
1262 * The direct-space potential should be \f$ \mbox{erfc}(\beta r)/r\f$, but there
1263 * are some problems evaluating that:
1265 * First, the error function is difficult (read: expensive) to
1266 * approxmiate accurately for intermediate to large arguments, and
1267 * this happens already in ranges of \f$(\beta r)\f$ that occur in simulations.
1268 * Second, we now try to avoid calculating potentials in Gromacs but
1269 * use forces directly.
1271 * We can simply things slight by noting that the PME part is really
1272 * a correction to the normal Coulomb force since \f$\mbox{erfc}(z)=1-\mbox{erf}(z)\f$, i.e.
1273 * \f[
1274 * V = \frac{1}{r} - \frac{\mbox{erf}(\beta r)}{r}
1275 * \f]
1276 * The first term we already have from the inverse square root, so
1277 * that we can leave out of this routine.
1279 * For pme tolerances of 1e-3 to 1e-8 and cutoffs of 0.5nm to 1.8nm,
1280 * the argument \f$beta r\f$ will be in the range 0.15 to ~4, which is
1281 * the range used for the minimax fit. Use your favorite plotting program
1282 * to realize how well-behaved \f$\frac{\mbox{erf}(z)}{z}\f$ is in this range!
1284 * We approximate \f$f(z)=\mbox{erf}(z)/z\f$ with a rational minimax polynomial.
1285 * However, it turns out it is more efficient to approximate \f$f(z)/z\f$ and
1286 * then only use even powers. This is another minor optimization, since
1287 * we actually \a want \f$f(z)/z\f$, because it is going to be multiplied by
1288 * the vector between the two atoms to get the vectorial force. The
1289 * fastest flops are the ones we can avoid calculating!
1291 * So, here's how it should be used:
1293 * 1. Calculate \f$r^2\f$.
1294 * 2. Multiply by \f$\beta^2\f$, so you get \f$z^2=(\beta r)^2\f$.
1295 * 3. Evaluate this routine with \f$z^2\f$ as the argument.
1296 * 4. The return value is the expression:
1298 * \f[
1299 * \frac{2 \exp{-z^2}}{\sqrt{\pi} z^2}-\frac{\mbox{erf}(z)}{z^3}
1300 * \f]
1302 * 5. Multiply the entire expression by \f$\beta^3\f$. This will get you
1304 * \f[
1305 * \frac{2 \beta^3 \exp(-z^2)}{\sqrt{\pi} z^2} - \frac{\beta^3 \mbox{erf}(z)}{z^3}
1306 * \f]
1308 * or, switching back to \f$r\f$ (since \f$z=r \beta\f$):
1310 * \f[
1311 * \frac{2 \beta \exp(-r^2 \beta^2)}{\sqrt{\pi} r^2} - \frac{\mbox{erf}(r \beta)}{r^3}
1312 * \f]
1314 * With a bit of math exercise you should be able to confirm that
1315 * this is exactly
1317 * \f[
1318 * \frac{\frac{d}{dr}\left( \frac{\mbox{erf}(\beta r)}{r} \right)}{r}
1319 * \f]
1321 * 6. Add the result to \f$r^{-3}\f$, multiply by the product of the charges,
1322 * and you have your force (divided by \f$r\f$). A final multiplication
1323 * with the vector connecting the two particles and you have your
1324 * vectorial force to add to the particles.
1326 * This approximation achieves an error slightly lower than 1e-6
1327 * in single precision and 1e-11 in double precision
1328 * for arguments smaller than 16 (\f$\beta r \leq 4 \f$);
1329 * when added to \f$1/r\f$ the error will be insignificant.
1330 * For \f$\beta r \geq 7206\f$ the return value can be inf or NaN.
1333 static inline SimdFloat gmx_simdcall
1334 pmeForceCorrection(SimdFloat z2)
1336 const SimdFloat FN6(-1.7357322914161492954e-8f);
1337 const SimdFloat FN5(1.4703624142580877519e-6f);
1338 const SimdFloat FN4(-0.000053401640219807709149f);
1339 const SimdFloat FN3(0.0010054721316683106153f);
1340 const SimdFloat FN2(-0.019278317264888380590f);
1341 const SimdFloat FN1(0.069670166153766424023f);
1342 const SimdFloat FN0(-0.75225204789749321333f);
1344 const SimdFloat FD4(0.0011193462567257629232f);
1345 const SimdFloat FD3(0.014866955030185295499f);
1346 const SimdFloat FD2(0.11583842382862377919f);
1347 const SimdFloat FD1(0.50736591960530292870f);
1348 const SimdFloat FD0(1.0f);
1350 SimdFloat z4;
1351 SimdFloat polyFN0, polyFN1, polyFD0, polyFD1;
1353 z4 = z2 * z2;
1355 polyFD0 = fma(FD4, z4, FD2);
1356 polyFD1 = fma(FD3, z4, FD1);
1357 polyFD0 = fma(polyFD0, z4, FD0);
1358 polyFD0 = fma(polyFD1, z2, polyFD0);
1360 polyFD0 = inv(polyFD0);
1362 polyFN0 = fma(FN6, z4, FN4);
1363 polyFN1 = fma(FN5, z4, FN3);
1364 polyFN0 = fma(polyFN0, z4, FN2);
1365 polyFN1 = fma(polyFN1, z4, FN1);
1366 polyFN0 = fma(polyFN0, z4, FN0);
1367 polyFN0 = fma(polyFN1, z2, polyFN0);
1369 return polyFN0 * polyFD0;
1374 /*! \brief Calculate the potential correction due to PME analytically in SIMD float.
1376 * \param z2 \f$(r \beta)^2\f$ - see below for details.
1377 * \result Correction factor to coulomb potential - see below for details.
1379 * See \ref pmeForceCorrection for details about the approximation.
1381 * This routine calculates \f$\mbox{erf}(z)/z\f$, although you should provide \f$z^2\f$
1382 * as the input argument.
1384 * Here's how it should be used:
1386 * 1. Calculate \f$r^2\f$.
1387 * 2. Multiply by \f$\beta^2\f$, so you get \f$z^2=\beta^2*r^2\f$.
1388 * 3. Evaluate this routine with z^2 as the argument.
1389 * 4. The return value is the expression:
1391 * \f[
1392 * \frac{\mbox{erf}(z)}{z}
1393 * \f]
1395 * 5. Multiply the entire expression by beta and switching back to \f$r\f$ (since \f$z=r \beta\f$):
1397 * \f[
1398 * \frac{\mbox{erf}(r \beta)}{r}
1399 * \f]
1401 * 6. Subtract the result from \f$1/r\f$, multiply by the product of the charges,
1402 * and you have your potential.
1404 * This approximation achieves an error slightly lower than 1e-6
1405 * in single precision and 4e-11 in double precision
1406 * for arguments smaller than 16 (\f$ 0.15 \leq \beta r \leq 4 \f$);
1407 * for \f$ \beta r \leq 0.15\f$ the error can be twice as high;
1408 * when added to \f$1/r\f$ the error will be insignificant.
1409 * For \f$\beta r \geq 7142\f$ the return value can be inf or NaN.
1411 static inline SimdFloat gmx_simdcall
1412 pmePotentialCorrection(SimdFloat z2)
1414 const SimdFloat VN6(1.9296833005951166339e-8f);
1415 const SimdFloat VN5(-1.4213390571557850962e-6f);
1416 const SimdFloat VN4(0.000041603292906656984871f);
1417 const SimdFloat VN3(-0.00013134036773265025626f);
1418 const SimdFloat VN2(0.038657983986041781264f);
1419 const SimdFloat VN1(0.11285044772717598220f);
1420 const SimdFloat VN0(1.1283802385263030286f);
1422 const SimdFloat VD3(0.0066752224023576045451f);
1423 const SimdFloat VD2(0.078647795836373922256f);
1424 const SimdFloat VD1(0.43336185284710920150f);
1425 const SimdFloat VD0(1.0f);
1427 SimdFloat z4;
1428 SimdFloat polyVN0, polyVN1, polyVD0, polyVD1;
1430 z4 = z2 * z2;
1432 polyVD1 = fma(VD3, z4, VD1);
1433 polyVD0 = fma(VD2, z4, VD0);
1434 polyVD0 = fma(polyVD1, z2, polyVD0);
1436 polyVD0 = inv(polyVD0);
1438 polyVN0 = fma(VN6, z4, VN4);
1439 polyVN1 = fma(VN5, z4, VN3);
1440 polyVN0 = fma(polyVN0, z4, VN2);
1441 polyVN1 = fma(polyVN1, z4, VN1);
1442 polyVN0 = fma(polyVN0, z4, VN0);
1443 polyVN0 = fma(polyVN1, z2, polyVN0);
1445 return polyVN0 * polyVD0;
1447 #endif
1449 /*! \} */
1451 #if GMX_SIMD_HAVE_DOUBLE
1454 /*! \name Double precision SIMD math functions
1456 * \note In most cases you should use the real-precision functions instead.
1457 * \{
1460 /****************************************
1461 * DOUBLE PRECISION SIMD MATH FUNCTIONS *
1462 ****************************************/
1464 #if !GMX_SIMD_HAVE_NATIVE_COPYSIGN_DOUBLE
1465 /*! \brief Composes floating point value with the magnitude of x and the sign of y.
1467 * \param x Values to set sign for
1468 * \param y Values used to set sign
1469 * \return Magnitude of x, sign of y
1471 static inline SimdDouble gmx_simdcall
1472 copysign(SimdDouble x, SimdDouble y)
1474 #if GMX_SIMD_HAVE_LOGICAL
1475 return abs(x) | (SimdDouble(GMX_DOUBLE_NEGZERO) & y);
1476 #else
1477 return blend(abs(x), -abs(x), (y < setZero()));
1478 #endif
1480 #endif
1482 #if !GMX_SIMD_HAVE_NATIVE_RSQRT_ITER_DOUBLE
1483 /*! \brief Perform one Newton-Raphson iteration to improve 1/sqrt(x) for SIMD double.
1485 * This is a low-level routine that should only be used by SIMD math routine
1486 * that evaluates the inverse square root.
1488 * \param lu Approximation of 1/sqrt(x), typically obtained from lookup.
1489 * \param x The reference (starting) value x for which we want 1/sqrt(x).
1490 * \return An improved approximation with roughly twice as many bits of accuracy.
1492 static inline SimdDouble gmx_simdcall
1493 rsqrtIter(SimdDouble lu, SimdDouble x)
1495 SimdDouble tmp1 = x*lu;
1496 SimdDouble tmp2 = SimdDouble(-0.5)*lu;
1497 tmp1 = fma(tmp1, lu, SimdDouble(-3.0));
1498 return tmp1*tmp2;
1500 #endif
1502 /*! \brief Calculate 1/sqrt(x) for SIMD double.
1504 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
1505 * GMX_FLOAT_MAX, i.e. within the range of single precision.
1506 * For the single precision implementation this is obviously always
1507 * true for positive values, but for double precision it adds an
1508 * extra restriction since the first lookup step might have to be
1509 * performed in single precision on some architectures. Note that the
1510 * responsibility for checking falls on you - this routine does not
1511 * check arguments.
1513 * \return 1/sqrt(x). Result is undefined if your argument was invalid.
1515 static inline SimdDouble gmx_simdcall
1516 invsqrt(SimdDouble x)
1518 SimdDouble lu = rsqrt(x);
1519 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1520 lu = rsqrtIter(lu, x);
1521 #endif
1522 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1523 lu = rsqrtIter(lu, x);
1524 #endif
1525 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1526 lu = rsqrtIter(lu, x);
1527 #endif
1528 #if (GMX_SIMD_RSQRT_BITS*8 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1529 lu = rsqrtIter(lu, x);
1530 #endif
1531 return lu;
1534 /*! \brief Calculate 1/sqrt(x) for two SIMD doubles.
1536 * \param x0 First set of arguments, x0 must be in single range (see below).
1537 * \param x1 Second set of arguments, x1 must be in single range (see below).
1538 * \param[out] out0 Result 1/sqrt(x0)
1539 * \param[out] out1 Result 1/sqrt(x1)
1541 * In particular for double precision we can sometimes calculate square root
1542 * pairs slightly faster by using single precision until the very last step.
1544 * \note Both arguments must be larger than GMX_FLOAT_MIN and smaller than
1545 * GMX_FLOAT_MAX, i.e. within the range of single precision.
1546 * For the single precision implementation this is obviously always
1547 * true for positive values, but for double precision it adds an
1548 * extra restriction since the first lookup step might have to be
1549 * performed in single precision on some architectures. Note that the
1550 * responsibility for checking falls on you - this routine does not
1551 * check arguments.
1553 static inline void gmx_simdcall
1554 invsqrtPair(SimdDouble x0, SimdDouble x1,
1555 SimdDouble *out0, SimdDouble *out1)
1557 #if GMX_SIMD_HAVE_FLOAT && (GMX_SIMD_FLOAT_WIDTH == 2*GMX_SIMD_DOUBLE_WIDTH) && (GMX_SIMD_RSQRT_BITS < 22)
1558 SimdFloat xf = cvtDD2F(x0, x1);
1559 SimdFloat luf = rsqrt(xf);
1560 SimdDouble lu0, lu1;
1561 // Intermediate target is single - mantissa+1 bits
1562 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
1563 luf = rsqrtIter(luf, xf);
1564 #endif
1565 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
1566 luf = rsqrtIter(luf, xf);
1567 #endif
1568 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
1569 luf = rsqrtIter(luf, xf);
1570 #endif
1571 cvtF2DD(luf, &lu0, &lu1);
1572 // Last iteration(s) performed in double - if we had 22 bits, this gets us to 44 (~1e-15)
1573 #if (GMX_SIMD_ACCURACY_BITS_SINGLE < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1574 lu0 = rsqrtIter(lu0, x0);
1575 lu1 = rsqrtIter(lu1, x1);
1576 #endif
1577 #if (GMX_SIMD_ACCURACY_BITS_SINGLE*2 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1578 lu0 = rsqrtIter(lu0, x0);
1579 lu1 = rsqrtIter(lu1, x1);
1580 #endif
1581 *out0 = lu0;
1582 *out1 = lu1;
1583 #else
1584 *out0 = invsqrt(x0);
1585 *out1 = invsqrt(x1);
1586 #endif
1589 #if !GMX_SIMD_HAVE_NATIVE_RCP_ITER_DOUBLE
1590 /*! \brief Perform one Newton-Raphson iteration to improve 1/x for SIMD double.
1592 * This is a low-level routine that should only be used by SIMD math routine
1593 * that evaluates the reciprocal.
1595 * \param lu Approximation of 1/x, typically obtained from lookup.
1596 * \param x The reference (starting) value x for which we want 1/x.
1597 * \return An improved approximation with roughly twice as many bits of accuracy.
1599 static inline SimdDouble gmx_simdcall
1600 rcpIter(SimdDouble lu, SimdDouble x)
1602 return lu*fnma(lu, x, SimdDouble(2.0));
1604 #endif
1606 /*! \brief Calculate 1/x for SIMD double.
1608 * \param x Argument with magnitude larger than GMX_FLOAT_MIN and smaller than
1609 * GMX_FLOAT_MAX, i.e. within the range of single precision.
1610 * For the single precision implementation this is obviously always
1611 * true for positive values, but for double precision it adds an
1612 * extra restriction since the first lookup step might have to be
1613 * performed in single precision on some architectures. Note that the
1614 * responsibility for checking falls on you - this routine does not
1615 * check arguments.
1617 * \return 1/x. Result is undefined if your argument was invalid.
1619 static inline SimdDouble gmx_simdcall
1620 inv(SimdDouble x)
1622 SimdDouble lu = rcp(x);
1623 #if (GMX_SIMD_RCP_BITS < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1624 lu = rcpIter(lu, x);
1625 #endif
1626 #if (GMX_SIMD_RCP_BITS*2 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1627 lu = rcpIter(lu, x);
1628 #endif
1629 #if (GMX_SIMD_RCP_BITS*4 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1630 lu = rcpIter(lu, x);
1631 #endif
1632 #if (GMX_SIMD_RCP_BITS*8 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1633 lu = rcpIter(lu, x);
1634 #endif
1635 return lu;
1638 /*! \brief Division for SIMD doubles
1640 * \param nom Nominator
1641 * \param denom Denominator, with magnitude in range (GMX_FLOAT_MIN,GMX_FLOAT_MAX).
1642 * For single precision this is equivalent to a nonzero argument,
1643 * but in double precision it adds an extra restriction since
1644 * the first lookup step might have to be performed in single
1645 * precision on some architectures. Note that the responsibility
1646 * for checking falls on you - this routine does not check arguments.
1648 * \return nom/denom
1650 * \note This function does not use any masking to avoid problems with
1651 * zero values in the denominator.
1653 static inline SimdDouble gmx_simdcall
1654 operator/(SimdDouble nom, SimdDouble denom)
1656 return nom*inv(denom);
1660 /*! \brief Calculate 1/sqrt(x) for masked entries of SIMD double.
1662 * This routine only evaluates 1/sqrt(x) for elements for which mask is true.
1663 * Illegal values in the masked-out elements will not lead to
1664 * floating-point exceptions.
1666 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
1667 * GMX_FLOAT_MAX for masked-in entries.
1668 * See \ref invsqrt for the discussion about argument restrictions.
1669 * \param m Mask
1670 * \return 1/sqrt(x). Result is undefined if your argument was invalid or
1671 * entry was not masked, and 0.0 for masked-out entries.
1673 static inline SimdDouble
1674 maskzInvsqrt(SimdDouble x, SimdDBool m)
1676 SimdDouble lu = maskzRsqrt(x, m);
1677 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1678 lu = rsqrtIter(lu, x);
1679 #endif
1680 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1681 lu = rsqrtIter(lu, x);
1682 #endif
1683 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1684 lu = rsqrtIter(lu, x);
1685 #endif
1686 #if (GMX_SIMD_RSQRT_BITS*8 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1687 lu = rsqrtIter(lu, x);
1688 #endif
1689 return lu;
1692 /*! \brief Calculate 1/x for SIMD double, masked version.
1694 * \param x Argument with magnitude larger than GMX_FLOAT_MIN and smaller than
1695 * GMX_FLOAT_MAX for masked-in entries.
1696 * See \ref invsqrt for the discussion about argument restrictions.
1697 * \param m Mask
1698 * \return 1/x for elements where m is true, or 0.0 for masked-out entries.
1700 static inline SimdDouble gmx_simdcall
1701 maskzInv(SimdDouble x, SimdDBool m)
1703 SimdDouble lu = maskzRcp(x, m);
1704 #if (GMX_SIMD_RCP_BITS < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1705 lu = rcpIter(lu, x);
1706 #endif
1707 #if (GMX_SIMD_RCP_BITS*2 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1708 lu = rcpIter(lu, x);
1709 #endif
1710 #if (GMX_SIMD_RCP_BITS*4 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1711 lu = rcpIter(lu, x);
1712 #endif
1713 #if (GMX_SIMD_RCP_BITS*8 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
1714 lu = rcpIter(lu, x);
1715 #endif
1716 return lu;
1720 /*! \brief Calculate sqrt(x) for SIMD doubles.
1722 * \copydetails sqrt(SimdFloat)
1724 template <MathOptimization opt = MathOptimization::Safe>
1725 static inline SimdDouble gmx_simdcall
1726 sqrt(SimdDouble x)
1728 if (opt == MathOptimization::Safe)
1730 // As we might use a float version of rsqrt, we mask out small values
1731 SimdDouble res = maskzInvsqrt(x, SimdDouble(GMX_FLOAT_MIN) < x);
1732 return res*x;
1734 else
1736 return x * invsqrt(x);
1740 #if !GMX_SIMD_HAVE_NATIVE_LOG_DOUBLE
1741 /*! \brief SIMD double log(x). This is the natural logarithm.
1743 * \param x Argument, should be >0.
1744 * \result The natural logarithm of x. Undefined if argument is invalid.
1746 static inline SimdDouble gmx_simdcall
1747 log(SimdDouble x)
1749 const SimdDouble one(1.0);
1750 const SimdDouble two(2.0);
1751 const SimdDouble invsqrt2(1.0/std::sqrt(2.0));
1752 const SimdDouble corr(0.693147180559945286226764);
1753 const SimdDouble CL15(0.148197055177935105296783);
1754 const SimdDouble CL13(0.153108178020442575739679);
1755 const SimdDouble CL11(0.181837339521549679055568);
1756 const SimdDouble CL9(0.22222194152736701733275);
1757 const SimdDouble CL7(0.285714288030134544449368);
1758 const SimdDouble CL5(0.399999999989941956712869);
1759 const SimdDouble CL3(0.666666666666685503450651);
1760 const SimdDouble CL1(2.0);
1761 SimdDouble fExp, x2, p;
1762 SimdDBool m;
1763 SimdDInt32 iExp;
1765 x = frexp(x, &iExp);
1766 fExp = cvtI2R(iExp);
1768 m = x < invsqrt2;
1769 // Adjust to non-IEEE format for x<1/sqrt(2): exponent -= 1, mantissa *= 2.0
1770 fExp = fExp - selectByMask(one, m);
1771 x = x * blend(one, two, m);
1773 x = (x-one) * inv( x+one );
1774 x2 = x * x;
1776 p = fma(CL15, x2, CL13);
1777 p = fma(p, x2, CL11);
1778 p = fma(p, x2, CL9);
1779 p = fma(p, x2, CL7);
1780 p = fma(p, x2, CL5);
1781 p = fma(p, x2, CL3);
1782 p = fma(p, x2, CL1);
1783 p = fma(p, x, corr * fExp);
1785 return p;
1787 #endif
1789 #if !GMX_SIMD_HAVE_NATIVE_EXP2_DOUBLE
1790 /*! \brief SIMD double 2^x.
1792 * \copydetails exp2(SimdFloat)
1794 template <MathOptimization opt = MathOptimization::Safe>
1795 static inline SimdDouble gmx_simdcall
1796 exp2(SimdDouble x)
1798 const SimdDouble CE11(4.435280790452730022081181e-10);
1799 const SimdDouble CE10(7.074105630863314448024247e-09);
1800 const SimdDouble CE9(1.017819803432096698472621e-07);
1801 const SimdDouble CE8(1.321543308956718799557863e-06);
1802 const SimdDouble CE7(0.00001525273348995851746990884);
1803 const SimdDouble CE6(0.0001540353046251466849082632);
1804 const SimdDouble CE5(0.001333355814678995257307880);
1805 const SimdDouble CE4(0.009618129107588335039176502);
1806 const SimdDouble CE3(0.05550410866481992147457793);
1807 const SimdDouble CE2(0.2402265069591015620470894);
1808 const SimdDouble CE1(0.6931471805599453304615075);
1809 const SimdDouble one(1.0);
1811 SimdDouble intpart;
1812 SimdDouble fexppart;
1813 SimdDouble p;
1815 // Large negative values are valid arguments to exp2(), so there are two
1816 // things we need to account for:
1817 // 1. When the exponents reaches -1023, the (biased) exponent field will be
1818 // zero and we can no longer multiply with it. There are special IEEE
1819 // formats to handle this range, but for now we have to accept that
1820 // we cannot handle those arguments. If input value becomes even more
1821 // negative, it will start to loop and we would end up with invalid
1822 // exponents. Thus, we need to limit or mask this.
1823 // 2. For VERY large negative values, we will have problems that the
1824 // subtraction to get the fractional part loses accuracy, and then we
1825 // can end up with overflows in the polynomial.
1827 // For now, we handle this by forwarding the math optimization setting to
1828 // ldexp, where the routine will return zero for very small arguments.
1830 // However, before doing that we need to make sure we do not call cvtR2I
1831 // with an argument that is so negative it cannot be converted to an integer.
1832 if (opt == MathOptimization::Safe)
1834 x = max(x, SimdDouble(std::numeric_limits<std::int32_t>::lowest()));
1837 fexppart = ldexp<opt>(one, cvtR2I(x));
1838 intpart = round(x);
1839 x = x - intpart;
1841 p = fma(CE11, x, CE10);
1842 p = fma(p, x, CE9);
1843 p = fma(p, x, CE8);
1844 p = fma(p, x, CE7);
1845 p = fma(p, x, CE6);
1846 p = fma(p, x, CE5);
1847 p = fma(p, x, CE4);
1848 p = fma(p, x, CE3);
1849 p = fma(p, x, CE2);
1850 p = fma(p, x, CE1);
1851 p = fma(p, x, one);
1852 x = p * fexppart;
1853 return x;
1855 #endif
1857 #if !GMX_SIMD_HAVE_NATIVE_EXP_DOUBLE
1858 /*! \brief SIMD double exp(x).
1860 * \copydetails exp(SimdFloat)
1862 template <MathOptimization opt = MathOptimization::Safe>
1863 static inline SimdDouble gmx_simdcall
1864 exp(SimdDouble x)
1866 const SimdDouble argscale(1.44269504088896340735992468100);
1867 const SimdDouble invargscale0(-0.69314718055966295651160180568695068359375);
1868 const SimdDouble invargscale1(-2.8235290563031577122588448175013436025525412068e-13);
1869 const SimdDouble CE12(2.078375306791423699350304e-09);
1870 const SimdDouble CE11(2.518173854179933105218635e-08);
1871 const SimdDouble CE10(2.755842049600488770111608e-07);
1872 const SimdDouble CE9(2.755691815216689746619849e-06);
1873 const SimdDouble CE8(2.480158383706245033920920e-05);
1874 const SimdDouble CE7(0.0001984127043518048611841321);
1875 const SimdDouble CE6(0.001388888889360258341755930);
1876 const SimdDouble CE5(0.008333333332907368102819109);
1877 const SimdDouble CE4(0.04166666666663836745814631);
1878 const SimdDouble CE3(0.1666666666666796929434570);
1879 const SimdDouble CE2(0.5);
1880 const SimdDouble one(1.0);
1881 SimdDouble fexppart;
1882 SimdDouble intpart;
1883 SimdDouble y, p;
1885 // Large negative values are valid arguments to exp2(), so there are two
1886 // things we need to account for:
1887 // 1. When the exponents reaches -1023, the (biased) exponent field will be
1888 // zero and we can no longer multiply with it. There are special IEEE
1889 // formats to handle this range, but for now we have to accept that
1890 // we cannot handle those arguments. If input value becomes even more
1891 // negative, it will start to loop and we would end up with invalid
1892 // exponents. Thus, we need to limit or mask this.
1893 // 2. For VERY large negative values, we will have problems that the
1894 // subtraction to get the fractional part loses accuracy, and then we
1895 // can end up with overflows in the polynomial.
1897 // For now, we handle this by forwarding the math optimization setting to
1898 // ldexp, where the routine will return zero for very small arguments.
1900 // However, before doing that we need to make sure we do not call cvtR2I
1901 // with an argument that is so negative it cannot be converted to an integer
1902 // after being multiplied by argscale.
1904 if (opt == MathOptimization::Safe)
1906 x = max(x, SimdDouble(std::numeric_limits<std::int32_t>::lowest())/argscale);
1909 y = x * argscale;
1911 fexppart = ldexp<opt>(one, cvtR2I(y));
1912 intpart = round(y);
1914 // Extended precision arithmetics
1915 x = fma(invargscale0, intpart, x);
1916 x = fma(invargscale1, intpart, x);
1918 p = fma(CE12, x, CE11);
1919 p = fma(p, x, CE10);
1920 p = fma(p, x, CE9);
1921 p = fma(p, x, CE8);
1922 p = fma(p, x, CE7);
1923 p = fma(p, x, CE6);
1924 p = fma(p, x, CE5);
1925 p = fma(p, x, CE4);
1926 p = fma(p, x, CE3);
1927 p = fma(p, x, CE2);
1928 p = fma(p, x * x, x);
1929 x = fma(p, fexppart, fexppart);
1931 return x;
1933 #endif
1935 /*! \brief SIMD double erf(x).
1937 * \param x The value to calculate erf(x) for.
1938 * \result erf(x)
1940 * This routine achieves very close to full precision, but we do not care about
1941 * the last bit or the subnormal result range.
1943 static inline SimdDouble gmx_simdcall
1944 erf(SimdDouble x)
1946 // Coefficients for minimax approximation of erf(x)=x*(CAoffset + P(x^2)/Q(x^2)) in range [-0.75,0.75]
1947 const SimdDouble CAP4(-0.431780540597889301512e-4);
1948 const SimdDouble CAP3(-0.00578562306260059236059);
1949 const SimdDouble CAP2(-0.028593586920219752446);
1950 const SimdDouble CAP1(-0.315924962948621698209);
1951 const SimdDouble CAP0(0.14952975608477029151);
1953 const SimdDouble CAQ5(-0.374089300177174709737e-5);
1954 const SimdDouble CAQ4(0.00015126584532155383535);
1955 const SimdDouble CAQ3(0.00536692680669480725423);
1956 const SimdDouble CAQ2(0.0668686825594046122636);
1957 const SimdDouble CAQ1(0.402604990869284362773);
1958 // CAQ0 == 1.0
1959 const SimdDouble CAoffset(0.9788494110107421875);
1961 // Coefficients for minimax approximation of erfc(x)=exp(-x^2)*x*(P(x-1)/Q(x-1)) in range [1.0,4.5]
1962 const SimdDouble CBP6(2.49650423685462752497647637088e-10);
1963 const SimdDouble CBP5(0.00119770193298159629350136085658);
1964 const SimdDouble CBP4(0.0164944422378370965881008942733);
1965 const SimdDouble CBP3(0.0984581468691775932063932439252);
1966 const SimdDouble CBP2(0.317364595806937763843589437418);
1967 const SimdDouble CBP1(0.554167062641455850932670067075);
1968 const SimdDouble CBP0(0.427583576155807163756925301060);
1969 const SimdDouble CBQ7(0.00212288829699830145976198384930);
1970 const SimdDouble CBQ6(0.0334810979522685300554606393425);
1971 const SimdDouble CBQ5(0.2361713785181450957579508850717);
1972 const SimdDouble CBQ4(0.955364736493055670530981883072);
1973 const SimdDouble CBQ3(2.36815675631420037315349279199);
1974 const SimdDouble CBQ2(3.55261649184083035537184223542);
1975 const SimdDouble CBQ1(2.93501136050160872574376997993);
1976 // CBQ0 == 1.0
1978 // Coefficients for minimax approximation of erfc(x)=exp(-x^2)/x*(P(1/x)/Q(1/x)) in range [4.5,inf]
1979 const SimdDouble CCP6(-2.8175401114513378771);
1980 const SimdDouble CCP5(-3.22729451764143718517);
1981 const SimdDouble CCP4(-2.5518551727311523996);
1982 const SimdDouble CCP3(-0.687717681153649930619);
1983 const SimdDouble CCP2(-0.212652252872804219852);
1984 const SimdDouble CCP1(0.0175389834052493308818);
1985 const SimdDouble CCP0(0.00628057170626964891937);
1987 const SimdDouble CCQ6(5.48409182238641741584);
1988 const SimdDouble CCQ5(13.5064170191802889145);
1989 const SimdDouble CCQ4(22.9367376522880577224);
1990 const SimdDouble CCQ3(15.930646027911794143);
1991 const SimdDouble CCQ2(11.0567237927800161565);
1992 const SimdDouble CCQ1(2.79257750980575282228);
1993 // CCQ0 == 1.0
1994 const SimdDouble CCoffset(0.5579090118408203125);
1996 const SimdDouble one(1.0);
1997 const SimdDouble two(2.0);
1999 SimdDouble xabs, x2, x4, t, t2, w, w2;
2000 SimdDouble PolyAP0, PolyAP1, PolyAQ0, PolyAQ1;
2001 SimdDouble PolyBP0, PolyBP1, PolyBQ0, PolyBQ1;
2002 SimdDouble PolyCP0, PolyCP1, PolyCQ0, PolyCQ1;
2003 SimdDouble res_erf, res_erfcB, res_erfcC, res_erfc, res;
2004 SimdDouble expmx2;
2005 SimdDBool mask, mask_erf, notmask_erf;
2007 // Calculate erf()
2008 xabs = abs(x);
2009 mask_erf = (xabs < one);
2010 notmask_erf = (one <= xabs);
2011 x2 = x * x;
2012 x4 = x2 * x2;
2014 PolyAP0 = fma(CAP4, x4, CAP2);
2015 PolyAP1 = fma(CAP3, x4, CAP1);
2016 PolyAP0 = fma(PolyAP0, x4, CAP0);
2017 PolyAP0 = fma(PolyAP1, x2, PolyAP0);
2019 PolyAQ1 = fma(CAQ5, x4, CAQ3);
2020 PolyAQ0 = fma(CAQ4, x4, CAQ2);
2021 PolyAQ1 = fma(PolyAQ1, x4, CAQ1);
2022 PolyAQ0 = fma(PolyAQ0, x4, one);
2023 PolyAQ0 = fma(PolyAQ1, x2, PolyAQ0);
2025 res_erf = PolyAP0 * maskzInv(PolyAQ0, mask_erf);
2026 res_erf = CAoffset + res_erf;
2027 res_erf = x * res_erf;
2029 // Calculate erfc() in range [1,4.5]
2030 t = xabs - one;
2031 t2 = t * t;
2033 PolyBP0 = fma(CBP6, t2, CBP4);
2034 PolyBP1 = fma(CBP5, t2, CBP3);
2035 PolyBP0 = fma(PolyBP0, t2, CBP2);
2036 PolyBP1 = fma(PolyBP1, t2, CBP1);
2037 PolyBP0 = fma(PolyBP0, t2, CBP0);
2038 PolyBP0 = fma(PolyBP1, t, PolyBP0);
2040 PolyBQ1 = fma(CBQ7, t2, CBQ5);
2041 PolyBQ0 = fma(CBQ6, t2, CBQ4);
2042 PolyBQ1 = fma(PolyBQ1, t2, CBQ3);
2043 PolyBQ0 = fma(PolyBQ0, t2, CBQ2);
2044 PolyBQ1 = fma(PolyBQ1, t2, CBQ1);
2045 PolyBQ0 = fma(PolyBQ0, t2, one);
2046 PolyBQ0 = fma(PolyBQ1, t, PolyBQ0);
2048 // The denominator polynomial can be zero outside the range
2049 res_erfcB = PolyBP0 * maskzInv(PolyBQ0, notmask_erf);
2051 res_erfcB = res_erfcB * xabs;
2053 // Calculate erfc() in range [4.5,inf]
2054 w = maskzInv(xabs, notmask_erf);
2055 w2 = w * w;
2057 PolyCP0 = fma(CCP6, w2, CCP4);
2058 PolyCP1 = fma(CCP5, w2, CCP3);
2059 PolyCP0 = fma(PolyCP0, w2, CCP2);
2060 PolyCP1 = fma(PolyCP1, w2, CCP1);
2061 PolyCP0 = fma(PolyCP0, w2, CCP0);
2062 PolyCP0 = fma(PolyCP1, w, PolyCP0);
2064 PolyCQ0 = fma(CCQ6, w2, CCQ4);
2065 PolyCQ1 = fma(CCQ5, w2, CCQ3);
2066 PolyCQ0 = fma(PolyCQ0, w2, CCQ2);
2067 PolyCQ1 = fma(PolyCQ1, w2, CCQ1);
2068 PolyCQ0 = fma(PolyCQ0, w2, one);
2069 PolyCQ0 = fma(PolyCQ1, w, PolyCQ0);
2071 expmx2 = exp( -x2 );
2073 // The denominator polynomial can be zero outside the range
2074 res_erfcC = PolyCP0 * maskzInv(PolyCQ0, notmask_erf);
2075 res_erfcC = res_erfcC + CCoffset;
2076 res_erfcC = res_erfcC * w;
2078 mask = (SimdDouble(4.5) < xabs);
2079 res_erfc = blend(res_erfcB, res_erfcC, mask);
2081 res_erfc = res_erfc * expmx2;
2083 // erfc(x<0) = 2-erfc(|x|)
2084 mask = (x < setZero());
2085 res_erfc = blend(res_erfc, two - res_erfc, mask);
2087 // Select erf() or erfc()
2088 res = blend(one - res_erfc, res_erf, mask_erf);
2090 return res;
2093 /*! \brief SIMD double erfc(x).
2095 * \param x The value to calculate erfc(x) for.
2096 * \result erfc(x)
2098 * This routine achieves full precision (bar the last bit) over most of the
2099 * input range, but for large arguments where the result is getting close
2100 * to the minimum representable numbers we accept slightly larger errors
2101 * (think results that are in the ballpark of 10^-200 for double)
2102 * since that is not relevant for MD.
2104 static inline SimdDouble gmx_simdcall
2105 erfc(SimdDouble x)
2107 // Coefficients for minimax approximation of erf(x)=x*(CAoffset + P(x^2)/Q(x^2)) in range [-0.75,0.75]
2108 const SimdDouble CAP4(-0.431780540597889301512e-4);
2109 const SimdDouble CAP3(-0.00578562306260059236059);
2110 const SimdDouble CAP2(-0.028593586920219752446);
2111 const SimdDouble CAP1(-0.315924962948621698209);
2112 const SimdDouble CAP0(0.14952975608477029151);
2114 const SimdDouble CAQ5(-0.374089300177174709737e-5);
2115 const SimdDouble CAQ4(0.00015126584532155383535);
2116 const SimdDouble CAQ3(0.00536692680669480725423);
2117 const SimdDouble CAQ2(0.0668686825594046122636);
2118 const SimdDouble CAQ1(0.402604990869284362773);
2119 // CAQ0 == 1.0
2120 const SimdDouble CAoffset(0.9788494110107421875);
2122 // Coefficients for minimax approximation of erfc(x)=exp(-x^2)*x*(P(x-1)/Q(x-1)) in range [1.0,4.5]
2123 const SimdDouble CBP6(2.49650423685462752497647637088e-10);
2124 const SimdDouble CBP5(0.00119770193298159629350136085658);
2125 const SimdDouble CBP4(0.0164944422378370965881008942733);
2126 const SimdDouble CBP3(0.0984581468691775932063932439252);
2127 const SimdDouble CBP2(0.317364595806937763843589437418);
2128 const SimdDouble CBP1(0.554167062641455850932670067075);
2129 const SimdDouble CBP0(0.427583576155807163756925301060);
2130 const SimdDouble CBQ7(0.00212288829699830145976198384930);
2131 const SimdDouble CBQ6(0.0334810979522685300554606393425);
2132 const SimdDouble CBQ5(0.2361713785181450957579508850717);
2133 const SimdDouble CBQ4(0.955364736493055670530981883072);
2134 const SimdDouble CBQ3(2.36815675631420037315349279199);
2135 const SimdDouble CBQ2(3.55261649184083035537184223542);
2136 const SimdDouble CBQ1(2.93501136050160872574376997993);
2137 // CBQ0 == 1.0
2139 // Coefficients for minimax approximation of erfc(x)=exp(-x^2)/x*(P(1/x)/Q(1/x)) in range [4.5,inf]
2140 const SimdDouble CCP6(-2.8175401114513378771);
2141 const SimdDouble CCP5(-3.22729451764143718517);
2142 const SimdDouble CCP4(-2.5518551727311523996);
2143 const SimdDouble CCP3(-0.687717681153649930619);
2144 const SimdDouble CCP2(-0.212652252872804219852);
2145 const SimdDouble CCP1(0.0175389834052493308818);
2146 const SimdDouble CCP0(0.00628057170626964891937);
2148 const SimdDouble CCQ6(5.48409182238641741584);
2149 const SimdDouble CCQ5(13.5064170191802889145);
2150 const SimdDouble CCQ4(22.9367376522880577224);
2151 const SimdDouble CCQ3(15.930646027911794143);
2152 const SimdDouble CCQ2(11.0567237927800161565);
2153 const SimdDouble CCQ1(2.79257750980575282228);
2154 // CCQ0 == 1.0
2155 const SimdDouble CCoffset(0.5579090118408203125);
2157 const SimdDouble one(1.0);
2158 const SimdDouble two(2.0);
2160 SimdDouble xabs, x2, x4, t, t2, w, w2;
2161 SimdDouble PolyAP0, PolyAP1, PolyAQ0, PolyAQ1;
2162 SimdDouble PolyBP0, PolyBP1, PolyBQ0, PolyBQ1;
2163 SimdDouble PolyCP0, PolyCP1, PolyCQ0, PolyCQ1;
2164 SimdDouble res_erf, res_erfcB, res_erfcC, res_erfc, res;
2165 SimdDouble expmx2;
2166 SimdDBool mask, mask_erf, notmask_erf;
2168 // Calculate erf()
2169 xabs = abs(x);
2170 mask_erf = (xabs < one);
2171 notmask_erf = (one <= xabs);
2172 x2 = x * x;
2173 x4 = x2 * x2;
2175 PolyAP0 = fma(CAP4, x4, CAP2);
2176 PolyAP1 = fma(CAP3, x4, CAP1);
2177 PolyAP0 = fma(PolyAP0, x4, CAP0);
2178 PolyAP0 = fma(PolyAP1, x2, PolyAP0);
2179 PolyAQ1 = fma(CAQ5, x4, CAQ3);
2180 PolyAQ0 = fma(CAQ4, x4, CAQ2);
2181 PolyAQ1 = fma(PolyAQ1, x4, CAQ1);
2182 PolyAQ0 = fma(PolyAQ0, x4, one);
2183 PolyAQ0 = fma(PolyAQ1, x2, PolyAQ0);
2185 res_erf = PolyAP0 * maskzInv(PolyAQ0, mask_erf);
2186 res_erf = CAoffset + res_erf;
2187 res_erf = x * res_erf;
2189 // Calculate erfc() in range [1,4.5]
2190 t = xabs - one;
2191 t2 = t * t;
2193 PolyBP0 = fma(CBP6, t2, CBP4);
2194 PolyBP1 = fma(CBP5, t2, CBP3);
2195 PolyBP0 = fma(PolyBP0, t2, CBP2);
2196 PolyBP1 = fma(PolyBP1, t2, CBP1);
2197 PolyBP0 = fma(PolyBP0, t2, CBP0);
2198 PolyBP0 = fma(PolyBP1, t, PolyBP0);
2200 PolyBQ1 = fma(CBQ7, t2, CBQ5);
2201 PolyBQ0 = fma(CBQ6, t2, CBQ4);
2202 PolyBQ1 = fma(PolyBQ1, t2, CBQ3);
2203 PolyBQ0 = fma(PolyBQ0, t2, CBQ2);
2204 PolyBQ1 = fma(PolyBQ1, t2, CBQ1);
2205 PolyBQ0 = fma(PolyBQ0, t2, one);
2206 PolyBQ0 = fma(PolyBQ1, t, PolyBQ0);
2208 // The denominator polynomial can be zero outside the range
2209 res_erfcB = PolyBP0 * maskzInv(PolyBQ0, notmask_erf);
2211 res_erfcB = res_erfcB * xabs;
2213 // Calculate erfc() in range [4.5,inf]
2214 w = maskzInv(xabs, xabs != setZero());
2215 w2 = w * w;
2217 PolyCP0 = fma(CCP6, w2, CCP4);
2218 PolyCP1 = fma(CCP5, w2, CCP3);
2219 PolyCP0 = fma(PolyCP0, w2, CCP2);
2220 PolyCP1 = fma(PolyCP1, w2, CCP1);
2221 PolyCP0 = fma(PolyCP0, w2, CCP0);
2222 PolyCP0 = fma(PolyCP1, w, PolyCP0);
2224 PolyCQ0 = fma(CCQ6, w2, CCQ4);
2225 PolyCQ1 = fma(CCQ5, w2, CCQ3);
2226 PolyCQ0 = fma(PolyCQ0, w2, CCQ2);
2227 PolyCQ1 = fma(PolyCQ1, w2, CCQ1);
2228 PolyCQ0 = fma(PolyCQ0, w2, one);
2229 PolyCQ0 = fma(PolyCQ1, w, PolyCQ0);
2231 expmx2 = exp( -x2 );
2233 // The denominator polynomial can be zero outside the range
2234 res_erfcC = PolyCP0 * maskzInv(PolyCQ0, notmask_erf);
2235 res_erfcC = res_erfcC + CCoffset;
2236 res_erfcC = res_erfcC * w;
2238 mask = (SimdDouble(4.5) < xabs);
2239 res_erfc = blend(res_erfcB, res_erfcC, mask);
2241 res_erfc = res_erfc * expmx2;
2243 // erfc(x<0) = 2-erfc(|x|)
2244 mask = (x < setZero());
2245 res_erfc = blend(res_erfc, two - res_erfc, mask);
2247 // Select erf() or erfc()
2248 res = blend(res_erfc, one - res_erf, mask_erf);
2250 return res;
2253 /*! \brief SIMD double sin \& cos.
2255 * \param x The argument to evaluate sin/cos for
2256 * \param[out] sinval Sin(x)
2257 * \param[out] cosval Cos(x)
2259 * This version achieves close to machine precision, but for very large
2260 * magnitudes of the argument we inherently begin to lose accuracy due to the
2261 * argument reduction, despite using extended precision arithmetics internally.
2263 static inline void gmx_simdcall
2264 sincos(SimdDouble x, SimdDouble *sinval, SimdDouble *cosval)
2266 // Constants to subtract Pi/4*x from y while minimizing precision loss
2267 const SimdDouble argred0(-2*0.78539816290140151978);
2268 const SimdDouble argred1(-2*4.9604678871439933374e-10);
2269 const SimdDouble argred2(-2*1.1258708853173288931e-18);
2270 const SimdDouble argred3(-2*1.7607799325916000908e-27);
2271 const SimdDouble two_over_pi(2.0/M_PI);
2272 const SimdDouble const_sin5( 1.58938307283228937328511e-10);
2273 const SimdDouble const_sin4(-2.50506943502539773349318e-08);
2274 const SimdDouble const_sin3( 2.75573131776846360512547e-06);
2275 const SimdDouble const_sin2(-0.000198412698278911770864914);
2276 const SimdDouble const_sin1( 0.0083333333333191845961746);
2277 const SimdDouble const_sin0(-0.166666666666666130709393);
2279 const SimdDouble const_cos7(-1.13615350239097429531523e-11);
2280 const SimdDouble const_cos6( 2.08757471207040055479366e-09);
2281 const SimdDouble const_cos5(-2.75573144028847567498567e-07);
2282 const SimdDouble const_cos4( 2.48015872890001867311915e-05);
2283 const SimdDouble const_cos3(-0.00138888888888714019282329);
2284 const SimdDouble const_cos2( 0.0416666666666665519592062);
2285 const SimdDouble half(0.5);
2286 const SimdDouble one(1.0);
2287 SimdDouble ssign, csign;
2288 SimdDouble x2, y, z, psin, pcos, sss, ccc;
2289 SimdDBool mask;
2290 #if GMX_SIMD_HAVE_DINT32_ARITHMETICS && GMX_SIMD_HAVE_LOGICAL
2291 const SimdDInt32 ione(1);
2292 const SimdDInt32 itwo(2);
2293 SimdDInt32 iy;
2295 z = x * two_over_pi;
2296 iy = cvtR2I(z);
2297 y = round(z);
2299 mask = cvtIB2B((iy & ione) == setZero());
2300 ssign = selectByMask(SimdDouble(GMX_DOUBLE_NEGZERO), cvtIB2B((iy & itwo) == itwo));
2301 csign = selectByMask(SimdDouble(GMX_DOUBLE_NEGZERO), cvtIB2B(((iy + ione) & itwo) == itwo));
2302 #else
2303 const SimdDouble quarter(0.25);
2304 const SimdDouble minusquarter(-0.25);
2305 SimdDouble q;
2306 SimdDBool m1, m2, m3;
2308 /* The most obvious way to find the arguments quadrant in the unit circle
2309 * to calculate the sign is to use integer arithmetic, but that is not
2310 * present in all SIMD implementations. As an alternative, we have devised a
2311 * pure floating-point algorithm that uses truncation for argument reduction
2312 * so that we get a new value 0<=q<1 over the unit circle, and then
2313 * do floating-point comparisons with fractions. This is likely to be
2314 * slightly slower (~10%) due to the longer latencies of floating-point, so
2315 * we only use it when integer SIMD arithmetic is not present.
2317 ssign = x;
2318 x = abs(x);
2319 // It is critical that half-way cases are rounded down
2320 z = fma(x, two_over_pi, half);
2321 y = trunc(z);
2322 q = z * quarter;
2323 q = q - trunc(q);
2324 /* z now starts at 0.0 for x=-pi/4 (although neg. values cannot occur), and
2325 * then increased by 1.0 as x increases by 2*Pi, when it resets to 0.0.
2326 * This removes the 2*Pi periodicity without using any integer arithmetic.
2327 * First check if y had the value 2 or 3, set csign if true.
2329 q = q - half;
2330 /* If we have logical operations we can work directly on the signbit, which
2331 * saves instructions. Otherwise we need to represent signs as +1.0/-1.0.
2332 * Thus, if you are altering defines to debug alternative code paths, the
2333 * two GMX_SIMD_HAVE_LOGICAL sections in this routine must either both be
2334 * active or inactive - you will get errors if only one is used.
2336 # if GMX_SIMD_HAVE_LOGICAL
2337 ssign = ssign & SimdDouble(GMX_DOUBLE_NEGZERO);
2338 csign = andNot(q, SimdDouble(GMX_DOUBLE_NEGZERO));
2339 ssign = ssign ^ csign;
2340 # else
2341 ssign = copysign(SimdDouble(1.0), ssign);
2342 csign = copysign(SimdDouble(1.0), q);
2343 csign = -csign;
2344 ssign = ssign * csign; // swap ssign if csign was set.
2345 # endif
2346 // Check if y had value 1 or 3 (remember we subtracted 0.5 from q)
2347 m1 = (q < minusquarter);
2348 m2 = (setZero() <= q);
2349 m3 = (q < quarter);
2350 m2 = m2 && m3;
2351 mask = m1 || m2;
2352 // where mask is FALSE, swap sign.
2353 csign = csign * blend(SimdDouble(-1.0), one, mask);
2354 #endif
2355 x = fma(y, argred0, x);
2356 x = fma(y, argred1, x);
2357 x = fma(y, argred2, x);
2358 x = fma(y, argred3, x);
2359 x2 = x * x;
2361 psin = fma(const_sin5, x2, const_sin4);
2362 psin = fma(psin, x2, const_sin3);
2363 psin = fma(psin, x2, const_sin2);
2364 psin = fma(psin, x2, const_sin1);
2365 psin = fma(psin, x2, const_sin0);
2366 psin = fma(psin, x2 * x, x);
2368 pcos = fma(const_cos7, x2, const_cos6);
2369 pcos = fma(pcos, x2, const_cos5);
2370 pcos = fma(pcos, x2, const_cos4);
2371 pcos = fma(pcos, x2, const_cos3);
2372 pcos = fma(pcos, x2, const_cos2);
2373 pcos = fms(pcos, x2, half);
2374 pcos = fma(pcos, x2, one);
2376 sss = blend(pcos, psin, mask);
2377 ccc = blend(psin, pcos, mask);
2378 // See comment for GMX_SIMD_HAVE_LOGICAL section above.
2379 #if GMX_SIMD_HAVE_LOGICAL
2380 *sinval = sss ^ ssign;
2381 *cosval = ccc ^ csign;
2382 #else
2383 *sinval = sss * ssign;
2384 *cosval = ccc * csign;
2385 #endif
2388 /*! \brief SIMD double sin(x).
2390 * \param x The argument to evaluate sin for
2391 * \result Sin(x)
2393 * \attention Do NOT call both sin & cos if you need both results, since each of them
2394 * will then call \ref sincos and waste a factor 2 in performance.
2396 static inline SimdDouble gmx_simdcall
2397 sin(SimdDouble x)
2399 SimdDouble s, c;
2400 sincos(x, &s, &c);
2401 return s;
2404 /*! \brief SIMD double cos(x).
2406 * \param x The argument to evaluate cos for
2407 * \result Cos(x)
2409 * \attention Do NOT call both sin & cos if you need both results, since each of them
2410 * will then call \ref sincos and waste a factor 2 in performance.
2412 static inline SimdDouble gmx_simdcall
2413 cos(SimdDouble x)
2415 SimdDouble s, c;
2416 sincos(x, &s, &c);
2417 return c;
2420 /*! \brief SIMD double tan(x).
2422 * \param x The argument to evaluate tan for
2423 * \result Tan(x)
2425 static inline SimdDouble gmx_simdcall
2426 tan(SimdDouble x)
2428 const SimdDouble argred0(-2*0.78539816290140151978);
2429 const SimdDouble argred1(-2*4.9604678871439933374e-10);
2430 const SimdDouble argred2(-2*1.1258708853173288931e-18);
2431 const SimdDouble argred3(-2*1.7607799325916000908e-27);
2432 const SimdDouble two_over_pi(2.0/M_PI);
2433 const SimdDouble CT15(1.01419718511083373224408e-05);
2434 const SimdDouble CT14(-2.59519791585924697698614e-05);
2435 const SimdDouble CT13(5.23388081915899855325186e-05);
2436 const SimdDouble CT12(-3.05033014433946488225616e-05);
2437 const SimdDouble CT11(7.14707504084242744267497e-05);
2438 const SimdDouble CT10(8.09674518280159187045078e-05);
2439 const SimdDouble CT9(0.000244884931879331847054404);
2440 const SimdDouble CT8(0.000588505168743587154904506);
2441 const SimdDouble CT7(0.00145612788922812427978848);
2442 const SimdDouble CT6(0.00359208743836906619142924);
2443 const SimdDouble CT5(0.00886323944362401618113356);
2444 const SimdDouble CT4(0.0218694882853846389592078);
2445 const SimdDouble CT3(0.0539682539781298417636002);
2446 const SimdDouble CT2(0.133333333333125941821962);
2447 const SimdDouble CT1(0.333333333333334980164153);
2449 SimdDouble x2, p, y, z;
2450 SimdDBool m;
2452 #if GMX_SIMD_HAVE_DINT32_ARITHMETICS && GMX_SIMD_HAVE_LOGICAL
2453 SimdDInt32 iy;
2454 SimdDInt32 ione(1);
2456 z = x * two_over_pi;
2457 iy = cvtR2I(z);
2458 y = round(z);
2459 m = cvtIB2B((iy & ione) == ione);
2461 x = fma(y, argred0, x);
2462 x = fma(y, argred1, x);
2463 x = fma(y, argred2, x);
2464 x = fma(y, argred3, x);
2465 x = selectByMask(SimdDouble(GMX_DOUBLE_NEGZERO), m) ^ x;
2466 #else
2467 const SimdDouble quarter(0.25);
2468 const SimdDouble half(0.5);
2469 const SimdDouble threequarter(0.75);
2470 SimdDouble w, q;
2471 SimdDBool m1, m2, m3;
2473 w = abs(x);
2474 z = fma(w, two_over_pi, half);
2475 y = trunc(z);
2476 q = z * quarter;
2477 q = q - trunc(q);
2478 m1 = (quarter <= q);
2479 m2 = (q < half);
2480 m3 = (threequarter <= q);
2481 m1 = m1 && m2;
2482 m = m1 || m3;
2483 w = fma(y, argred0, w);
2484 w = fma(y, argred1, w);
2485 w = fma(y, argred2, w);
2486 w = fma(y, argred3, w);
2488 w = blend(w, -w, m);
2489 x = w * copysign( SimdDouble(1.0), x );
2490 #endif
2491 x2 = x * x;
2492 p = fma(CT15, x2, CT14);
2493 p = fma(p, x2, CT13);
2494 p = fma(p, x2, CT12);
2495 p = fma(p, x2, CT11);
2496 p = fma(p, x2, CT10);
2497 p = fma(p, x2, CT9);
2498 p = fma(p, x2, CT8);
2499 p = fma(p, x2, CT7);
2500 p = fma(p, x2, CT6);
2501 p = fma(p, x2, CT5);
2502 p = fma(p, x2, CT4);
2503 p = fma(p, x2, CT3);
2504 p = fma(p, x2, CT2);
2505 p = fma(p, x2, CT1);
2506 p = fma(x2, p * x, x);
2508 p = blend( p, maskzInv(p, m), m);
2509 return p;
2512 /*! \brief SIMD double asin(x).
2514 * \param x The argument to evaluate asin for
2515 * \result Asin(x)
2517 static inline SimdDouble gmx_simdcall
2518 asin(SimdDouble x)
2520 // Same algorithm as cephes library
2521 const SimdDouble limit1(0.625);
2522 const SimdDouble limit2(1e-8);
2523 const SimdDouble one(1.0);
2524 const SimdDouble quarterpi(M_PI/4.0);
2525 const SimdDouble morebits(6.123233995736765886130e-17);
2527 const SimdDouble P5(4.253011369004428248960e-3);
2528 const SimdDouble P4(-6.019598008014123785661e-1);
2529 const SimdDouble P3(5.444622390564711410273e0);
2530 const SimdDouble P2(-1.626247967210700244449e1);
2531 const SimdDouble P1(1.956261983317594739197e1);
2532 const SimdDouble P0(-8.198089802484824371615e0);
2534 const SimdDouble Q4(-1.474091372988853791896e1);
2535 const SimdDouble Q3(7.049610280856842141659e1);
2536 const SimdDouble Q2(-1.471791292232726029859e2);
2537 const SimdDouble Q1(1.395105614657485689735e2);
2538 const SimdDouble Q0(-4.918853881490881290097e1);
2540 const SimdDouble R4(2.967721961301243206100e-3);
2541 const SimdDouble R3(-5.634242780008963776856e-1);
2542 const SimdDouble R2(6.968710824104713396794e0);
2543 const SimdDouble R1(-2.556901049652824852289e1);
2544 const SimdDouble R0(2.853665548261061424989e1);
2546 const SimdDouble S3(-2.194779531642920639778e1);
2547 const SimdDouble S2(1.470656354026814941758e2);
2548 const SimdDouble S1(-3.838770957603691357202e2);
2549 const SimdDouble S0(3.424398657913078477438e2);
2551 SimdDouble xabs;
2552 SimdDouble zz, ww, z, q, w, zz2, ww2;
2553 SimdDouble PA, PB;
2554 SimdDouble QA, QB;
2555 SimdDouble RA, RB;
2556 SimdDouble SA, SB;
2557 SimdDouble nom, denom;
2558 SimdDBool mask, mask2;
2560 xabs = abs(x);
2562 mask = (limit1 < xabs);
2564 zz = one - xabs;
2565 ww = xabs * xabs;
2566 zz2 = zz * zz;
2567 ww2 = ww * ww;
2569 // R
2570 RA = fma(R4, zz2, R2);
2571 RB = fma(R3, zz2, R1);
2572 RA = fma(RA, zz2, R0);
2573 RA = fma(RB, zz, RA);
2575 // S, SA = zz2
2576 SB = fma(S3, zz2, S1);
2577 SA = zz2 + S2;
2578 SA = fma(SA, zz2, S0);
2579 SA = fma(SB, zz, SA);
2581 // P
2582 PA = fma(P5, ww2, P3);
2583 PB = fma(P4, ww2, P2);
2584 PA = fma(PA, ww2, P1);
2585 PB = fma(PB, ww2, P0);
2586 PA = fma(PA, ww, PB);
2588 // Q, QA = ww2
2589 QB = fma(Q4, ww2, Q2);
2590 QA = ww2 + Q3;
2591 QA = fma(QA, ww2, Q1);
2592 QB = fma(QB, ww2, Q0);
2593 QA = fma(QA, ww, QB);
2595 RA = RA * zz;
2596 PA = PA * ww;
2598 nom = blend( PA, RA, mask );
2599 denom = blend( QA, SA, mask );
2601 mask2 = (limit2 < xabs);
2602 q = nom * maskzInv(denom, mask2);
2604 zz = zz + zz;
2605 zz = sqrt(zz);
2606 z = quarterpi - zz;
2607 zz = fms(zz, q, morebits);
2608 z = z - zz;
2609 z = z + quarterpi;
2611 w = xabs * q;
2612 w = w + xabs;
2614 z = blend( w, z, mask );
2616 z = blend( xabs, z, mask2 );
2618 z = copysign(z, x);
2620 return z;
2623 /*! \brief SIMD double acos(x).
2625 * \param x The argument to evaluate acos for
2626 * \result Acos(x)
2628 static inline SimdDouble gmx_simdcall
2629 acos(SimdDouble x)
2631 const SimdDouble one(1.0);
2632 const SimdDouble half(0.5);
2633 const SimdDouble quarterpi0(7.85398163397448309616e-1);
2634 const SimdDouble quarterpi1(6.123233995736765886130e-17);
2636 SimdDBool mask1;
2637 SimdDouble z, z1, z2;
2639 mask1 = (half < x);
2640 z1 = half * (one - x);
2641 z1 = sqrt(z1);
2642 z = blend( x, z1, mask1 );
2644 z = asin(z);
2646 z1 = z + z;
2648 z2 = quarterpi0 - z;
2649 z2 = z2 + quarterpi1;
2650 z2 = z2 + quarterpi0;
2652 z = blend(z2, z1, mask1);
2654 return z;
2657 /*! \brief SIMD double asin(x).
2659 * \param x The argument to evaluate atan for
2660 * \result Atan(x), same argument/value range as standard math library.
2662 static inline SimdDouble gmx_simdcall
2663 atan(SimdDouble x)
2665 // Same algorithm as cephes library
2666 const SimdDouble limit1(0.66);
2667 const SimdDouble limit2(2.41421356237309504880);
2668 const SimdDouble quarterpi(M_PI/4.0);
2669 const SimdDouble halfpi(M_PI/2.0);
2670 const SimdDouble mone(-1.0);
2671 const SimdDouble morebits1(0.5*6.123233995736765886130E-17);
2672 const SimdDouble morebits2(6.123233995736765886130E-17);
2674 const SimdDouble P4(-8.750608600031904122785E-1);
2675 const SimdDouble P3(-1.615753718733365076637E1);
2676 const SimdDouble P2(-7.500855792314704667340E1);
2677 const SimdDouble P1(-1.228866684490136173410E2);
2678 const SimdDouble P0(-6.485021904942025371773E1);
2680 const SimdDouble Q4(2.485846490142306297962E1);
2681 const SimdDouble Q3(1.650270098316988542046E2);
2682 const SimdDouble Q2(4.328810604912902668951E2);
2683 const SimdDouble Q1(4.853903996359136964868E2);
2684 const SimdDouble Q0(1.945506571482613964425E2);
2686 SimdDouble y, xabs, t1, t2;
2687 SimdDouble z, z2;
2688 SimdDouble P_A, P_B, Q_A, Q_B;
2689 SimdDBool mask1, mask2;
2691 xabs = abs(x);
2693 mask1 = (limit1 < xabs);
2694 mask2 = (limit2 < xabs);
2696 t1 = (xabs + mone) * maskzInv(xabs - mone, mask1);
2697 t2 = mone * maskzInv(xabs, mask2);
2699 y = selectByMask(quarterpi, mask1);
2700 y = blend(y, halfpi, mask2);
2701 xabs = blend(xabs, t1, mask1);
2702 xabs = blend(xabs, t2, mask2);
2704 z = xabs * xabs;
2705 z2 = z * z;
2707 P_A = fma(P4, z2, P2);
2708 P_B = fma(P3, z2, P1);
2709 P_A = fma(P_A, z2, P0);
2710 P_A = fma(P_B, z, P_A);
2712 // Q_A = z2
2713 Q_B = fma(Q4, z2, Q2);
2714 Q_A = z2 + Q3;
2715 Q_A = fma(Q_A, z2, Q1);
2716 Q_B = fma(Q_B, z2, Q0);
2717 Q_A = fma(Q_A, z, Q_B);
2719 z = z * P_A;
2720 z = z * inv(Q_A);
2721 z = fma(z, xabs, xabs);
2723 t1 = selectByMask(morebits1, mask1);
2724 t1 = blend(t1, morebits2, mask2);
2726 z = z + t1;
2727 y = y + z;
2729 y = copysign(y, x);
2731 return y;
2734 /*! \brief SIMD double atan2(y,x).
2736 * \param y Y component of vector, any quartile
2737 * \param x X component of vector, any quartile
2738 * \result Atan(y,x), same argument/value range as standard math library.
2740 * \note This routine should provide correct results for all finite
2741 * non-zero or positive-zero arguments. However, negative zero arguments will
2742 * be treated as positive zero, which means the return value will deviate from
2743 * the standard math library atan2(y,x) for those cases. That should not be
2744 * of any concern in Gromacs, and in particular it will not affect calculations
2745 * of angles from vectors.
2747 static inline SimdDouble gmx_simdcall
2748 atan2(SimdDouble y, SimdDouble x)
2750 const SimdDouble pi(M_PI);
2751 const SimdDouble halfpi(M_PI/2.0);
2752 SimdDouble xinv, p, aoffset;
2753 SimdDBool mask_xnz, mask_ynz, mask_xlt0, mask_ylt0;
2755 mask_xnz = x != setZero();
2756 mask_ynz = y != setZero();
2757 mask_xlt0 = (x < setZero());
2758 mask_ylt0 = (y < setZero());
2760 aoffset = selectByNotMask(halfpi, mask_xnz);
2761 aoffset = selectByMask(aoffset, mask_ynz);
2763 aoffset = blend(aoffset, pi, mask_xlt0);
2764 aoffset = blend(aoffset, -aoffset, mask_ylt0);
2766 xinv = maskzInv(x, mask_xnz);
2767 p = y * xinv;
2768 p = atan(p);
2769 p = p + aoffset;
2771 return p;
2775 /*! \brief Calculate the force correction due to PME analytically in SIMD double.
2777 * \param z2 This should be the value \f$(r \beta)^2\f$, where r is your
2778 * interaction distance and beta the ewald splitting parameters.
2779 * \result Correction factor to coulomb force.
2781 * This routine is meant to enable analytical evaluation of the
2782 * direct-space PME electrostatic force to avoid tables. For details, see the
2783 * single precision function.
2785 static inline SimdDouble gmx_simdcall
2786 pmeForceCorrection(SimdDouble z2)
2788 const SimdDouble FN10(-8.0072854618360083154e-14);
2789 const SimdDouble FN9(1.1859116242260148027e-11);
2790 const SimdDouble FN8(-8.1490406329798423616e-10);
2791 const SimdDouble FN7(3.4404793543907847655e-8);
2792 const SimdDouble FN6(-9.9471420832602741006e-7);
2793 const SimdDouble FN5(0.000020740315999115847456);
2794 const SimdDouble FN4(-0.00031991745139313364005);
2795 const SimdDouble FN3(0.0035074449373659008203);
2796 const SimdDouble FN2(-0.031750380176100813405);
2797 const SimdDouble FN1(0.13884101728898463426);
2798 const SimdDouble FN0(-0.75225277815249618847);
2800 const SimdDouble FD5(0.000016009278224355026701);
2801 const SimdDouble FD4(0.00051055686934806966046);
2802 const SimdDouble FD3(0.0081803507497974289008);
2803 const SimdDouble FD2(0.077181146026670287235);
2804 const SimdDouble FD1(0.41543303143712535988);
2805 const SimdDouble FD0(1.0);
2807 SimdDouble z4;
2808 SimdDouble polyFN0, polyFN1, polyFD0, polyFD1;
2810 z4 = z2 * z2;
2812 polyFD1 = fma(FD5, z4, FD3);
2813 polyFD1 = fma(polyFD1, z4, FD1);
2814 polyFD1 = polyFD1 * z2;
2815 polyFD0 = fma(FD4, z4, FD2);
2816 polyFD0 = fma(polyFD0, z4, FD0);
2817 polyFD0 = polyFD0 + polyFD1;
2819 polyFD0 = inv(polyFD0);
2821 polyFN0 = fma(FN10, z4, FN8);
2822 polyFN0 = fma(polyFN0, z4, FN6);
2823 polyFN0 = fma(polyFN0, z4, FN4);
2824 polyFN0 = fma(polyFN0, z4, FN2);
2825 polyFN0 = fma(polyFN0, z4, FN0);
2826 polyFN1 = fma(FN9, z4, FN7);
2827 polyFN1 = fma(polyFN1, z4, FN5);
2828 polyFN1 = fma(polyFN1, z4, FN3);
2829 polyFN1 = fma(polyFN1, z4, FN1);
2830 polyFN0 = fma(polyFN1, z2, polyFN0);
2833 return polyFN0 * polyFD0;
2838 /*! \brief Calculate the potential correction due to PME analytically in SIMD double.
2840 * \param z2 This should be the value \f$(r \beta)^2\f$, where r is your
2841 * interaction distance and beta the ewald splitting parameters.
2842 * \result Correction factor to coulomb force.
2844 * This routine is meant to enable analytical evaluation of the
2845 * direct-space PME electrostatic potential to avoid tables. For details, see the
2846 * single precision function.
2848 static inline SimdDouble gmx_simdcall
2849 pmePotentialCorrection(SimdDouble z2)
2851 const SimdDouble VN9(-9.3723776169321855475e-13);
2852 const SimdDouble VN8(1.2280156762674215741e-10);
2853 const SimdDouble VN7(-7.3562157912251309487e-9);
2854 const SimdDouble VN6(2.6215886208032517509e-7);
2855 const SimdDouble VN5(-4.9532491651265819499e-6);
2856 const SimdDouble VN4(0.00025907400778966060389);
2857 const SimdDouble VN3(0.0010585044856156469792);
2858 const SimdDouble VN2(0.045247661136833092885);
2859 const SimdDouble VN1(0.11643931522926034421);
2860 const SimdDouble VN0(1.1283791671726767970);
2862 const SimdDouble VD5(0.000021784709867336150342);
2863 const SimdDouble VD4(0.00064293662010911388448);
2864 const SimdDouble VD3(0.0096311444822588683504);
2865 const SimdDouble VD2(0.085608012351550627051);
2866 const SimdDouble VD1(0.43652499166614811084);
2867 const SimdDouble VD0(1.0);
2869 SimdDouble z4;
2870 SimdDouble polyVN0, polyVN1, polyVD0, polyVD1;
2872 z4 = z2 * z2;
2874 polyVD1 = fma(VD5, z4, VD3);
2875 polyVD0 = fma(VD4, z4, VD2);
2876 polyVD1 = fma(polyVD1, z4, VD1);
2877 polyVD0 = fma(polyVD0, z4, VD0);
2878 polyVD0 = fma(polyVD1, z2, polyVD0);
2880 polyVD0 = inv(polyVD0);
2882 polyVN1 = fma(VN9, z4, VN7);
2883 polyVN0 = fma(VN8, z4, VN6);
2884 polyVN1 = fma(polyVN1, z4, VN5);
2885 polyVN0 = fma(polyVN0, z4, VN4);
2886 polyVN1 = fma(polyVN1, z4, VN3);
2887 polyVN0 = fma(polyVN0, z4, VN2);
2888 polyVN1 = fma(polyVN1, z4, VN1);
2889 polyVN0 = fma(polyVN0, z4, VN0);
2890 polyVN0 = fma(polyVN1, z2, polyVN0);
2892 return polyVN0 * polyVD0;
2895 /*! \} */
2898 /*! \name SIMD math functions for double prec. data, single prec. accuracy
2900 * \note In some cases we do not need full double accuracy of individual
2901 * SIMD math functions, although the data is stored in double precision
2902 * SIMD registers. This might be the case for special algorithms, or
2903 * if the architecture does not support single precision.
2904 * Since the full double precision evaluation of math functions
2905 * typically require much more expensive polynomial approximations
2906 * these functions implement the algorithms used in the single precision
2907 * SIMD math functions, but they operate on double precision
2908 * SIMD variables.
2910 * \{
2913 /*********************************************************************
2914 * SIMD MATH FUNCTIONS WITH DOUBLE PREC. DATA, SINGLE PREC. ACCURACY *
2915 *********************************************************************/
2917 /*! \brief Calculate 1/sqrt(x) for SIMD double, but in single accuracy.
2919 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
2920 * GMX_FLOAT_MAX, i.e. within the range of single precision.
2921 * For the single precision implementation this is obviously always
2922 * true for positive values, but for double precision it adds an
2923 * extra restriction since the first lookup step might have to be
2924 * performed in single precision on some architectures. Note that the
2925 * responsibility for checking falls on you - this routine does not
2926 * check arguments.
2928 * \return 1/sqrt(x). Result is undefined if your argument was invalid.
2930 static inline SimdDouble gmx_simdcall
2931 invsqrtSingleAccuracy(SimdDouble x)
2933 SimdDouble lu = rsqrt(x);
2934 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
2935 lu = rsqrtIter(lu, x);
2936 #endif
2937 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
2938 lu = rsqrtIter(lu, x);
2939 #endif
2940 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
2941 lu = rsqrtIter(lu, x);
2942 #endif
2943 return lu;
2946 /*! \brief 1/sqrt(x) for masked-in entries of SIMD double, but in single accuracy.
2948 * This routine only evaluates 1/sqrt(x) for elements for which mask is true.
2949 * Illegal values in the masked-out elements will not lead to
2950 * floating-point exceptions.
2952 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
2953 * GMX_FLOAT_MAX, i.e. within the range of single precision.
2954 * For the single precision implementation this is obviously always
2955 * true for positive values, but for double precision it adds an
2956 * extra restriction since the first lookup step might have to be
2957 * performed in single precision on some architectures. Note that the
2958 * responsibility for checking falls on you - this routine does not
2959 * check arguments.
2961 * \param m Mask
2962 * \return 1/sqrt(x). Result is undefined if your argument was invalid or
2963 * entry was not masked, and 0.0 for masked-out entries.
2965 static inline SimdDouble
2966 maskzInvsqrtSingleAccuracy(SimdDouble x, SimdDBool m)
2968 SimdDouble lu = maskzRsqrt(x, m);
2969 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
2970 lu = rsqrtIter(lu, x);
2971 #endif
2972 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
2973 lu = rsqrtIter(lu, x);
2974 #endif
2975 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
2976 lu = rsqrtIter(lu, x);
2977 #endif
2978 return lu;
2981 /*! \brief Calculate 1/sqrt(x) for two SIMD doubles, but single accuracy.
2983 * \param x0 First set of arguments, x0 must be in single range (see below).
2984 * \param x1 Second set of arguments, x1 must be in single range (see below).
2985 * \param[out] out0 Result 1/sqrt(x0)
2986 * \param[out] out1 Result 1/sqrt(x1)
2988 * In particular for double precision we can sometimes calculate square root
2989 * pairs slightly faster by using single precision until the very last step.
2991 * \note Both arguments must be larger than GMX_FLOAT_MIN and smaller than
2992 * GMX_FLOAT_MAX, i.e. within the range of single precision.
2993 * For the single precision implementation this is obviously always
2994 * true for positive values, but for double precision it adds an
2995 * extra restriction since the first lookup step might have to be
2996 * performed in single precision on some architectures. Note that the
2997 * responsibility for checking falls on you - this routine does not
2998 * check arguments.
3000 static inline void gmx_simdcall
3001 invsqrtPairSingleAccuracy(SimdDouble x0, SimdDouble x1,
3002 SimdDouble *out0, SimdDouble *out1)
3004 #if GMX_SIMD_HAVE_FLOAT && (GMX_SIMD_FLOAT_WIDTH == 2*GMX_SIMD_DOUBLE_WIDTH) && (GMX_SIMD_RSQRT_BITS < 22)
3005 SimdFloat xf = cvtDD2F(x0, x1);
3006 SimdFloat luf = rsqrt(xf);
3007 SimdDouble lu0, lu1;
3008 // Intermediate target is single - mantissa+1 bits
3009 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
3010 luf = rsqrtIter(luf, xf);
3011 #endif
3012 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
3013 luf = rsqrtIter(luf, xf);
3014 #endif
3015 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
3016 luf = rsqrtIter(luf, xf);
3017 #endif
3018 cvtF2DD(luf, &lu0, &lu1);
3019 // We now have single-precision accuracy values in lu0/lu1
3020 *out0 = lu0;
3021 *out1 = lu1;
3022 #else
3023 *out0 = invsqrtSingleAccuracy(x0);
3024 *out1 = invsqrtSingleAccuracy(x1);
3025 #endif
3028 /*! \brief Calculate 1/x for SIMD double, but in single accuracy.
3030 * \param x Argument with magnitude larger than GMX_FLOAT_MIN and smaller than
3031 * GMX_FLOAT_MAX, i.e. within the range of single precision.
3032 * For the single precision implementation this is obviously always
3033 * true for positive values, but for double precision it adds an
3034 * extra restriction since the first lookup step might have to be
3035 * performed in single precision on some architectures. Note that the
3036 * responsibility for checking falls on you - this routine does not
3037 * check arguments.
3039 * \return 1/x. Result is undefined if your argument was invalid.
3041 static inline SimdDouble gmx_simdcall
3042 invSingleAccuracy(SimdDouble x)
3044 SimdDouble lu = rcp(x);
3045 #if (GMX_SIMD_RCP_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
3046 lu = rcpIter(lu, x);
3047 #endif
3048 #if (GMX_SIMD_RCP_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
3049 lu = rcpIter(lu, x);
3050 #endif
3051 #if (GMX_SIMD_RCP_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
3052 lu = rcpIter(lu, x);
3053 #endif
3054 return lu;
3057 /*! \brief 1/x for masked entries of SIMD double, single accuracy.
3059 * \param x Argument with magnitude larger than GMX_FLOAT_MIN and smaller than
3060 * GMX_FLOAT_MAX, i.e. within the range of single precision.
3061 * For the single precision implementation this is obviously always
3062 * true for positive values, but for double precision it adds an
3063 * extra restriction since the first lookup step might have to be
3064 * performed in single precision on some architectures. Note that the
3065 * responsibility for checking falls on you - this routine does not
3066 * check arguments.
3068 * \param m Mask
3069 * \return 1/x for elements where m is true, or 0.0 for masked-out entries.
3071 static inline SimdDouble gmx_simdcall
3072 maskzInvSingleAccuracy(SimdDouble x, SimdDBool m)
3074 SimdDouble lu = maskzRcp(x, m);
3075 #if (GMX_SIMD_RCP_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
3076 lu = rcpIter(lu, x);
3077 #endif
3078 #if (GMX_SIMD_RCP_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
3079 lu = rcpIter(lu, x);
3080 #endif
3081 #if (GMX_SIMD_RCP_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
3082 lu = rcpIter(lu, x);
3083 #endif
3084 return lu;
3088 /*! \brief Calculate sqrt(x) (correct for 0.0) for SIMD double, with single accuracy.
3090 * \copydetails sqrt(SimdFloat)
3092 template <MathOptimization opt = MathOptimization::Safe>
3093 static inline SimdDouble gmx_simdcall
3094 sqrtSingleAccuracy(SimdDouble x)
3096 if (opt == MathOptimization::Safe)
3098 SimdDouble res = maskzInvsqrt(x, SimdDouble(GMX_FLOAT_MIN) < x);
3099 return res*x;
3101 else
3103 return x * invsqrtSingleAccuracy(x);
3108 /*! \brief SIMD log(x). Double precision SIMD data, single accuracy.
3110 * \param x Argument, should be >0.
3111 * \result The natural logarithm of x. Undefined if argument is invalid.
3113 static inline SimdDouble gmx_simdcall
3114 logSingleAccuracy(SimdDouble x)
3116 const SimdDouble one(1.0);
3117 const SimdDouble two(2.0);
3118 const SimdDouble sqrt2(std::sqrt(2.0));
3119 const SimdDouble corr(0.693147180559945286226764);
3120 const SimdDouble CL9(0.2371599674224853515625);
3121 const SimdDouble CL7(0.285279005765914916992188);
3122 const SimdDouble CL5(0.400005519390106201171875);
3123 const SimdDouble CL3(0.666666567325592041015625);
3124 const SimdDouble CL1(2.0);
3125 SimdDouble fexp, x2, p;
3126 SimdDInt32 iexp;
3127 SimdDBool mask;
3129 x = frexp(x, &iexp);
3130 fexp = cvtI2R(iexp);
3132 mask = (x < sqrt2);
3133 // Adjust to non-IEEE format for x<sqrt(2): exponent -= 1, mantissa *= 2.0
3134 fexp = fexp - selectByMask(one, mask);
3135 x = x * blend(one, two, mask);
3137 x = (x - one) * invSingleAccuracy( x + one );
3138 x2 = x * x;
3140 p = fma(CL9, x2, CL7);
3141 p = fma(p, x2, CL5);
3142 p = fma(p, x2, CL3);
3143 p = fma(p, x2, CL1);
3144 p = fma(p, x, corr * fexp);
3146 return p;
3149 /*! \brief SIMD 2^x. Double precision SIMD, single accuracy.
3151 * \copydetails exp2(SimdFloat)
3153 template <MathOptimization opt = MathOptimization::Safe>
3154 static inline SimdDouble gmx_simdcall
3155 exp2SingleAccuracy(SimdDouble x)
3157 const SimdDouble CC6(0.0001534581200287996416911311);
3158 const SimdDouble CC5(0.001339993121934088894618990);
3159 const SimdDouble CC4(0.009618488957115180159497841);
3160 const SimdDouble CC3(0.05550328776964726865751735);
3161 const SimdDouble CC2(0.2402264689063408646490722);
3162 const SimdDouble CC1(0.6931472057372680777553816);
3163 const SimdDouble one(1.0);
3165 SimdDouble intpart;
3166 SimdDouble p;
3167 SimdDInt32 ix;
3169 // Large negative values are valid arguments to exp2(), so there are two
3170 // things we need to account for:
3171 // 1. When the exponents reaches -1023, the (biased) exponent field will be
3172 // zero and we can no longer multiply with it. There are special IEEE
3173 // formats to handle this range, but for now we have to accept that
3174 // we cannot handle those arguments. If input value becomes even more
3175 // negative, it will start to loop and we would end up with invalid
3176 // exponents. Thus, we need to limit or mask this.
3177 // 2. For VERY large negative values, we will have problems that the
3178 // subtraction to get the fractional part loses accuracy, and then we
3179 // can end up with overflows in the polynomial.
3181 // For now, we handle this by forwarding the math optimization setting to
3182 // ldexp, where the routine will return zero for very small arguments.
3184 // However, before doing that we need to make sure we do not call cvtR2I
3185 // with an argument that is so negative it cannot be converted to an integer.
3186 if (opt == MathOptimization::Safe)
3188 x = max(x, SimdDouble(std::numeric_limits<std::int32_t>::lowest()));
3191 ix = cvtR2I(x);
3192 intpart = round(x);
3193 x = x - intpart;
3195 p = fma(CC6, x, CC5);
3196 p = fma(p, x, CC4);
3197 p = fma(p, x, CC3);
3198 p = fma(p, x, CC2);
3199 p = fma(p, x, CC1);
3200 p = fma(p, x, one);
3201 x = ldexp<opt>(p, ix);
3203 return x;
3208 /*! \brief SIMD exp(x). Double precision SIMD, single accuracy.
3210 * \copydetails exp(SimdFloat)
3212 template <MathOptimization opt = MathOptimization::Safe>
3213 static inline SimdDouble gmx_simdcall
3214 expSingleAccuracy(SimdDouble x)
3216 const SimdDouble argscale(1.44269504088896341);
3217 // Lower bound: Clamp args that would lead to an IEEE fp exponent below -1023.
3218 const SimdDouble smallArgLimit(-709.0895657128);
3219 const SimdDouble invargscale(-0.69314718055994528623);
3220 const SimdDouble CC4(0.00136324646882712841033936);
3221 const SimdDouble CC3(0.00836596917361021041870117);
3222 const SimdDouble CC2(0.0416710823774337768554688);
3223 const SimdDouble CC1(0.166665524244308471679688);
3224 const SimdDouble CC0(0.499999850988388061523438);
3225 const SimdDouble one(1.0);
3226 SimdDouble intpart;
3227 SimdDouble y, p;
3228 SimdDInt32 iy;
3230 // Large negative values are valid arguments to exp2(), so there are two
3231 // things we need to account for:
3232 // 1. When the exponents reaches -1023, the (biased) exponent field will be
3233 // zero and we can no longer multiply with it. There are special IEEE
3234 // formats to handle this range, but for now we have to accept that
3235 // we cannot handle those arguments. If input value becomes even more
3236 // negative, it will start to loop and we would end up with invalid
3237 // exponents. Thus, we need to limit or mask this.
3238 // 2. For VERY large negative values, we will have problems that the
3239 // subtraction to get the fractional part loses accuracy, and then we
3240 // can end up with overflows in the polynomial.
3242 // For now, we handle this by forwarding the math optimization setting to
3243 // ldexp, where the routine will return zero for very small arguments.
3245 // However, before doing that we need to make sure we do not call cvtR2I
3246 // with an argument that is so negative it cannot be converted to an integer
3247 // after being multiplied by argscale.
3249 if (opt == MathOptimization::Safe)
3251 x = max(x, SimdDouble(std::numeric_limits<std::int32_t>::lowest())/argscale);
3254 y = x * argscale;
3256 iy = cvtR2I(y);
3257 intpart = round(y); // use same rounding algorithm here
3259 // Extended precision arithmetics not needed since
3260 // we have double precision and only need single accuracy.
3261 x = fma(invargscale, intpart, x);
3263 p = fma(CC4, x, CC3);
3264 p = fma(p, x, CC2);
3265 p = fma(p, x, CC1);
3266 p = fma(p, x, CC0);
3267 p = fma(x*x, p, x);
3268 p = p + one;
3269 x = ldexp<opt>(p, iy);
3270 return x;
3274 /*! \brief SIMD erf(x). Double precision SIMD data, single accuracy.
3276 * \param x The value to calculate erf(x) for.
3277 * \result erf(x)
3279 * This routine achieves very close to single precision, but we do not care about
3280 * the last bit or the subnormal result range.
3282 static inline SimdDouble gmx_simdcall
3283 erfSingleAccuracy(SimdDouble x)
3285 // Coefficients for minimax approximation of erf(x)=x*P(x^2) in range [-1,1]
3286 const SimdDouble CA6(7.853861353153693e-5);
3287 const SimdDouble CA5(-8.010193625184903e-4);
3288 const SimdDouble CA4(5.188327685732524e-3);
3289 const SimdDouble CA3(-2.685381193529856e-2);
3290 const SimdDouble CA2(1.128358514861418e-1);
3291 const SimdDouble CA1(-3.761262582423300e-1);
3292 const SimdDouble CA0(1.128379165726710);
3293 // Coefficients for minimax approximation of erfc(x)=Exp(-x^2)*P((1/(x-1))^2) in range [0.67,2]
3294 const SimdDouble CB9(-0.0018629930017603923);
3295 const SimdDouble CB8(0.003909821287598495);
3296 const SimdDouble CB7(-0.0052094582210355615);
3297 const SimdDouble CB6(0.005685614362160572);
3298 const SimdDouble CB5(-0.0025367682853477272);
3299 const SimdDouble CB4(-0.010199799682318782);
3300 const SimdDouble CB3(0.04369575504816542);
3301 const SimdDouble CB2(-0.11884063474674492);
3302 const SimdDouble CB1(0.2732120154030589);
3303 const SimdDouble CB0(0.42758357702025784);
3304 // Coefficients for minimax approximation of erfc(x)=Exp(-x^2)*(1/x)*P((1/x)^2) in range [2,9.19]
3305 const SimdDouble CC10(-0.0445555913112064);
3306 const SimdDouble CC9(0.21376355144663348);
3307 const SimdDouble CC8(-0.3473187200259257);
3308 const SimdDouble CC7(0.016690861551248114);
3309 const SimdDouble CC6(0.7560973182491192);
3310 const SimdDouble CC5(-1.2137903600145787);
3311 const SimdDouble CC4(0.8411872321232948);
3312 const SimdDouble CC3(-0.08670413896296343);
3313 const SimdDouble CC2(-0.27124782687240334);
3314 const SimdDouble CC1(-0.0007502488047806069);
3315 const SimdDouble CC0(0.5642114853803148);
3316 const SimdDouble one(1.0);
3317 const SimdDouble two(2.0);
3319 SimdDouble x2, x4, y;
3320 SimdDouble t, t2, w, w2;
3321 SimdDouble pA0, pA1, pB0, pB1, pC0, pC1;
3322 SimdDouble expmx2;
3323 SimdDouble res_erf, res_erfc, res;
3324 SimdDBool mask, msk_erf;
3326 // Calculate erf()
3327 x2 = x * x;
3328 x4 = x2 * x2;
3330 pA0 = fma(CA6, x4, CA4);
3331 pA1 = fma(CA5, x4, CA3);
3332 pA0 = fma(pA0, x4, CA2);
3333 pA1 = fma(pA1, x4, CA1);
3334 pA0 = pA0 * x4;
3335 pA0 = fma(pA1, x2, pA0);
3336 // Constant term must come last for precision reasons
3337 pA0 = pA0 + CA0;
3339 res_erf = x * pA0;
3341 // Calculate erfc
3342 y = abs(x);
3343 msk_erf = (SimdDouble(0.75) <= y);
3344 t = maskzInvSingleAccuracy(y, msk_erf);
3345 w = t - one;
3346 t2 = t * t;
3347 w2 = w * w;
3349 expmx2 = expSingleAccuracy( -y*y );
3351 pB1 = fma(CB9, w2, CB7);
3352 pB0 = fma(CB8, w2, CB6);
3353 pB1 = fma(pB1, w2, CB5);
3354 pB0 = fma(pB0, w2, CB4);
3355 pB1 = fma(pB1, w2, CB3);
3356 pB0 = fma(pB0, w2, CB2);
3357 pB1 = fma(pB1, w2, CB1);
3358 pB0 = fma(pB0, w2, CB0);
3359 pB0 = fma(pB1, w, pB0);
3361 pC0 = fma(CC10, t2, CC8);
3362 pC1 = fma(CC9, t2, CC7);
3363 pC0 = fma(pC0, t2, CC6);
3364 pC1 = fma(pC1, t2, CC5);
3365 pC0 = fma(pC0, t2, CC4);
3366 pC1 = fma(pC1, t2, CC3);
3367 pC0 = fma(pC0, t2, CC2);
3368 pC1 = fma(pC1, t2, CC1);
3370 pC0 = fma(pC0, t2, CC0);
3371 pC0 = fma(pC1, t, pC0);
3372 pC0 = pC0 * t;
3374 // Select pB0 or pC0 for erfc()
3375 mask = (two < y);
3376 res_erfc = blend(pB0, pC0, mask);
3377 res_erfc = res_erfc * expmx2;
3379 // erfc(x<0) = 2-erfc(|x|)
3380 mask = (x < setZero());
3381 res_erfc = blend(res_erfc, two - res_erfc, mask);
3383 // Select erf() or erfc()
3384 mask = (y < SimdDouble(0.75));
3385 res = blend(one - res_erfc, res_erf, mask);
3387 return res;
3390 /*! \brief SIMD erfc(x). Double precision SIMD data, single accuracy.
3392 * \param x The value to calculate erfc(x) for.
3393 * \result erfc(x)
3395 * This routine achieves singleprecision (bar the last bit) over most of the
3396 * input range, but for large arguments where the result is getting close
3397 * to the minimum representable numbers we accept slightly larger errors
3398 * (think results that are in the ballpark of 10^-30) since that is not
3399 * relevant for MD.
3401 static inline SimdDouble gmx_simdcall
3402 erfcSingleAccuracy(SimdDouble x)
3404 // Coefficients for minimax approximation of erf(x)=x*P(x^2) in range [-1,1]
3405 const SimdDouble CA6(7.853861353153693e-5);
3406 const SimdDouble CA5(-8.010193625184903e-4);
3407 const SimdDouble CA4(5.188327685732524e-3);
3408 const SimdDouble CA3(-2.685381193529856e-2);
3409 const SimdDouble CA2(1.128358514861418e-1);
3410 const SimdDouble CA1(-3.761262582423300e-1);
3411 const SimdDouble CA0(1.128379165726710);
3412 // Coefficients for minimax approximation of erfc(x)=Exp(-x^2)*P((1/(x-1))^2) in range [0.67,2]
3413 const SimdDouble CB9(-0.0018629930017603923);
3414 const SimdDouble CB8(0.003909821287598495);
3415 const SimdDouble CB7(-0.0052094582210355615);
3416 const SimdDouble CB6(0.005685614362160572);
3417 const SimdDouble CB5(-0.0025367682853477272);
3418 const SimdDouble CB4(-0.010199799682318782);
3419 const SimdDouble CB3(0.04369575504816542);
3420 const SimdDouble CB2(-0.11884063474674492);
3421 const SimdDouble CB1(0.2732120154030589);
3422 const SimdDouble CB0(0.42758357702025784);
3423 // Coefficients for minimax approximation of erfc(x)=Exp(-x^2)*(1/x)*P((1/x)^2) in range [2,9.19]
3424 const SimdDouble CC10(-0.0445555913112064);
3425 const SimdDouble CC9(0.21376355144663348);
3426 const SimdDouble CC8(-0.3473187200259257);
3427 const SimdDouble CC7(0.016690861551248114);
3428 const SimdDouble CC6(0.7560973182491192);
3429 const SimdDouble CC5(-1.2137903600145787);
3430 const SimdDouble CC4(0.8411872321232948);
3431 const SimdDouble CC3(-0.08670413896296343);
3432 const SimdDouble CC2(-0.27124782687240334);
3433 const SimdDouble CC1(-0.0007502488047806069);
3434 const SimdDouble CC0(0.5642114853803148);
3435 const SimdDouble one(1.0);
3436 const SimdDouble two(2.0);
3438 SimdDouble x2, x4, y;
3439 SimdDouble t, t2, w, w2;
3440 SimdDouble pA0, pA1, pB0, pB1, pC0, pC1;
3441 SimdDouble expmx2;
3442 SimdDouble res_erf, res_erfc, res;
3443 SimdDBool mask, msk_erf;
3445 // Calculate erf()
3446 x2 = x * x;
3447 x4 = x2 * x2;
3449 pA0 = fma(CA6, x4, CA4);
3450 pA1 = fma(CA5, x4, CA3);
3451 pA0 = fma(pA0, x4, CA2);
3452 pA1 = fma(pA1, x4, CA1);
3453 pA1 = pA1 * x2;
3454 pA0 = fma(pA0, x4, pA1);
3455 // Constant term must come last for precision reasons
3456 pA0 = pA0 + CA0;
3458 res_erf = x * pA0;
3460 // Calculate erfc
3461 y = abs(x);
3462 msk_erf = (SimdDouble(0.75) <= y);
3463 t = maskzInvSingleAccuracy(y, msk_erf);
3464 w = t - one;
3465 t2 = t * t;
3466 w2 = w * w;
3468 expmx2 = expSingleAccuracy( -y*y );
3470 pB1 = fma(CB9, w2, CB7);
3471 pB0 = fma(CB8, w2, CB6);
3472 pB1 = fma(pB1, w2, CB5);
3473 pB0 = fma(pB0, w2, CB4);
3474 pB1 = fma(pB1, w2, CB3);
3475 pB0 = fma(pB0, w2, CB2);
3476 pB1 = fma(pB1, w2, CB1);
3477 pB0 = fma(pB0, w2, CB0);
3478 pB0 = fma(pB1, w, pB0);
3480 pC0 = fma(CC10, t2, CC8);
3481 pC1 = fma(CC9, t2, CC7);
3482 pC0 = fma(pC0, t2, CC6);
3483 pC1 = fma(pC1, t2, CC5);
3484 pC0 = fma(pC0, t2, CC4);
3485 pC1 = fma(pC1, t2, CC3);
3486 pC0 = fma(pC0, t2, CC2);
3487 pC1 = fma(pC1, t2, CC1);
3489 pC0 = fma(pC0, t2, CC0);
3490 pC0 = fma(pC1, t, pC0);
3491 pC0 = pC0 * t;
3493 // Select pB0 or pC0 for erfc()
3494 mask = (two < y);
3495 res_erfc = blend(pB0, pC0, mask);
3496 res_erfc = res_erfc * expmx2;
3498 // erfc(x<0) = 2-erfc(|x|)
3499 mask = (x < setZero());
3500 res_erfc = blend(res_erfc, two - res_erfc, mask);
3502 // Select erf() or erfc()
3503 mask = (y < SimdDouble(0.75));
3504 res = blend(res_erfc, one - res_erf, mask);
3506 return res;
3509 /*! \brief SIMD sin \& cos. Double precision SIMD data, single accuracy.
3511 * \param x The argument to evaluate sin/cos for
3512 * \param[out] sinval Sin(x)
3513 * \param[out] cosval Cos(x)
3515 static inline void gmx_simdcall
3516 sinCosSingleAccuracy(SimdDouble x, SimdDouble *sinval, SimdDouble *cosval)
3518 // Constants to subtract Pi/4*x from y while minimizing precision loss
3519 const SimdDouble argred0(2*0.78539816290140151978);
3520 const SimdDouble argred1(2*4.9604678871439933374e-10);
3521 const SimdDouble argred2(2*1.1258708853173288931e-18);
3522 const SimdDouble two_over_pi(2.0/M_PI);
3523 const SimdDouble const_sin2(-1.9515295891e-4);
3524 const SimdDouble const_sin1( 8.3321608736e-3);
3525 const SimdDouble const_sin0(-1.6666654611e-1);
3526 const SimdDouble const_cos2( 2.443315711809948e-5);
3527 const SimdDouble const_cos1(-1.388731625493765e-3);
3528 const SimdDouble const_cos0( 4.166664568298827e-2);
3530 const SimdDouble half(0.5);
3531 const SimdDouble one(1.0);
3532 SimdDouble ssign, csign;
3533 SimdDouble x2, y, z, psin, pcos, sss, ccc;
3534 SimdDBool mask;
3536 #if GMX_SIMD_HAVE_DINT32_ARITHMETICS && GMX_SIMD_HAVE_LOGICAL
3537 const SimdDInt32 ione(1);
3538 const SimdDInt32 itwo(2);
3539 SimdDInt32 iy;
3541 z = x * two_over_pi;
3542 iy = cvtR2I(z);
3543 y = round(z);
3545 mask = cvtIB2B((iy & ione) == setZero());
3546 ssign = selectByMask(SimdDouble(GMX_DOUBLE_NEGZERO), cvtIB2B((iy & itwo) == itwo));
3547 csign = selectByMask(SimdDouble(GMX_DOUBLE_NEGZERO), cvtIB2B(((iy + ione) & itwo) == itwo));
3548 #else
3549 const SimdDouble quarter(0.25);
3550 const SimdDouble minusquarter(-0.25);
3551 SimdDouble q;
3552 SimdDBool m1, m2, m3;
3554 /* The most obvious way to find the arguments quadrant in the unit circle
3555 * to calculate the sign is to use integer arithmetic, but that is not
3556 * present in all SIMD implementations. As an alternative, we have devised a
3557 * pure floating-point algorithm that uses truncation for argument reduction
3558 * so that we get a new value 0<=q<1 over the unit circle, and then
3559 * do floating-point comparisons with fractions. This is likely to be
3560 * slightly slower (~10%) due to the longer latencies of floating-point, so
3561 * we only use it when integer SIMD arithmetic is not present.
3563 ssign = x;
3564 x = abs(x);
3565 // It is critical that half-way cases are rounded down
3566 z = fma(x, two_over_pi, half);
3567 y = trunc(z);
3568 q = z * quarter;
3569 q = q - trunc(q);
3570 /* z now starts at 0.0 for x=-pi/4 (although neg. values cannot occur), and
3571 * then increased by 1.0 as x increases by 2*Pi, when it resets to 0.0.
3572 * This removes the 2*Pi periodicity without using any integer arithmetic.
3573 * First check if y had the value 2 or 3, set csign if true.
3575 q = q - half;
3576 /* If we have logical operations we can work directly on the signbit, which
3577 * saves instructions. Otherwise we need to represent signs as +1.0/-1.0.
3578 * Thus, if you are altering defines to debug alternative code paths, the
3579 * two GMX_SIMD_HAVE_LOGICAL sections in this routine must either both be
3580 * active or inactive - you will get errors if only one is used.
3582 # if GMX_SIMD_HAVE_LOGICAL
3583 ssign = ssign & SimdDouble(GMX_DOUBLE_NEGZERO);
3584 csign = andNot(q, SimdDouble(GMX_DOUBLE_NEGZERO));
3585 ssign = ssign ^ csign;
3586 # else
3587 ssign = copysign(SimdDouble(1.0), ssign);
3588 csign = copysign(SimdDouble(1.0), q);
3589 csign = -csign;
3590 ssign = ssign * csign; // swap ssign if csign was set.
3591 # endif
3592 // Check if y had value 1 or 3 (remember we subtracted 0.5 from q)
3593 m1 = (q < minusquarter);
3594 m2 = (setZero() <= q);
3595 m3 = (q < quarter);
3596 m2 = m2 && m3;
3597 mask = m1 || m2;
3598 // where mask is FALSE, swap sign.
3599 csign = csign * blend(SimdDouble(-1.0), one, mask);
3600 #endif
3601 x = fnma(y, argred0, x);
3602 x = fnma(y, argred1, x);
3603 x = fnma(y, argred2, x);
3604 x2 = x * x;
3606 psin = fma(const_sin2, x2, const_sin1);
3607 psin = fma(psin, x2, const_sin0);
3608 psin = fma(psin, x * x2, x);
3609 pcos = fma(const_cos2, x2, const_cos1);
3610 pcos = fma(pcos, x2, const_cos0);
3611 pcos = fms(pcos, x2, half);
3612 pcos = fma(pcos, x2, one);
3614 sss = blend(pcos, psin, mask);
3615 ccc = blend(psin, pcos, mask);
3616 // See comment for GMX_SIMD_HAVE_LOGICAL section above.
3617 #if GMX_SIMD_HAVE_LOGICAL
3618 *sinval = sss ^ ssign;
3619 *cosval = ccc ^ csign;
3620 #else
3621 *sinval = sss * ssign;
3622 *cosval = ccc * csign;
3623 #endif
3626 /*! \brief SIMD sin(x). Double precision SIMD data, single accuracy.
3628 * \param x The argument to evaluate sin for
3629 * \result Sin(x)
3631 * \attention Do NOT call both sin & cos if you need both results, since each of them
3632 * will then call \ref sincos and waste a factor 2 in performance.
3634 static inline SimdDouble gmx_simdcall
3635 sinSingleAccuracy(SimdDouble x)
3637 SimdDouble s, c;
3638 sinCosSingleAccuracy(x, &s, &c);
3639 return s;
3642 /*! \brief SIMD cos(x). Double precision SIMD data, single accuracy.
3644 * \param x The argument to evaluate cos for
3645 * \result Cos(x)
3647 * \attention Do NOT call both sin & cos if you need both results, since each of them
3648 * will then call \ref sincos and waste a factor 2 in performance.
3650 static inline SimdDouble gmx_simdcall
3651 cosSingleAccuracy(SimdDouble x)
3653 SimdDouble s, c;
3654 sinCosSingleAccuracy(x, &s, &c);
3655 return c;
3658 /*! \brief SIMD tan(x). Double precision SIMD data, single accuracy.
3660 * \param x The argument to evaluate tan for
3661 * \result Tan(x)
3663 static inline SimdDouble gmx_simdcall
3664 tanSingleAccuracy(SimdDouble x)
3666 const SimdDouble argred0(2*0.78539816290140151978);
3667 const SimdDouble argred1(2*4.9604678871439933374e-10);
3668 const SimdDouble argred2(2*1.1258708853173288931e-18);
3669 const SimdDouble two_over_pi(2.0/M_PI);
3670 const SimdDouble CT6(0.009498288995810566122993911);
3671 const SimdDouble CT5(0.002895755790837379295226923);
3672 const SimdDouble CT4(0.02460087336161924491836265);
3673 const SimdDouble CT3(0.05334912882656359828045988);
3674 const SimdDouble CT2(0.1333989091464957704418495);
3675 const SimdDouble CT1(0.3333307599244198227797507);
3677 SimdDouble x2, p, y, z;
3678 SimdDBool mask;
3680 #if GMX_SIMD_HAVE_DINT32_ARITHMETICS && GMX_SIMD_HAVE_LOGICAL
3681 SimdDInt32 iy;
3682 SimdDInt32 ione(1);
3684 z = x * two_over_pi;
3685 iy = cvtR2I(z);
3686 y = round(z);
3687 mask = cvtIB2B((iy & ione) == ione);
3689 x = fnma(y, argred0, x);
3690 x = fnma(y, argred1, x);
3691 x = fnma(y, argred2, x);
3692 x = selectByMask(SimdDouble(GMX_DOUBLE_NEGZERO), mask) ^ x;
3693 #else
3694 const SimdDouble quarter(0.25);
3695 const SimdDouble half(0.5);
3696 const SimdDouble threequarter(0.75);
3697 SimdDouble w, q;
3698 SimdDBool m1, m2, m3;
3700 w = abs(x);
3701 z = fma(w, two_over_pi, half);
3702 y = trunc(z);
3703 q = z * quarter;
3704 q = q - trunc(q);
3705 m1 = (quarter <= q);
3706 m2 = (q < half);
3707 m3 = (threequarter <= q);
3708 m1 = m1 && m2;
3709 mask = m1 || m3;
3710 w = fnma(y, argred0, w);
3711 w = fnma(y, argred1, w);
3712 w = fnma(y, argred2, w);
3714 w = blend(w, -w, mask);
3715 x = w * copysign( SimdDouble(1.0), x );
3716 #endif
3717 x2 = x * x;
3718 p = fma(CT6, x2, CT5);
3719 p = fma(p, x2, CT4);
3720 p = fma(p, x2, CT3);
3721 p = fma(p, x2, CT2);
3722 p = fma(p, x2, CT1);
3723 p = fma(x2, p * x, x);
3725 p = blend( p, maskzInvSingleAccuracy(p, mask), mask);
3726 return p;
3729 /*! \brief SIMD asin(x). Double precision SIMD data, single accuracy.
3731 * \param x The argument to evaluate asin for
3732 * \result Asin(x)
3734 static inline SimdDouble gmx_simdcall
3735 asinSingleAccuracy(SimdDouble x)
3737 const SimdDouble limitlow(1e-4);
3738 const SimdDouble half(0.5);
3739 const SimdDouble one(1.0);
3740 const SimdDouble halfpi(M_PI/2.0);
3741 const SimdDouble CC5(4.2163199048E-2);
3742 const SimdDouble CC4(2.4181311049E-2);
3743 const SimdDouble CC3(4.5470025998E-2);
3744 const SimdDouble CC2(7.4953002686E-2);
3745 const SimdDouble CC1(1.6666752422E-1);
3746 SimdDouble xabs;
3747 SimdDouble z, z1, z2, q, q1, q2;
3748 SimdDouble pA, pB;
3749 SimdDBool mask, mask2;
3751 xabs = abs(x);
3752 mask = (half < xabs);
3753 z1 = half * (one - xabs);
3754 mask2 = (xabs < one);
3755 q1 = z1 * maskzInvsqrtSingleAccuracy(z1, mask2);
3756 q2 = xabs;
3757 z2 = q2 * q2;
3758 z = blend(z2, z1, mask);
3759 q = blend(q2, q1, mask);
3761 z2 = z * z;
3762 pA = fma(CC5, z2, CC3);
3763 pB = fma(CC4, z2, CC2);
3764 pA = fma(pA, z2, CC1);
3765 pA = pA * z;
3766 z = fma(pB, z2, pA);
3767 z = fma(z, q, q);
3768 q2 = halfpi - z;
3769 q2 = q2 - z;
3770 z = blend(z, q2, mask);
3772 mask = (limitlow < xabs);
3773 z = blend( xabs, z, mask );
3774 z = copysign(z, x);
3776 return z;
3779 /*! \brief SIMD acos(x). Double precision SIMD data, single accuracy.
3781 * \param x The argument to evaluate acos for
3782 * \result Acos(x)
3784 static inline SimdDouble gmx_simdcall
3785 acosSingleAccuracy(SimdDouble x)
3787 const SimdDouble one(1.0);
3788 const SimdDouble half(0.5);
3789 const SimdDouble pi(M_PI);
3790 const SimdDouble halfpi(M_PI/2.0);
3791 SimdDouble xabs;
3792 SimdDouble z, z1, z2, z3;
3793 SimdDBool mask1, mask2, mask3;
3795 xabs = abs(x);
3796 mask1 = (half < xabs);
3797 mask2 = (setZero() < x);
3799 z = half * (one - xabs);
3800 mask3 = (xabs < one);
3801 z = z * maskzInvsqrtSingleAccuracy(z, mask3);
3802 z = blend(x, z, mask1);
3803 z = asinSingleAccuracy(z);
3805 z2 = z + z;
3806 z1 = pi - z2;
3807 z3 = halfpi - z;
3808 z = blend(z1, z2, mask2);
3809 z = blend(z3, z, mask1);
3811 return z;
3814 /*! \brief SIMD asin(x). Double precision SIMD data, single accuracy.
3816 * \param x The argument to evaluate atan for
3817 * \result Atan(x), same argument/value range as standard math library.
3819 static inline SimdDouble gmx_simdcall
3820 atanSingleAccuracy(SimdDouble x)
3822 const SimdDouble halfpi(M_PI/2);
3823 const SimdDouble CA17(0.002823638962581753730774);
3824 const SimdDouble CA15(-0.01595690287649631500244);
3825 const SimdDouble CA13(0.04250498861074447631836);
3826 const SimdDouble CA11(-0.07489009201526641845703);
3827 const SimdDouble CA9(0.1063479334115982055664);
3828 const SimdDouble CA7(-0.1420273631811141967773);
3829 const SimdDouble CA5(0.1999269574880599975585);
3830 const SimdDouble CA3(-0.3333310186862945556640);
3831 SimdDouble x2, x3, x4, pA, pB;
3832 SimdDBool mask, mask2;
3834 mask = (x < setZero());
3835 x = abs(x);
3836 mask2 = (SimdDouble(1.0) < x);
3837 x = blend(x, maskzInvSingleAccuracy(x, mask2), mask2);
3839 x2 = x * x;
3840 x3 = x2 * x;
3841 x4 = x2 * x2;
3842 pA = fma(CA17, x4, CA13);
3843 pB = fma(CA15, x4, CA11);
3844 pA = fma(pA, x4, CA9);
3845 pB = fma(pB, x4, CA7);
3846 pA = fma(pA, x4, CA5);
3847 pB = fma(pB, x4, CA3);
3848 pA = fma(pA, x2, pB);
3849 pA = fma(pA, x3, x);
3851 pA = blend(pA, halfpi - pA, mask2);
3852 pA = blend(pA, -pA, mask);
3854 return pA;
3857 /*! \brief SIMD atan2(y,x). Double precision SIMD data, single accuracy.
3859 * \param y Y component of vector, any quartile
3860 * \param x X component of vector, any quartile
3861 * \result Atan(y,x), same argument/value range as standard math library.
3863 * \note This routine should provide correct results for all finite
3864 * non-zero or positive-zero arguments. However, negative zero arguments will
3865 * be treated as positive zero, which means the return value will deviate from
3866 * the standard math library atan2(y,x) for those cases. That should not be
3867 * of any concern in Gromacs, and in particular it will not affect calculations
3868 * of angles from vectors.
3870 static inline SimdDouble gmx_simdcall
3871 atan2SingleAccuracy(SimdDouble y, SimdDouble x)
3873 const SimdDouble pi(M_PI);
3874 const SimdDouble halfpi(M_PI/2.0);
3875 SimdDouble xinv, p, aoffset;
3876 SimdDBool mask_xnz, mask_ynz, mask_xlt0, mask_ylt0;
3878 mask_xnz = x != setZero();
3879 mask_ynz = y != setZero();
3880 mask_xlt0 = (x < setZero());
3881 mask_ylt0 = (y < setZero());
3883 aoffset = selectByNotMask(halfpi, mask_xnz);
3884 aoffset = selectByMask(aoffset, mask_ynz);
3886 aoffset = blend(aoffset, pi, mask_xlt0);
3887 aoffset = blend(aoffset, -aoffset, mask_ylt0);
3889 xinv = maskzInvSingleAccuracy(x, mask_xnz);
3890 p = y * xinv;
3891 p = atanSingleAccuracy(p);
3892 p = p + aoffset;
3894 return p;
3897 /*! \brief Analytical PME force correction, double SIMD data, single accuracy.
3899 * \param z2 \f$(r \beta)^2\f$ - see below for details.
3900 * \result Correction factor to coulomb force - see below for details.
3902 * This routine is meant to enable analytical evaluation of the
3903 * direct-space PME electrostatic force to avoid tables.
3905 * The direct-space potential should be \f$ \mbox{erfc}(\beta r)/r\f$, but there
3906 * are some problems evaluating that:
3908 * First, the error function is difficult (read: expensive) to
3909 * approxmiate accurately for intermediate to large arguments, and
3910 * this happens already in ranges of \f$(\beta r)\f$ that occur in simulations.
3911 * Second, we now try to avoid calculating potentials in Gromacs but
3912 * use forces directly.
3914 * We can simply things slight by noting that the PME part is really
3915 * a correction to the normal Coulomb force since \f$\mbox{erfc}(z)=1-\mbox{erf}(z)\f$, i.e.
3916 * \f[
3917 * V = \frac{1}{r} - \frac{\mbox{erf}(\beta r)}{r}
3918 * \f]
3919 * The first term we already have from the inverse square root, so
3920 * that we can leave out of this routine.
3922 * For pme tolerances of 1e-3 to 1e-8 and cutoffs of 0.5nm to 1.8nm,
3923 * the argument \f$beta r\f$ will be in the range 0.15 to ~4. Use your
3924 * favorite plotting program to realize how well-behaved \f$\frac{\mbox{erf}(z)}{z}\f$ is
3925 * in this range!
3927 * We approximate \f$f(z)=\mbox{erf}(z)/z\f$ with a rational minimax polynomial.
3928 * However, it turns out it is more efficient to approximate \f$f(z)/z\f$ and
3929 * then only use even powers. This is another minor optimization, since
3930 * we actually \a want \f$f(z)/z\f$, because it is going to be multiplied by
3931 * the vector between the two atoms to get the vectorial force. The
3932 * fastest flops are the ones we can avoid calculating!
3934 * So, here's how it should be used:
3936 * 1. Calculate \f$r^2\f$.
3937 * 2. Multiply by \f$\beta^2\f$, so you get \f$z^2=(\beta r)^2\f$.
3938 * 3. Evaluate this routine with \f$z^2\f$ as the argument.
3939 * 4. The return value is the expression:
3941 * \f[
3942 * \frac{2 \exp{-z^2}}{\sqrt{\pi} z^2}-\frac{\mbox{erf}(z)}{z^3}
3943 * \f]
3945 * 5. Multiply the entire expression by \f$\beta^3\f$. This will get you
3947 * \f[
3948 * \frac{2 \beta^3 \exp(-z^2)}{\sqrt{\pi} z^2} - \frac{\beta^3 \mbox{erf}(z)}{z^3}
3949 * \f]
3951 * or, switching back to \f$r\f$ (since \f$z=r \beta\f$):
3953 * \f[
3954 * \frac{2 \beta \exp(-r^2 \beta^2)}{\sqrt{\pi} r^2} - \frac{\mbox{erf}(r \beta)}{r^3}
3955 * \f]
3957 * With a bit of math exercise you should be able to confirm that
3958 * this is exactly
3960 * \f[
3961 * \frac{\frac{d}{dr}\left( \frac{\mbox{erf}(\beta r)}{r} \right)}{r}
3962 * \f]
3964 * 6. Add the result to \f$r^{-3}\f$, multiply by the product of the charges,
3965 * and you have your force (divided by \f$r\f$). A final multiplication
3966 * with the vector connecting the two particles and you have your
3967 * vectorial force to add to the particles.
3969 * This approximation achieves an accuracy slightly lower than 1e-6; when
3970 * added to \f$1/r\f$ the error will be insignificant.
3973 static inline SimdDouble gmx_simdcall
3974 pmeForceCorrectionSingleAccuracy(SimdDouble z2)
3976 const SimdDouble FN6(-1.7357322914161492954e-8);
3977 const SimdDouble FN5(1.4703624142580877519e-6);
3978 const SimdDouble FN4(-0.000053401640219807709149);
3979 const SimdDouble FN3(0.0010054721316683106153);
3980 const SimdDouble FN2(-0.019278317264888380590);
3981 const SimdDouble FN1(0.069670166153766424023);
3982 const SimdDouble FN0(-0.75225204789749321333);
3984 const SimdDouble FD4(0.0011193462567257629232);
3985 const SimdDouble FD3(0.014866955030185295499);
3986 const SimdDouble FD2(0.11583842382862377919);
3987 const SimdDouble FD1(0.50736591960530292870);
3988 const SimdDouble FD0(1.0);
3990 SimdDouble z4;
3991 SimdDouble polyFN0, polyFN1, polyFD0, polyFD1;
3993 z4 = z2 * z2;
3995 polyFD0 = fma(FD4, z4, FD2);
3996 polyFD1 = fma(FD3, z4, FD1);
3997 polyFD0 = fma(polyFD0, z4, FD0);
3998 polyFD0 = fma(polyFD1, z2, polyFD0);
4000 polyFD0 = invSingleAccuracy(polyFD0);
4002 polyFN0 = fma(FN6, z4, FN4);
4003 polyFN1 = fma(FN5, z4, FN3);
4004 polyFN0 = fma(polyFN0, z4, FN2);
4005 polyFN1 = fma(polyFN1, z4, FN1);
4006 polyFN0 = fma(polyFN0, z4, FN0);
4007 polyFN0 = fma(polyFN1, z2, polyFN0);
4009 return polyFN0 * polyFD0;
4014 /*! \brief Analytical PME potential correction, double SIMD data, single accuracy.
4016 * \param z2 \f$(r \beta)^2\f$ - see below for details.
4017 * \result Correction factor to coulomb potential - see below for details.
4019 * This routine calculates \f$\mbox{erf}(z)/z\f$, although you should provide \f$z^2\f$
4020 * as the input argument.
4022 * Here's how it should be used:
4024 * 1. Calculate \f$r^2\f$.
4025 * 2. Multiply by \f$\beta^2\f$, so you get \f$z^2=\beta^2*r^2\f$.
4026 * 3. Evaluate this routine with z^2 as the argument.
4027 * 4. The return value is the expression:
4029 * \f[
4030 * \frac{\mbox{erf}(z)}{z}
4031 * \f]
4033 * 5. Multiply the entire expression by beta and switching back to \f$r\f$ (since \f$z=r \beta\f$):
4035 * \f[
4036 * \frac{\mbox{erf}(r \beta)}{r}
4037 * \f]
4039 * 6. Subtract the result from \f$1/r\f$, multiply by the product of the charges,
4040 * and you have your potential.
4042 * This approximation achieves an accuracy slightly lower than 1e-6; when
4043 * added to \f$1/r\f$ the error will be insignificant.
4045 static inline SimdDouble gmx_simdcall
4046 pmePotentialCorrectionSingleAccuracy(SimdDouble z2)
4048 const SimdDouble VN6(1.9296833005951166339e-8);
4049 const SimdDouble VN5(-1.4213390571557850962e-6);
4050 const SimdDouble VN4(0.000041603292906656984871);
4051 const SimdDouble VN3(-0.00013134036773265025626);
4052 const SimdDouble VN2(0.038657983986041781264);
4053 const SimdDouble VN1(0.11285044772717598220);
4054 const SimdDouble VN0(1.1283802385263030286);
4056 const SimdDouble VD3(0.0066752224023576045451);
4057 const SimdDouble VD2(0.078647795836373922256);
4058 const SimdDouble VD1(0.43336185284710920150);
4059 const SimdDouble VD0(1.0);
4061 SimdDouble z4;
4062 SimdDouble polyVN0, polyVN1, polyVD0, polyVD1;
4064 z4 = z2 * z2;
4066 polyVD1 = fma(VD3, z4, VD1);
4067 polyVD0 = fma(VD2, z4, VD0);
4068 polyVD0 = fma(polyVD1, z2, polyVD0);
4070 polyVD0 = invSingleAccuracy(polyVD0);
4072 polyVN0 = fma(VN6, z4, VN4);
4073 polyVN1 = fma(VN5, z4, VN3);
4074 polyVN0 = fma(polyVN0, z4, VN2);
4075 polyVN1 = fma(polyVN1, z4, VN1);
4076 polyVN0 = fma(polyVN0, z4, VN0);
4077 polyVN0 = fma(polyVN1, z2, polyVN0);
4079 return polyVN0 * polyVD0;
4082 #endif
4085 /*! \name SIMD4 math functions
4087 * \note Only a subset of the math functions are implemented for SIMD4.
4088 * \{
4092 #if GMX_SIMD4_HAVE_FLOAT
4094 /*************************************************************************
4095 * SINGLE PRECISION SIMD4 MATH FUNCTIONS - JUST A SMALL SUBSET SUPPORTED *
4096 *************************************************************************/
4098 /*! \brief Perform one Newton-Raphson iteration to improve 1/sqrt(x) for SIMD4 float.
4100 * This is a low-level routine that should only be used by SIMD math routine
4101 * that evaluates the inverse square root.
4103 * \param lu Approximation of 1/sqrt(x), typically obtained from lookup.
4104 * \param x The reference (starting) value x for which we want 1/sqrt(x).
4105 * \return An improved approximation with roughly twice as many bits of accuracy.
4107 static inline Simd4Float gmx_simdcall
4108 rsqrtIter(Simd4Float lu, Simd4Float x)
4110 Simd4Float tmp1 = x*lu;
4111 Simd4Float tmp2 = Simd4Float(-0.5f)*lu;
4112 tmp1 = fma(tmp1, lu, Simd4Float(-3.0f));
4113 return tmp1*tmp2;
4116 /*! \brief Calculate 1/sqrt(x) for SIMD4 float.
4118 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
4119 * GMX_FLOAT_MAX, i.e. within the range of single precision.
4120 * For the single precision implementation this is obviously always
4121 * true for positive values, but for double precision it adds an
4122 * extra restriction since the first lookup step might have to be
4123 * performed in single precision on some architectures. Note that the
4124 * responsibility for checking falls on you - this routine does not
4125 * check arguments.
4126 * \return 1/sqrt(x). Result is undefined if your argument was invalid.
4128 static inline Simd4Float gmx_simdcall
4129 invsqrt(Simd4Float x)
4131 Simd4Float lu = rsqrt(x);
4132 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
4133 lu = rsqrtIter(lu, x);
4134 #endif
4135 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
4136 lu = rsqrtIter(lu, x);
4137 #endif
4138 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
4139 lu = rsqrtIter(lu, x);
4140 #endif
4141 return lu;
4145 #endif // GMX_SIMD4_HAVE_FLOAT
4149 #if GMX_SIMD4_HAVE_DOUBLE
4150 /*************************************************************************
4151 * DOUBLE PRECISION SIMD4 MATH FUNCTIONS - JUST A SMALL SUBSET SUPPORTED *
4152 *************************************************************************/
4154 /*! \brief Perform one Newton-Raphson iteration to improve 1/sqrt(x) for SIMD4 double.
4156 * This is a low-level routine that should only be used by SIMD math routine
4157 * that evaluates the inverse square root.
4159 * \param lu Approximation of 1/sqrt(x), typically obtained from lookup.
4160 * \param x The reference (starting) value x for which we want 1/sqrt(x).
4161 * \return An improved approximation with roughly twice as many bits of accuracy.
4163 static inline Simd4Double gmx_simdcall
4164 rsqrtIter(Simd4Double lu, Simd4Double x)
4166 Simd4Double tmp1 = x*lu;
4167 Simd4Double tmp2 = Simd4Double(-0.5f)*lu;
4168 tmp1 = fma(tmp1, lu, Simd4Double(-3.0f));
4169 return tmp1*tmp2;
4172 /*! \brief Calculate 1/sqrt(x) for SIMD4 double.
4174 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
4175 * GMX_FLOAT_MAX, i.e. within the range of single precision.
4176 * For the single precision implementation this is obviously always
4177 * true for positive values, but for double precision it adds an
4178 * extra restriction since the first lookup step might have to be
4179 * performed in single precision on some architectures. Note that the
4180 * responsibility for checking falls on you - this routine does not
4181 * check arguments.
4182 * \return 1/sqrt(x). Result is undefined if your argument was invalid.
4184 static inline Simd4Double gmx_simdcall
4185 invsqrt(Simd4Double x)
4187 Simd4Double lu = rsqrt(x);
4188 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_DOUBLE)
4189 lu = rsqrtIter(lu, x);
4190 #endif
4191 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
4192 lu = rsqrtIter(lu, x);
4193 #endif
4194 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
4195 lu = rsqrtIter(lu, x);
4196 #endif
4197 #if (GMX_SIMD_RSQRT_BITS*8 < GMX_SIMD_ACCURACY_BITS_DOUBLE)
4198 lu = rsqrtIter(lu, x);
4199 #endif
4200 return lu;
4204 /**********************************************************************
4205 * SIMD4 MATH FUNCTIONS WITH DOUBLE PREC. DATA, SINGLE PREC. ACCURACY *
4206 **********************************************************************/
4208 /*! \brief Calculate 1/sqrt(x) for SIMD4 double, but in single accuracy.
4210 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
4211 * GMX_FLOAT_MAX, i.e. within the range of single precision.
4212 * For the single precision implementation this is obviously always
4213 * true for positive values, but for double precision it adds an
4214 * extra restriction since the first lookup step might have to be
4215 * performed in single precision on some architectures. Note that the
4216 * responsibility for checking falls on you - this routine does not
4217 * check arguments.
4218 * \return 1/sqrt(x). Result is undefined if your argument was invalid.
4220 static inline Simd4Double gmx_simdcall
4221 invsqrtSingleAccuracy(Simd4Double x)
4223 Simd4Double lu = rsqrt(x);
4224 #if (GMX_SIMD_RSQRT_BITS < GMX_SIMD_ACCURACY_BITS_SINGLE)
4225 lu = rsqrtIter(lu, x);
4226 #endif
4227 #if (GMX_SIMD_RSQRT_BITS*2 < GMX_SIMD_ACCURACY_BITS_SINGLE)
4228 lu = rsqrtIter(lu, x);
4229 #endif
4230 #if (GMX_SIMD_RSQRT_BITS*4 < GMX_SIMD_ACCURACY_BITS_SINGLE)
4231 lu = rsqrtIter(lu, x);
4232 #endif
4233 return lu;
4238 #endif // GMX_SIMD4_HAVE_DOUBLE
4240 /*! \} */
4242 #if GMX_SIMD_HAVE_FLOAT
4243 /*! \brief Calculate 1/sqrt(x) for SIMD float, only targeting single accuracy.
4245 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
4246 * GMX_FLOAT_MAX, i.e. within the range of single precision.
4247 * For the single precision implementation this is obviously always
4248 * true for positive values, but for double precision it adds an
4249 * extra restriction since the first lookup step might have to be
4250 * performed in single precision on some architectures. Note that the
4251 * responsibility for checking falls on you - this routine does not
4252 * check arguments.
4253 * \return 1/sqrt(x). Result is undefined if your argument was invalid.
4255 static inline SimdFloat gmx_simdcall
4256 invsqrtSingleAccuracy(SimdFloat x)
4258 return invsqrt(x);
4261 /*! \brief Calculate 1/sqrt(x) for masked SIMD floats, only targeting single accuracy.
4263 * This routine only evaluates 1/sqrt(x) for elements for which mask is true.
4264 * Illegal values in the masked-out elements will not lead to
4265 * floating-point exceptions.
4267 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
4268 * GMX_FLOAT_MAX, i.e. within the range of single precision.
4269 * For the single precision implementation this is obviously always
4270 * true for positive values, but for double precision it adds an
4271 * extra restriction since the first lookup step might have to be
4272 * performed in single precision on some architectures. Note that the
4273 * responsibility for checking falls on you - this routine does not
4274 * check arguments.
4275 * \param m Mask
4276 * \return 1/sqrt(x). Result is undefined if your argument was invalid or
4277 * entry was not masked, and 0.0 for masked-out entries.
4279 static inline SimdFloat
4280 maskzInvsqrtSingleAccuracy(SimdFloat x, SimdFBool m)
4282 return maskzInvsqrt(x, m);
4285 /*! \brief Calculate 1/sqrt(x) for two SIMD floats, only targeting single accuracy.
4287 * \param x0 First set of arguments, x0 must be in single range (see below).
4288 * \param x1 Second set of arguments, x1 must be in single range (see below).
4289 * \param[out] out0 Result 1/sqrt(x0)
4290 * \param[out] out1 Result 1/sqrt(x1)
4292 * In particular for double precision we can sometimes calculate square root
4293 * pairs slightly faster by using single precision until the very last step.
4295 * \note Both arguments must be larger than GMX_FLOAT_MIN and smaller than
4296 * GMX_FLOAT_MAX, i.e. within the range of single precision.
4297 * For the single precision implementation this is obviously always
4298 * true for positive values, but for double precision it adds an
4299 * extra restriction since the first lookup step might have to be
4300 * performed in single precision on some architectures. Note that the
4301 * responsibility for checking falls on you - this routine does not
4302 * check arguments.
4304 static inline void gmx_simdcall
4305 invsqrtPairSingleAccuracy(SimdFloat x0, SimdFloat x1,
4306 SimdFloat *out0, SimdFloat *out1)
4308 return invsqrtPair(x0, x1, out0, out1);
4311 /*! \brief Calculate 1/x for SIMD float, only targeting single accuracy.
4313 * \param x Argument with magnitude larger than GMX_FLOAT_MIN and smaller than
4314 * GMX_FLOAT_MAX, i.e. within the range of single precision.
4315 * For the single precision implementation this is obviously always
4316 * true for positive values, but for double precision it adds an
4317 * extra restriction since the first lookup step might have to be
4318 * performed in single precision on some architectures. Note that the
4319 * responsibility for checking falls on you - this routine does not
4320 * check arguments.
4321 * \return 1/x. Result is undefined if your argument was invalid.
4323 static inline SimdFloat gmx_simdcall
4324 invSingleAccuracy(SimdFloat x)
4326 return inv(x);
4330 /*! \brief Calculate 1/x for masked SIMD floats, only targeting single accuracy.
4332 * \param x Argument with magnitude larger than GMX_FLOAT_MIN and smaller than
4333 * GMX_FLOAT_MAX, i.e. within the range of single precision.
4334 * For the single precision implementation this is obviously always
4335 * true for positive values, but for double precision it adds an
4336 * extra restriction since the first lookup step might have to be
4337 * performed in single precision on some architectures. Note that the
4338 * responsibility for checking falls on you - this routine does not
4339 * check arguments.
4340 * \param m Mask
4341 * \return 1/x for elements where m is true, or 0.0 for masked-out entries.
4343 static inline SimdFloat
4344 maskzInvSingleAccuracy(SimdFloat x, SimdFBool m)
4346 return maskzInv(x, m);
4349 /*! \brief Calculate sqrt(x) for SIMD float, always targeting single accuracy.
4351 * \copydetails sqrt(SimdFloat)
4353 template <MathOptimization opt = MathOptimization::Safe>
4354 static inline SimdFloat gmx_simdcall
4355 sqrtSingleAccuracy(SimdFloat x)
4357 return sqrt<opt>(x);
4360 /*! \brief SIMD float log(x), only targeting single accuracy. This is the natural logarithm.
4362 * \param x Argument, should be >0.
4363 * \result The natural logarithm of x. Undefined if argument is invalid.
4365 static inline SimdFloat gmx_simdcall
4366 logSingleAccuracy(SimdFloat x)
4368 return log(x);
4371 /*! \brief SIMD float 2^x, only targeting single accuracy.
4373 * \copydetails exp2(SimdFloat)
4375 template <MathOptimization opt = MathOptimization::Safe>
4376 static inline SimdFloat gmx_simdcall
4377 exp2SingleAccuracy(SimdFloat x)
4379 return exp2<opt>(x);
4382 /*! \brief SIMD float e^x, only targeting single accuracy.
4384 * \copydetails exp(SimdFloat)
4386 template <MathOptimization opt = MathOptimization::Safe>
4387 static inline SimdFloat gmx_simdcall
4388 expSingleAccuracy(SimdFloat x)
4390 return exp<opt>(x);
4394 /*! \brief SIMD float erf(x), only targeting single accuracy.
4396 * \param x The value to calculate erf(x) for.
4397 * \result erf(x)
4399 * This routine achieves very close to single precision, but we do not care about
4400 * the last bit or the subnormal result range.
4402 static inline SimdFloat gmx_simdcall
4403 erfSingleAccuracy(SimdFloat x)
4405 return erf(x);
4408 /*! \brief SIMD float erfc(x), only targeting single accuracy.
4410 * \param x The value to calculate erfc(x) for.
4411 * \result erfc(x)
4413 * This routine achieves singleprecision (bar the last bit) over most of the
4414 * input range, but for large arguments where the result is getting close
4415 * to the minimum representable numbers we accept slightly larger errors
4416 * (think results that are in the ballpark of 10^-30) since that is not
4417 * relevant for MD.
4419 static inline SimdFloat gmx_simdcall
4420 erfcSingleAccuracy(SimdFloat x)
4422 return erfc(x);
4425 /*! \brief SIMD float sin \& cos, only targeting single accuracy.
4427 * \param x The argument to evaluate sin/cos for
4428 * \param[out] sinval Sin(x)
4429 * \param[out] cosval Cos(x)
4431 static inline void gmx_simdcall
4432 sinCosSingleAccuracy(SimdFloat x, SimdFloat *sinval, SimdFloat *cosval)
4434 sincos(x, sinval, cosval);
4437 /*! \brief SIMD float sin(x), only targeting single accuracy.
4439 * \param x The argument to evaluate sin for
4440 * \result Sin(x)
4442 * \attention Do NOT call both sin & cos if you need both results, since each of them
4443 * will then call \ref sincos and waste a factor 2 in performance.
4445 static inline SimdFloat gmx_simdcall
4446 sinSingleAccuracy(SimdFloat x)
4448 return sin(x);
4451 /*! \brief SIMD float cos(x), only targeting single accuracy.
4453 * \param x The argument to evaluate cos for
4454 * \result Cos(x)
4456 * \attention Do NOT call both sin & cos if you need both results, since each of them
4457 * will then call \ref sincos and waste a factor 2 in performance.
4459 static inline SimdFloat gmx_simdcall
4460 cosSingleAccuracy(SimdFloat x)
4462 return cos(x);
4465 /*! \brief SIMD float tan(x), only targeting single accuracy.
4467 * \param x The argument to evaluate tan for
4468 * \result Tan(x)
4470 static inline SimdFloat gmx_simdcall
4471 tanSingleAccuracy(SimdFloat x)
4473 return tan(x);
4476 /*! \brief SIMD float asin(x), only targeting single accuracy.
4478 * \param x The argument to evaluate asin for
4479 * \result Asin(x)
4481 static inline SimdFloat gmx_simdcall
4482 asinSingleAccuracy(SimdFloat x)
4484 return asin(x);
4487 /*! \brief SIMD float acos(x), only targeting single accuracy.
4489 * \param x The argument to evaluate acos for
4490 * \result Acos(x)
4492 static inline SimdFloat gmx_simdcall
4493 acosSingleAccuracy(SimdFloat x)
4495 return acos(x);
4498 /*! \brief SIMD float atan(x), only targeting single accuracy.
4500 * \param x The argument to evaluate atan for
4501 * \result Atan(x), same argument/value range as standard math library.
4503 static inline SimdFloat gmx_simdcall
4504 atanSingleAccuracy(SimdFloat x)
4506 return atan(x);
4509 /*! \brief SIMD float atan2(y,x), only targeting single accuracy.
4511 * \param y Y component of vector, any quartile
4512 * \param x X component of vector, any quartile
4513 * \result Atan(y,x), same argument/value range as standard math library.
4515 * \note This routine should provide correct results for all finite
4516 * non-zero or positive-zero arguments. However, negative zero arguments will
4517 * be treated as positive zero, which means the return value will deviate from
4518 * the standard math library atan2(y,x) for those cases. That should not be
4519 * of any concern in Gromacs, and in particular it will not affect calculations
4520 * of angles from vectors.
4522 static inline SimdFloat gmx_simdcall
4523 atan2SingleAccuracy(SimdFloat y, SimdFloat x)
4525 return atan2(y, x);
4528 /*! \brief SIMD Analytic PME force correction, only targeting single accuracy.
4530 * \param z2 \f$(r \beta)^2\f$ - see default single precision version for details.
4531 * \result Correction factor to coulomb force.
4533 static inline SimdFloat gmx_simdcall
4534 pmeForceCorrectionSingleAccuracy(SimdFloat z2)
4536 return pmeForceCorrection(z2);
4539 /*! \brief SIMD Analytic PME potential correction, only targeting single accuracy.
4541 * \param z2 \f$(r \beta)^2\f$ - see default single precision version for details.
4542 * \result Correction factor to coulomb force.
4544 static inline SimdFloat gmx_simdcall
4545 pmePotentialCorrectionSingleAccuracy(SimdFloat z2)
4547 return pmePotentialCorrection(z2);
4549 #endif // GMX_SIMD_HAVE_FLOAT
4551 #if GMX_SIMD4_HAVE_FLOAT
4552 /*! \brief Calculate 1/sqrt(x) for SIMD4 float, only targeting single accuracy.
4554 * \param x Argument that must be larger than GMX_FLOAT_MIN and smaller than
4555 * GMX_FLOAT_MAX, i.e. within the range of single precision.
4556 * For the single precision implementation this is obviously always
4557 * true for positive values, but for double precision it adds an
4558 * extra restriction since the first lookup step might have to be
4559 * performed in single precision on some architectures. Note that the
4560 * responsibility for checking falls on you - this routine does not
4561 * check arguments.
4562 * \return 1/sqrt(x). Result is undefined if your argument was invalid.
4564 static inline Simd4Float gmx_simdcall
4565 invsqrtSingleAccuracy(Simd4Float x)
4567 return invsqrt(x);
4569 #endif // GMX_SIMD4_HAVE_FLOAT
4571 /*! \} end of addtogroup module_simd */
4572 /*! \endcond end of condition libabl */
4574 #endif // GMX_SIMD
4576 } // namespace gmx
4578 #endif // GMX_SIMD_SIMD_MATH_H