Introduce SimulatorBuilder
[gromacs.git] / src / gromacs / tables / splineutil.cpp
blobe78b198c21d5a5c6a305a6a6c03a667ab1da1179
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2016,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
36 /*! \internal \file
37 * \brief
38 * Implements internal utility functions for spline tables
40 * \author Erik Lindahl <erik.lindahl@gmail.com>
41 * \ingroup module_tables
43 #include "gmxpre.h"
45 #include "splineutil.h"
47 #include <cmath>
49 #include <algorithm>
50 #include <functional>
51 #include <utility>
52 #include <vector>
54 #include "gromacs/utility/alignedallocator.h"
55 #include "gromacs/utility/arrayref.h"
56 #include "gromacs/utility/exceptions.h"
57 #include "gromacs/utility/real.h"
58 #include "gromacs/utility/stringutil.h"
60 namespace gmx
63 namespace internal
66 void
67 throwUnlessDerivativeIsConsistentWithFunction(const std::function<double(double)> &function,
68 const std::function<double(double)> &derivative,
69 const std::pair<real, real> &range)
71 // Since the numerical derivative will evaluate extra points
72 // we shrink the interval slightly to avoid calling the function with values
73 // outside the range specified.
74 double h = std::cbrt(GMX_DOUBLE_EPS); // ideal spacing
75 std::pair<double, double> newRange(range.first + h, range.second - h);
76 const int points = 1000; // arbitrary
77 double dx = (newRange.second - newRange.first) / points;
78 bool isConsistent = true;
79 double minFail = newRange.second;
80 double maxFail = newRange.first;
82 // NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter)
83 for (double x = newRange.first; x <= newRange.second; x += dx)
85 double analyticalDerivative = derivative(x);
86 double numericalDerivative = (function(x+h)-function(x-h))/(2*h);
87 double thirdDerivative = (derivative(x+h)-2.0*derivative(x)+derivative(x-h))/(h*h);
89 // We make two types of errors in numerical calculation of the derivative:
90 // - The truncation error: eps * |f| / h
91 // - The rounding error: h * h * |f'''| / 6.0
92 double expectedErr = GMX_DOUBLE_EPS*std::abs(function(x))/h + h*h*std::abs(thirdDerivative)/6.0;
94 // To avoid triggering false errors because of compiler optimization or numerical issues
95 // in the function evalulation we allow an extra factor of 10 in the expected error
96 if (std::abs(analyticalDerivative-numericalDerivative) > 10.0*expectedErr)
98 isConsistent = false;
99 minFail = std::min(minFail, x);
100 maxFail = std::max(maxFail, x);
104 if (!isConsistent)
106 GMX_THROW(InconsistentInputError(formatString("Derivative inconsistent with analytical function in range [%f,%f]", minFail, maxFail)));
111 void
112 throwUnlessDerivativeIsConsistentWithFunction(ArrayRef<const double> function,
113 ArrayRef<const double> derivative,
114 double inputSpacing,
115 const std::pair<real, real> &range)
117 std::size_t firstIndex = static_cast<std::size_t>(range.first / inputSpacing);
118 std::size_t lastIndex = static_cast<std::size_t>(range.second / inputSpacing);
119 bool isConsistent = true;
120 std::size_t minFail = lastIndex;
121 std::size_t maxFail = firstIndex;
123 // The derivative will access one extra point before/after each point, so reduce interval
124 for (std::size_t i = firstIndex + 1; (i + 1) < lastIndex; i++)
126 double inputDerivative = derivative[i];
127 double numericalDerivative = (function[i+1] - function[i-1]) / (2.0 * inputSpacing);
128 double thirdDerivative = (derivative[i+1] - 2.0*derivative[i] + derivative[i-1])/(inputSpacing * inputSpacing);
130 // We make two types of errors in numerical calculation of the derivative:
131 // - The truncation error: eps * |f| / h
132 // - The rounding error: h * h * |f'''| / 6.0
133 double expectedErr = GMX_DOUBLE_EPS*std::abs(function[i])/inputSpacing + inputSpacing*inputSpacing*std::abs(thirdDerivative)/6.0;
135 // To avoid triggering false errors because of compiler optimization or numerical issues
136 // in the function evalulation we allow an extra factor of 10 in the expected error
137 if (std::abs(inputDerivative-numericalDerivative) > 10.0*expectedErr)
139 isConsistent = false;
140 minFail = std::min(minFail, i);
141 maxFail = std::max(maxFail, i);
144 if (!isConsistent)
146 GMX_THROW(InconsistentInputError(formatString("Derivative inconsistent with numerical vector for elements %zu-%zu", minFail+1, maxFail+1)));
151 /*! \brief Calculate absolute quotient of function and its second derivative
153 * This is a utility function used in the functions to find the smallest quotient
154 * in a range.
156 * \param[in] previousPoint Value of function at x-h.
157 * \param[in] thisPoint Value of function at x.
158 * \param[in] nextPoint Value of function at x+h.
159 * \param[in] spacing Value of h.
161 * \return The absolute value of the quotient. If either the function or second
162 * derivative is smaller than sqrt(GMX_REAL_MIN), they will be set to
163 * that value.
165 static double
166 quotientOfFunctionAndSecondDerivative(double previousPoint,
167 double thisPoint,
168 double nextPoint,
169 double spacing)
171 double lowerLimit = static_cast<double>(std::sqrt(GMX_REAL_MIN));
172 double value = std::max(std::abs( thisPoint ), lowerLimit );
173 double secondDerivative = std::abs( (previousPoint - 2.0 * thisPoint + nextPoint) / (spacing * spacing ) );
175 // Make sure we do not divide by zero. This limit is arbitrary,
176 // but it doesnt matter since this point will have a very large value,
177 // and the whole routine is searching for the smallest value.
178 secondDerivative = std::max(secondDerivative, lowerLimit);
180 return (value / secondDerivative);
184 real
185 findSmallestQuotientOfFunctionAndSecondDerivative(const std::function<double(double)> &f,
186 const std::pair<real, real> &range)
188 // Since the numerical second derivative will evaluate extra points
189 // we shrink the interval slightly to avoid calling the function with values
190 // outside the range specified.
191 double h = std::pow( GMX_DOUBLE_EPS, 0.25 );
192 std::pair<double, double> newRange(range.first + h, range.second - h);
193 const int points = 500; // arbitrary
194 double dx = (newRange.second - newRange.first) / points;
195 double minQuotient = GMX_REAL_MAX;
197 // NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter)
198 for (double x = newRange.first; x <= newRange.second; x += dx)
200 minQuotient = std::min(minQuotient, quotientOfFunctionAndSecondDerivative(f(x-h), f(x), f(x+h), h));
203 return static_cast<real>(minQuotient);
211 real
212 findSmallestQuotientOfFunctionAndSecondDerivative(ArrayRef<const double> function,
213 double inputSpacing,
214 const std::pair<real, real> &range)
217 std::size_t firstIndex = static_cast<std::size_t>(range.first / inputSpacing);
218 std::size_t lastIndex = static_cast<std::size_t>(range.second / inputSpacing);
219 double minQuotient = GMX_REAL_MAX;
221 for (std::size_t i = firstIndex + 1; (i + 1) < lastIndex; i++)
223 minQuotient = std::min(minQuotient, quotientOfFunctionAndSecondDerivative(function[i-1], function[i], function[i+1], inputSpacing));
225 return static_cast<real>(minQuotient);
230 /*! \brief Calculate absolute quotient of function and its third derivative
232 * This is a utility function used in the functions to find the smallest quotient
233 * in a range.
235 * \param[in] previousPreviousPoint Value of function at x-2h.
236 * \param[in] previousPoint Value of function at x-h.
237 * \param[in] thisPoint Value of function at x.
238 * \param[in] nextPoint Value of function at x+h.
239 * \param[in] nextNextPoint Value of function at x+2h.
240 * \param[in] spacing Value of h.
242 * \return The absolute value of the quotient. If either the function or third
243 * derivative is smaller than sqrt(GMX_REAL_MIN), they will be set to
244 * that value.
246 static double
247 quotientOfFunctionAndThirdDerivative(double previousPreviousPoint,
248 double previousPoint,
249 double thisPoint,
250 double nextPoint,
251 double nextNextPoint,
252 double spacing)
254 double lowerLimit = static_cast<double>(std::sqrt(GMX_REAL_MIN));
255 double value = std::max(std::abs( thisPoint ), lowerLimit );
256 double thirdDerivative = std::abs((nextNextPoint - 2 * nextPoint + 2 * previousPoint - previousPreviousPoint) / (2 * spacing * spacing * spacing));
258 // Make sure we do not divide by zero. This limit is arbitrary,
259 // but it doesnt matter since this point will have a very large value,
260 // and the whole routine is searching for the smallest value.
261 thirdDerivative = std::max(thirdDerivative, lowerLimit);
263 return (value / thirdDerivative);
267 real
268 findSmallestQuotientOfFunctionAndThirdDerivative(const std::function<double(double)> &f,
269 const std::pair<real, real> &range)
271 // Since the numerical second derivative will evaluate extra points
272 // we shrink the interval slightly to avoid calling the function with values
273 // outside the range specified.
274 double h = std::pow( GMX_DOUBLE_EPS, 0.2 ); // optimal spacing for 3rd derivative
275 std::pair<double, double> newRange(range.first + 2*h, range.second - 2*h);
276 const int points = 500; // arbitrary
277 double dx = (newRange.second - newRange.first) / points;
278 double minQuotient = GMX_REAL_MAX;
280 // NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter)
281 for (double x = newRange.first; x <= newRange.second; x += dx)
283 minQuotient = std::min(minQuotient, quotientOfFunctionAndThirdDerivative(f(x-2*h), f(x-h), f(x), f(x+h), f(x+2*h), h));
285 return static_cast<real>(minQuotient);
289 real
290 findSmallestQuotientOfFunctionAndThirdDerivative(ArrayRef<const double> function,
291 double inputSpacing,
292 const std::pair<real, real> &range)
295 std::size_t firstIndex = static_cast<std::size_t>(range.first / inputSpacing);
296 std::size_t lastIndex = static_cast<std::size_t>(range.second / inputSpacing);
297 double minQuotient = GMX_REAL_MAX;
299 for (std::size_t i = firstIndex + 2; (i + 2) < lastIndex; i++)
301 minQuotient = std::min(minQuotient, quotientOfFunctionAndThirdDerivative(function[i-2], function[i-1], function[i], function[i+1], function[i+2], inputSpacing));
303 return static_cast<real>(minQuotient);
308 std::vector<double>
309 vectorSecondDerivative(ArrayRef<const double> f, double spacing)
311 if (f.size() < 5)
313 GMX_THROW(APIError("Too few points in vector for 5-point differentiation"));
316 std::vector<double> d(f.size());
317 std::size_t i;
319 // 5-point formula evaluated for points 0,1
320 i = 0;
321 d[i] = (11 * f[i+4] - 56 * f[i+3] + 114 * f[i+2] - 104 * f[i+1] + 35 * f[i]) / ( 12 * spacing * spacing);
322 i = 1;
323 d[i] = (-f[i+3] + 4 * f[i+2] + 6 * f[i+1] - 20 * f[i] + 11 * f[i-1]) / ( 12 * spacing * spacing);
325 for (std::size_t i = 2; i < d.size() - 2; i++)
327 // 5-point formula evaluated for central point (2)
328 d[i] = (-f[i+2] + 16 * f[i+1] - 30 * f[i] + 16 * f[i-1] - f[i-2]) / (12 * spacing * spacing);
331 // 5-point formula evaluated for points 3,4
332 i = d.size() - 2;
333 d[i] = (11 * f[i+1] - 20 * f[i] + 6 * f[i-1] + 4 * f[i-2] - f[i-3]) / ( 12 * spacing * spacing);
334 i = d.size() - 1;
335 d[i] = (35 * f[i] - 104 * f[i-1] + 114 * f[i-2] - 56 * f[i-3] + 11 * f[i-4]) / ( 12 * spacing * spacing);
337 return d;
342 } // namespace internal
344 } // namespace gmx