2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2015,2016,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
37 * Tests for simple math functions.eval
39 * \author Erik Lindahl <erik.lindahl@gmail.com>
40 * \ingroup module_tables
50 #include <gtest/gtest.h>
52 #include "gromacs/math/utilities.h"
53 #include "gromacs/options/basicoptions.h"
54 #include "gromacs/options/ioptionscontainer.h"
55 #include "gromacs/simd/simd.h"
56 #include "gromacs/tables/cubicsplinetable.h"
57 #include "gromacs/tables/quadraticsplinetable.h"
59 #include "testutils/testasserts.h"
60 #include "testutils/testoptions.h"
72 class SplineTableTestBase
: public ::testing::Test
75 static int s_testPoints_
; //!< Number of points to use. Public so we can set it as option
79 SplineTableTestBase::s_testPoints_
= 100;
82 /*! \brief Command-line option to adjust the number of points used to test SIMD math functions. */
83 GMX_TEST_OPTIONS(SplineTableTestOptions
, options
)
85 options
->addOption(::gmx::IntegerOption("npoints")
86 .store(&SplineTableTestBase::s_testPoints_
)
87 .description("Number of points to test for spline table functions"));
94 /*! \brief Test fixture for table comparision with analytical/numerical functions */
96 class SplineTableTest
: public SplineTableTestBase
99 SplineTableTest() : tolerance_(T::defaultTolerance
) {}
101 /*! \brief Set a new tolerance to be used in table function comparison
103 * \param tol New tolerance to use
106 setTolerance(real tol
) { tolerance_
= tol
; }
110 * Assertion predicate formatter for comparing table with function/derivative
112 template<int numFuncInTable
= 1, int funcIndex
= 0>
114 testSplineTableAgainstFunctions(const std::string
&desc
,
115 const std::function
<double(double)> &refFunc
,
116 const std::function
<double(double)> &refDer
,
118 const std::pair
<real
, real
> &testRange
);
122 real tolerance_
; //!< Tolerance to use
126 template<int numFuncInTable
, int funcIndex
>
128 SplineTableTest
<T
>::testSplineTableAgainstFunctions(const std::string
&desc
,
129 const std::function
<double(double)> &refFunc
,
130 const std::function
<double(double)> &refDer
,
132 const std::pair
<real
, real
> &testRange
)
134 real dx
= (testRange
.second
- testRange
.first
) / s_testPoints_
;
136 FloatingPointTolerance
funcTolerance(relativeToleranceAsFloatingPoint(0.0, tolerance_
));
138 for (real x
= testRange
.first
; x
< testRange
.second
; x
+= dx
) // NOLINT(clang-analyzer-security.FloatLoopCounter)
140 real h
= std::sqrt(GMX_REAL_EPS
);
141 real secondDerivative
= (refDer(x
+h
)-refDer(x
))/h
;
146 table
.template evaluateFunctionAndDerivative
<numFuncInTable
, funcIndex
>(x
, &testFuncValue
, &testDerValue
);
148 // Check that we get the same values from function/derivative-only methods
149 real tmpFunc
, tmpDer
;
151 table
.template evaluateFunction
<numFuncInTable
, funcIndex
>(x
, &tmpFunc
);
153 table
.template evaluateDerivative
<numFuncInTable
, funcIndex
>(x
, &tmpDer
);
155 // Before we even start to think about errors related to the table interpolation
156 // accuracy, we want to test that the interpolations are consistent whether we
157 // call the routine that evaluates both the function and derivative or only one
159 // Note that for these tests the relevant tolerance is NOT the default one
160 // provided based on the requested accuracy of the table, but a tolerance related
161 // to the floating-point precision used. For now we only allow deviations up
162 // to 4 ulp (one for the FMA order, and then some margin).
163 FloatingPointTolerance
consistencyTolerance(ulpTolerance(4));
165 FloatingPointDifference
evaluateFuncDiff(tmpFunc
, testFuncValue
);
166 if (!consistencyTolerance
.isWithin(evaluateFuncDiff
))
169 << "Interpolation inconsistency for table " << desc
<< std::endl
170 << numFuncInTable
<< " function(s) in table, testing index " << funcIndex
<< std::endl
171 << "First failure at x = " << x
<< std::endl
172 << "Function value when evaluating function & derivative: " << testFuncValue
<< std::endl
173 << "Function value when evaluating only function: " << tmpFunc
<< std::endl
;
177 FloatingPointDifference
evaluateDerDiff(tmpDer
, testDerValue
);
178 if (!consistencyTolerance
.isWithin(evaluateDerDiff
))
181 << "Interpolation inconsistency for table " << desc
<< std::endl
182 << numFuncInTable
<< " function(s) in table, testing index " << funcIndex
<< std::endl
183 << "First failure at x = " << x
<< std::endl
184 << "Derivative value when evaluating function & derivative: " << testDerValue
<< std::endl
185 << "Derivative value when evaluating only derivative: " << tmpDer
<< std::endl
;
189 // Next, we should examine that the table is exact enough relative
190 // to the requested accuracy in the interpolation.
192 // There are two sources of errors that we need to account for when checking the values,
193 // and we only fail the test if both of these tolerances are violated:
195 // 1) First, we have the normal relative error of the test vs. reference value. For this
196 // we use the normal testutils relative tolerance checking.
197 // However, there is an additional source of error: When we calculate the forces we
198 // use average higher derivatives over the interval to improve accuracy, but this
199 // also means we won't reproduce values at table points exactly. This is usually not
200 // an issue since the tolerances we have are much larger, but when the reference derivative
201 // value is exactly zero the relative error will be infinite. To account for this, we
202 // extract the spacing from the table and evaluate the reference derivative at a point
203 // this much larger too, and use the largest of the two values as the reference
204 // magnitude for the derivative when setting the relative tolerance.
205 // Note that according to the table function definitions, we should be allowed to evaluate
206 // it one table point beyond the range (this is done already for construction).
208 // 2) Second, due to the loss-of-accuracy when calculating the index through rtable
209 // there is an internal absolute tolerance that we can calculate.
210 // The source of this error is the subtraction eps=rtab-[rtab], which leaves an
211 // error proportional to eps_machine*rtab=eps_machine*x*tableScale.
212 // To lowest order, the term in the function and derivative values (respectively) that
213 // are proportional to eps will be the next-higher derivative multiplied by the spacing.
214 // This means the truncation error in the value is derivative*x*eps_machine, and in the
215 // derivative the error is 2nd_derivative*x*eps_machine.
217 real refFuncValue
= refFunc(x
);
218 real refDerValue
= refDer(x
);
219 real nextRefDerValue
= refDer(x
+ table
.tableSpacing());
221 real derMagnitude
= std::max( std::abs(refDerValue
), std::abs(nextRefDerValue
));
223 // Since the reference magnitude will change over each interval we need to re-evaluate
224 // the derivative tolerance inside the loop.
225 FloatingPointTolerance
derTolerance(relativeToleranceAsFloatingPoint(derMagnitude
, tolerance_
));
227 FloatingPointDifference
funcDiff(refFuncValue
, testFuncValue
);
228 FloatingPointDifference
derDiff(refDerValue
, testDerValue
);
230 real allowedAbsFuncErr
= std::abs(refDerValue
) * x
* GMX_REAL_EPS
;
231 real allowedAbsDerErr
= std::abs(secondDerivative
) * x
* GMX_REAL_EPS
;
233 if ((!funcTolerance
.isWithin(funcDiff
) && funcDiff
.asAbsolute() > allowedAbsFuncErr
) ||
234 (!derTolerance
.isWithin(derDiff
) && derDiff
.asAbsolute() > allowedAbsDerErr
))
237 << "Failing comparison with function for table " << desc
<< std::endl
238 << numFuncInTable
<< " function(s) in table, testing index " << funcIndex
<< std::endl
239 << "Test range is ( " << testRange
.first
<< " , " << testRange
.second
<< " ) " << std::endl
240 << "Tolerance = " << tolerance_
<< std::endl
241 << "First failure at x = " << x
<< std::endl
242 << "Reference function = " << refFuncValue
<< std::endl
243 << "Test table function = " << testFuncValue
<< std::endl
244 << "Allowed abs func err. = " << allowedAbsFuncErr
<< std::endl
245 << "Reference derivative = " << refDerValue
<< std::endl
246 << "Test table derivative = " << testDerValue
<< std::endl
247 << "Allowed abs der. err. = " << allowedAbsDerErr
<< std::endl
248 << "Actual abs der. err. = " << derDiff
.asAbsolute() << std::endl
;
255 /*! \brief Function similar to coulomb electrostatics
261 coulombFunction(double r
)
266 /*! \brief Derivative (not force) of coulomb electrostatics
272 coulombDerivative(double r
)
277 /*! \brief Function similar to power-6 Lennard-Jones dispersion
283 lj6Function(double r
)
285 return std::pow(r
, -6.0);
288 /*! \brief Derivative (not force) of the power-6 Lennard-Jones dispersion
294 lj6Derivative(double r
)
296 return -6.0*std::pow(r
, -7.0);
299 /*! \brief Function similar to power-12 Lennard-Jones repulsion
305 lj12Function(double r
)
307 return std::pow(r
, -12.0);
310 /*! \brief Derivative (not force) of the power-12 Lennard-Jones repulsion
313 * \return -12.0*r^-13
316 lj12Derivative(double r
)
318 return -12.0*std::pow(r
, -13.0);
321 /*! \brief The sinc function, sin(r)/r
327 sincFunction(double r
)
329 return std::sin(r
)/r
;
332 /*! \brief Derivative of the sinc function
335 * \return derivative of sinc, (r*cos(r)-sin(r))/r^2
338 sincDerivative(double r
)
340 return (r
*std::cos(r
)-std::sin(r
))/(r
*r
);
343 /*! \brief Function for the direct-space PME correction to 1/r
346 * \return PME correction function, erf(r)/r
349 pmeCorrFunction(double r
)
353 return 2.0/std::sqrt(M_PI
);
357 return std::erf(r
)/r
;
361 /*! \brief Derivative of the direct-space PME correction to 1/r
364 * \return Derivative of the PME correction function.
367 pmeCorrDerivative(double r
)
375 return (2.0*std::exp(-r
*r
)/std::sqrt(3.14159265358979323846)*r
-erf(r
))/(r
*r
);
379 /*! \brief Typed-test list. We test QuadraticSplineTable and CubicSplineTable
381 typedef ::testing::Types
<QuadraticSplineTable
, CubicSplineTable
> SplineTableTypes
;
382 TYPED_TEST_CASE(SplineTableTest
, SplineTableTypes
);
385 TYPED_TEST(SplineTableTest
, HandlesIncorrectInput
)
388 EXPECT_THROW_GMX(TypeParam( {{"LJ12", lj12Function
, lj12Derivative
}}, {-1.0, 0.0}), gmx::InvalidInputError
);
391 EXPECT_THROW_GMX(TypeParam( {{"LJ12", lj12Function
, lj12Derivative
}}, {1.0, 1.00001}), gmx::InvalidInputError
);
394 EXPECT_THROW_GMX(TypeParam( {{"LJ12", lj12Function
, lj12Derivative
}}, {1.0, 2.0}, 1e-20), gmx::ToleranceError
);
396 // Range is so close to 0.0 that table would require >1e6 points
397 EXPECT_THROW_GMX(TypeParam( {{"LJ12", lj12Function
, lj12Derivative
}}, {1e-4, 2.0}), gmx::ToleranceError
);
399 // mismatching function/derivative
400 EXPECT_THROW_GMX(TypeParam( { {"BadLJ12", lj12Derivative
, lj12Function
}}, {1.0, 2.0}), gmx::InconsistentInputError
);
405 TYPED_TEST(SplineTableTest
, CatchesOutOfRangeValues
)
407 TypeParam
table( {{"LJ12", lj12Function
, lj12Derivative
}}, {0.2, 1.0});
411 EXPECT_THROW_GMX(table
.evaluateFunctionAndDerivative(x
, &func
, &der
), gmx::RangeError
);
414 EXPECT_THROW_GMX(table
.evaluateFunctionAndDerivative(x
, &func
, &der
), gmx::RangeError
);
419 TYPED_TEST(SplineTableTest
, Sinc
)
421 // Sinc hits some sensitive parts of the table construction code which means
422 // we will not have full relative accuracy close to the zeros in the
423 // derivative. Since this is intentially a pathological function we reduce
424 // the interval slightly for now.
425 std::pair
<real
, real
> range(0.1, 3.1);
427 TypeParam
sincTable( {{"Sinc", sincFunction
, sincDerivative
}}, range
);
429 TestFixture::testSplineTableAgainstFunctions("Sinc", sincFunction
, sincDerivative
, sincTable
, range
);
433 TYPED_TEST(SplineTableTest
, LJ12
)
435 std::pair
<real
, real
> range(0.2, 2.0);
437 TypeParam
lj12Table( {{"LJ12", lj12Function
, lj12Derivative
}}, range
);
439 TestFixture::testSplineTableAgainstFunctions("LJ12", lj12Function
, lj12Derivative
, lj12Table
, range
);
443 TYPED_TEST(SplineTableTest
, PmeCorrection
)
445 std::pair
<real
, real
> range(0.0, 4.0);
446 real tolerance
= 1e-5;
448 TypeParam
pmeCorrTable( {{"PMECorr", pmeCorrFunction
, pmeCorrDerivative
}}, range
, tolerance
);
450 TestFixture::setTolerance(tolerance
);
451 TestFixture::testSplineTableAgainstFunctions("PMECorr", pmeCorrFunction
, pmeCorrDerivative
, pmeCorrTable
, range
);
456 TYPED_TEST(SplineTableTest
, HandlesIncorrectNumericalInput
)
458 // Lengths do not match
459 std::vector
<double> functionValues(10);
460 std::vector
<double> derivativeValues(20);
461 EXPECT_THROW_GMX(TypeParam( {{"EmptyVectors", functionValues
, derivativeValues
, 0.001}},
462 {1.0, 2.0}), gmx::InconsistentInputError
);
464 // Upper range is 2.0, spacing 0.1. This requires at least 21 points. Make sure we get an error for 20.
465 functionValues
.resize(20);
466 derivativeValues
.resize(20);
467 EXPECT_THROW_GMX(TypeParam( {{"EmptyVectors", functionValues
, derivativeValues
, 0.1}},
468 {1.0, 2.0}), gmx::InconsistentInputError
);
470 // Create some test data
471 functionValues
.clear();
472 derivativeValues
.clear();
474 std::vector
<double> badDerivativeValues
;
475 double spacing
= 1e-3;
477 for (std::size_t i
= 0; i
< 1001; i
++)
479 double x
= i
* spacing
;
480 double func
= (x
>= 0.1) ? lj12Function(x
) : 0.0;
481 double der
= (x
>= 0.1) ? lj12Derivative(x
) : 0.0;
483 functionValues
.push_back(func
);
484 derivativeValues
.push_back(der
);
485 badDerivativeValues
.push_back(-der
);
488 // Derivatives not consistent with function
489 EXPECT_THROW_GMX(TypeParam( {{"NumericalBadLJ12", functionValues
, badDerivativeValues
, spacing
}},
490 {0.2, 1.0}), gmx::InconsistentInputError
);
492 // Spacing 1e-3 is not sufficient for r^-12 in range [0.1,1.0]
493 // Make sure we get a tolerance error
494 EXPECT_THROW_GMX(TypeParam( {{"NumericalLJ12", functionValues
, derivativeValues
, spacing
}},
495 {0.2, 1.0}), gmx::ToleranceError
);
499 TYPED_TEST(SplineTableTest
, NumericalInputPmeCorr
)
501 std::pair
<real
, real
> range(0.0, 4.0);
502 std::vector
<double> functionValues
;
503 std::vector
<double> derivativeValues
;
505 double inputSpacing
= 1e-3;
506 real tolerance
= 1e-5;
508 // We only need data up to the argument 4.0, but add 1% margin
509 for (std::size_t i
= 0; i
< range
.second
*1.01/inputSpacing
; i
++)
511 double x
= i
* inputSpacing
;
513 functionValues
.push_back(pmeCorrFunction(x
));
514 derivativeValues
.push_back(pmeCorrDerivative(x
));
517 TypeParam
pmeCorrTable( {{"NumericalPMECorr", functionValues
, derivativeValues
, inputSpacing
}},
520 TestFixture::setTolerance(tolerance
);
521 TestFixture::testSplineTableAgainstFunctions("NumericalPMECorr", pmeCorrFunction
, pmeCorrDerivative
, pmeCorrTable
, range
);
524 TYPED_TEST(SplineTableTest
, TwoFunctions
)
526 std::pair
<real
, real
> range(0.2, 2.0);
528 TypeParam
table( {{"LJ6", lj6Function
, lj6Derivative
}, {"LJ12", lj12Function
, lj12Derivative
}}, range
);
530 // Test entire range for each function. This will use the method that interpolates a single function
531 TestFixture::template testSplineTableAgainstFunctions
<2, 0>("LJ6", lj6Function
, lj6Derivative
, table
, range
);
532 TestFixture::template testSplineTableAgainstFunctions
<2, 1>("LJ12", lj12Function
, lj12Derivative
, table
, range
);
534 // Test the methods that evaluated both functions for one value
535 real x
= 0.5 * (range
.first
+ range
.second
);
536 real refFunc0
= lj6Function(x
);
537 real refDer0
= lj6Derivative(x
);
538 real refFunc1
= lj12Function(x
);
539 real refDer1
= lj12Derivative(x
);
541 real tstFunc0
, tstDer0
, tstFunc1
, tstDer1
;
542 real tmpFunc0
, tmpFunc1
, tmpDer0
, tmpDer1
;
544 // test that we reproduce the reference functions
545 table
.evaluateFunctionAndDerivative(x
, &tstFunc0
, &tstDer0
, &tstFunc1
, &tstDer1
);
547 real funcErr0
= std::abs(tstFunc0
-refFunc0
) / std::abs(refFunc0
);
548 real funcErr1
= std::abs(tstFunc1
-refFunc1
) / std::abs(refFunc1
);
549 real derErr0
= std::abs(tstDer0
-refDer0
) / std::abs(refDer0
);
550 real derErr1
= std::abs(tstDer1
-refDer1
) / std::abs(refDer1
);
552 // Use asserts, since the following ones compare to these values.
553 ASSERT_LT(funcErr0
, TypeParam::defaultTolerance
);
554 ASSERT_LT(derErr0
, TypeParam::defaultTolerance
);
555 ASSERT_LT(funcErr1
, TypeParam::defaultTolerance
);
556 ASSERT_LT(derErr1
, TypeParam::defaultTolerance
);
558 // Test that function/derivative-only interpolation methods work
559 table
.evaluateFunction(x
, &tmpFunc0
, &tmpFunc1
);
560 table
.evaluateDerivative(x
, &tmpDer0
, &tmpDer1
);
561 EXPECT_EQ(tstFunc0
, tmpFunc0
);
562 EXPECT_EQ(tstFunc1
, tmpFunc1
);
563 EXPECT_EQ(tstDer0
, tmpDer0
);
565 // Test that scrambled order interpolation methods work
566 table
.template evaluateFunctionAndDerivative
<2, 1, 0>(x
, &tstFunc1
, &tstDer1
, &tstFunc0
, &tstDer0
);
567 EXPECT_EQ(tstFunc0
, tmpFunc0
);
568 EXPECT_EQ(tstFunc1
, tmpFunc1
);
569 EXPECT_EQ(tstDer0
, tmpDer0
);
570 EXPECT_EQ(tstDer1
, tmpDer1
);
572 // Test scrambled order for function/derivative-only methods
573 table
.template evaluateFunction
<2, 1, 0>(x
, &tmpFunc1
, &tmpFunc0
);
574 table
.template evaluateDerivative
<2, 1, 0>(x
, &tmpDer1
, &tmpDer0
);
575 EXPECT_EQ(tstFunc0
, tmpFunc0
);
576 EXPECT_EQ(tstFunc1
, tmpFunc1
);
577 EXPECT_EQ(tstDer0
, tmpDer0
);
578 EXPECT_EQ(tstDer1
, tmpDer1
);
581 TYPED_TEST(SplineTableTest
, ThreeFunctions
)
583 std::pair
<real
, real
> range(0.2, 2.0);
585 TypeParam
table( {{"Coulomb", coulombFunction
, coulombDerivative
}, {"LJ6", lj6Function
, lj6Derivative
}, {"LJ12", lj12Function
, lj12Derivative
}}, range
);
587 // Test entire range for each function
588 TestFixture::template testSplineTableAgainstFunctions
<3, 0>("Coulomb", coulombFunction
, coulombDerivative
, table
, range
);
589 TestFixture::template testSplineTableAgainstFunctions
<3, 1>("LJ6", lj6Function
, lj6Derivative
, table
, range
);
590 TestFixture::template testSplineTableAgainstFunctions
<3, 2>("LJ12", lj12Function
, lj12Derivative
, table
, range
);
592 // Test the methods that evaluated both functions for one value
593 real x
= 0.5 * (range
.first
+ range
.second
);
594 real refFunc0
= coulombFunction(x
);
595 real refDer0
= coulombDerivative(x
);
596 real refFunc1
= lj6Function(x
);
597 real refDer1
= lj6Derivative(x
);
598 real refFunc2
= lj12Function(x
);
599 real refDer2
= lj12Derivative(x
);
601 real tstFunc0
, tstDer0
, tstFunc1
, tstDer1
, tstFunc2
, tstDer2
;
602 real tmpFunc0
, tmpFunc1
, tmpFunc2
, tmpDer0
, tmpDer1
, tmpDer2
;
604 // test that we reproduce the reference functions
605 table
.evaluateFunctionAndDerivative(x
, &tstFunc0
, &tstDer0
, &tstFunc1
, &tstDer1
, &tstFunc2
, &tstDer2
);
607 real funcErr0
= std::abs(tstFunc0
-refFunc0
) / std::abs(refFunc0
);
608 real derErr0
= std::abs(tstDer0
-refDer0
) / std::abs(refDer0
);
609 real funcErr1
= std::abs(tstFunc1
-refFunc1
) / std::abs(refFunc1
);
610 real derErr1
= std::abs(tstDer1
-refDer1
) / std::abs(refDer1
);
611 real funcErr2
= std::abs(tstFunc2
-refFunc2
) / std::abs(refFunc2
);
612 real derErr2
= std::abs(tstDer2
-refDer2
) / std::abs(refDer2
);
614 // Use asserts, since the following ones compare to these values.
615 ASSERT_LT(funcErr0
, TypeParam::defaultTolerance
);
616 ASSERT_LT(derErr0
, TypeParam::defaultTolerance
);
617 ASSERT_LT(funcErr1
, TypeParam::defaultTolerance
);
618 ASSERT_LT(derErr1
, TypeParam::defaultTolerance
);
619 ASSERT_LT(funcErr2
, TypeParam::defaultTolerance
);
620 ASSERT_LT(derErr2
, TypeParam::defaultTolerance
);
622 // Test that function/derivative-only interpolation methods work
623 table
.evaluateFunction(x
, &tmpFunc0
, &tmpFunc1
, &tmpFunc2
);
624 table
.evaluateDerivative(x
, &tmpDer0
, &tmpDer1
, &tmpDer2
);
625 EXPECT_EQ(tstFunc0
, tmpFunc0
);
626 EXPECT_EQ(tstFunc1
, tmpFunc1
);
627 EXPECT_EQ(tstFunc2
, tmpFunc2
);
628 EXPECT_EQ(tstDer0
, tmpDer0
);
629 EXPECT_EQ(tstDer1
, tmpDer1
);
630 EXPECT_EQ(tstDer2
, tmpDer2
);
632 // Test two functions out of three
633 table
.template evaluateFunctionAndDerivative
<3, 0, 1>(x
, &tmpFunc0
, &tmpDer0
, &tmpFunc1
, &tmpDer1
);
634 EXPECT_EQ(tstFunc0
, tmpFunc0
);
635 EXPECT_EQ(tstFunc1
, tmpFunc1
);
636 EXPECT_EQ(tstDer0
, tmpDer0
);
637 EXPECT_EQ(tstDer1
, tmpDer1
);
639 // two out of three, function/derivative-only
640 table
.template evaluateFunction
<3, 0, 1>(x
, &tmpFunc0
, &tmpFunc1
);
641 table
.template evaluateDerivative
<3, 0, 1>(x
, &tmpDer0
, &tmpDer1
);
642 EXPECT_EQ(tstFunc0
, tmpFunc0
);
643 EXPECT_EQ(tstFunc1
, tmpFunc1
);
644 EXPECT_EQ(tstDer0
, tmpDer0
);
645 EXPECT_EQ(tstDer1
, tmpDer1
);
647 // Test that scrambled order interpolation methods work
648 table
.template evaluateFunctionAndDerivative
<3, 2, 1, 0>(x
, &tstFunc2
, &tstDer2
, &tstFunc1
, &tstDer1
, &tstFunc0
, &tstDer0
);
649 EXPECT_EQ(tstFunc0
, tmpFunc0
);
650 EXPECT_EQ(tstFunc1
, tmpFunc1
);
651 EXPECT_EQ(tstFunc2
, tmpFunc2
);
652 EXPECT_EQ(tstDer0
, tmpDer0
);
653 EXPECT_EQ(tstDer1
, tmpDer1
);
654 EXPECT_EQ(tstDer2
, tmpDer2
);
656 // Test scrambled order for function/derivative-only methods
657 table
.template evaluateFunction
<3, 2, 1, 0>(x
, &tmpFunc2
, &tmpFunc1
, &tmpFunc0
);
658 table
.template evaluateDerivative
<3, 2, 1, 0>(x
, &tmpDer2
, &tmpDer1
, &tmpDer0
);
659 EXPECT_EQ(tstFunc0
, tmpFunc0
);
660 EXPECT_EQ(tstFunc1
, tmpFunc1
);
661 EXPECT_EQ(tstFunc2
, tmpFunc2
);
662 EXPECT_EQ(tstDer0
, tmpDer0
);
663 EXPECT_EQ(tstDer1
, tmpDer1
);
664 EXPECT_EQ(tstDer2
, tmpDer2
);
667 #if GMX_SIMD_HAVE_REAL
668 TYPED_TEST(SplineTableTest
, Simd
)
670 std::pair
<real
, real
> range(0.2, 1.0);
671 TypeParam
table( {{"LJ12", lj12Function
, lj12Derivative
}}, range
);
673 // We already test that the SIMD operations handle the different elements
674 // correctly in the SIMD module, so here we only test that interpolation
675 // works for a single value in the middle of the interval
677 real x
= 0.5 * (range
.first
+ range
.second
);
678 real refFunc
= lj12Function(x
);
679 real refDer
= lj12Derivative(x
);
680 SimdReal tstFunc
, tstDer
;
681 real funcErr
, derErr
;
682 alignas(GMX_SIMD_ALIGNMENT
) real alignedMem
[GMX_SIMD_REAL_WIDTH
];
684 table
.evaluateFunctionAndDerivative(SimdReal(x
), &tstFunc
, &tstDer
);
686 store(alignedMem
, tstFunc
);
687 funcErr
= std::abs(alignedMem
[0]-refFunc
) / std::abs(refFunc
);
689 store(alignedMem
, tstDer
);
690 derErr
= std::abs(alignedMem
[0]-refDer
) / std::abs(refDer
);
692 EXPECT_LT(funcErr
, TypeParam::defaultTolerance
);
693 EXPECT_LT(derErr
, TypeParam::defaultTolerance
);
696 TYPED_TEST(SplineTableTest
, SimdTwoFunctions
)
698 std::pair
<real
, real
> range(0.2, 2.0);
700 TypeParam
table( {{"LJ6", lj6Function
, lj6Derivative
}, {"LJ12", lj12Function
, lj12Derivative
}}, range
);
702 // We already test that the SIMD operations handle the different elements
703 // correctly in the SIMD module, so here we only test that interpolation
704 // works for a single value in the middle of the interval
706 real x
= 0.5 * (range
.first
+ range
.second
);
707 real refFunc0
= lj6Function(x
);
708 real refDer0
= lj6Derivative(x
);
709 real refFunc1
= lj12Function(x
);
710 real refDer1
= lj12Derivative(x
);
711 SimdReal tstFunc0
, tstDer0
;
712 SimdReal tstFunc1
, tstDer1
;
713 real funcErr0
, derErr0
;
714 real funcErr1
, derErr1
;
715 alignas(GMX_SIMD_ALIGNMENT
) real alignedMem
[GMX_SIMD_REAL_WIDTH
];
717 table
.evaluateFunctionAndDerivative(SimdReal(x
), &tstFunc0
, &tstDer0
, &tstFunc1
, &tstDer1
);
719 store(alignedMem
, tstFunc0
);
720 funcErr0
= std::abs(alignedMem
[0]-refFunc0
) / std::abs(refFunc0
);
722 store(alignedMem
, tstDer0
);
723 derErr0
= std::abs(alignedMem
[0]-refDer0
) / std::abs(refDer0
);
725 store(alignedMem
, tstFunc1
);
726 funcErr1
= std::abs(alignedMem
[0]-refFunc1
) / std::abs(refFunc1
);
728 store(alignedMem
, tstDer1
);
729 derErr1
= std::abs(alignedMem
[0]-refDer1
) / std::abs(refDer1
);
731 EXPECT_LT(funcErr0
, TypeParam::defaultTolerance
);
732 EXPECT_LT(derErr0
, TypeParam::defaultTolerance
);
733 EXPECT_LT(funcErr1
, TypeParam::defaultTolerance
);
734 EXPECT_LT(derErr1
, TypeParam::defaultTolerance
);
738 #if GMX_SIMD_HAVE_REAL && !defined NDEBUG
739 TYPED_TEST(SplineTableTest
, CatchesOutOfRangeValuesSimd
)
741 std::pair
<real
, real
> range(0.2, 1.0);
742 TypeParam
table( {{"LJ12", lj12Function
, lj12Derivative
}}, range
);
743 SimdReal x
, func
, der
;
745 AlignedArray
<real
, GMX_SIMD_REAL_WIDTH
> alignedMem
;
747 alignedMem
.fill(range
.first
);
748 // Make position 1 incorrect if width>=2, otherwise position 0
749 // range.first-GMX_REAL_EPS is not invalid. See comment in table.
750 alignedMem
[ (GMX_SIMD_REAL_WIDTH
>= 2) ? 1 : 0] = -GMX_REAL_EPS
;
751 x
= load
<SimdReal
>(alignedMem
);
753 EXPECT_THROW_GMX(table
.evaluateFunctionAndDerivative(x
, &func
, &der
), gmx::RangeError
);
755 // Make position 1 incorrect if width>=2, otherwise position 0
756 alignedMem
[ (GMX_SIMD_REAL_WIDTH
>= 2) ? 1 : 0] = range
.second
;
757 x
= load
<SimdReal
>(alignedMem
);
759 EXPECT_THROW_GMX(table
.evaluateFunctionAndDerivative(x
, &func
, &der
), gmx::RangeError
);
762 TYPED_TEST(SplineTableTest
, AcceptsInRangeValuesSimd
)
764 std::pair
<real
, real
> range(0.2, 1.0);
765 TypeParam
table( {{"LJ12", lj12Function
, lj12Derivative
}}, range
);
766 SimdReal x
, func
, der
;
768 alignas(GMX_SIMD_ALIGNMENT
) real alignedMem
[GMX_SIMD_REAL_WIDTH
];
770 // Test all values between 0 and range.second
771 for (std::size_t i
= 0; i
< GMX_SIMD_REAL_WIDTH
; i
++)
773 alignedMem
[i
] = range
.second
*(1.0-GMX_REAL_EPS
)*i
/(GMX_SIMD_REAL_WIDTH
-1);
775 x
= load
<SimdReal
>(alignedMem
);
777 EXPECT_NO_THROW_GMX(table
.evaluateFunctionAndDerivative(x
, &func
, &der
));