2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
39 * Implements simple math functions
41 * \author Erik Lindahl <erik.lindahl@gmail.com>
42 * \ingroup module_math
47 #include "functions.h"
56 #if GMX_NATIVE_WINDOWS
57 # include <intrin.h> // _BitScanReverse, _BitScanReverse64
60 #include "gromacs/math/utilities.h"
61 #include "gromacs/utility/gmxassert.h"
67 log2I(std::uint32_t n
)
69 GMX_ASSERT(n
> 0, "The behavior of log(0) is undefined");
71 // gcc, clang. xor with sign bit should be optimized out
72 return __builtin_clz(n
) ^ 31U;
73 #elif HAVE_BITSCANREVERSE
77 _BitScanReverse(&res
, static_cast<unsigned long>(n
));
78 return static_cast<unsigned int>(res
);
81 return 31 - __cntlz4(n
);
83 // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogLookup
85 static const std::array
<char, 256>
88 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
89 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
90 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
91 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
92 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
93 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
94 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
95 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
96 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
97 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
98 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
99 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
100 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
101 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
102 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
103 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
107 unsigned int tmp1
, tmp2
;
109 if ((tmp1
= n
>> 16) != 0)
111 result
= ((tmp2
= tmp1
>> 8) != 0) ? 24 + log2TableByte
[tmp2
] : 16 + log2TableByte
[tmp1
];
115 result
= ((tmp2
= n
>> 8) != 0) ? 8 + log2TableByte
[tmp2
] : log2TableByte
[n
];
123 log2I(std::uint64_t n
)
125 GMX_ASSERT(n
> 0, "The behavior of log(0) is undefined");
126 #if HAVE_BUILTIN_CLZLL
127 // gcc, icc, clang. xor with sign bit should be optimized out
128 return __builtin_clzll(n
) ^ 63U;
129 #elif HAVE_BITSCANREVERSE64
131 _BitScanReverse64(&res
, static_cast<unsigned __int64
>(n
));
132 return static_cast<unsigned int>(res
);
134 return 63 - __cntlz8(n
);
137 // No 64-bit log2 instrinsic available. Solve it by calling our internal
138 // 32-bit version (which in turn might defer to a software solution)
140 std::uint32_t high32Bits
= static_cast<std::uint32_t>(n
>>32);
141 std::uint32_t result
;
145 result
= log2I(high32Bits
) + 32;
149 result
= log2I(static_cast<std::uint32_t>(n
));
157 log2I(std::int32_t n
)
159 GMX_ASSERT(n
> 0, "The behavior of log(n) for n<=0 is undefined");
160 return log2I(static_cast<std::uint32_t>(n
));
164 log2I(std::int64_t n
)
166 GMX_ASSERT(n
> 0, "The behavior of log(n) for n<=0 is undefined");
167 return log2I(static_cast<std::uint64_t>(n
));
171 greatestCommonDivisor(std::int64_t p
,
176 std::int64_t tmp
= q
;
186 double xabs
= std::abs(x
);
195 return std::numeric_limits
<double>::infinity();
200 return -std::numeric_limits
<double>::infinity();
207 // Rational approximation in range [0,0.7]
209 double P
= (((-0.140543331 * z
+ 0.914624893) * z
- 1.645349621) * z
+ 0.886226899);
210 double Q
= ((((0.012229801 * z
- 0.329097515) * z
+ 1.442710462) * z
- 2.118377725) * z
+ 1.0);
215 // Rational approximation in range [0.7,1)
216 double z
= std::sqrt(-std::log((1.0 - std::abs(x
))/2.0));
217 double P
= ((1.641345311 * z
+ 3.429567803) * z
- 1.624906493) * z
- 1.970840454;
218 double Q
= (1.637067800 * z
+ 3.543889200) * z
+ 1.0;
219 res
= std::copysign(1.0, x
) * P
/Q
;
222 // Double precision requires two N-R iterations
223 res
= res
- (std::erf(res
) - x
)/( (2.0/std::sqrt(M_PI
))*std::exp(-res
*res
));
224 res
= res
- (std::erf(res
) - x
)/( (2.0/std::sqrt(M_PI
))*std::exp(-res
*res
));
232 float xabs
= std::abs(x
);
241 return std::numeric_limits
<float>::infinity();
246 return -std::numeric_limits
<float>::infinity();
253 // Rational approximation in range [0,0.7]
255 float P
= (((-0.140543331f
* z
+ 0.914624893f
) * z
- 1.645349621f
) * z
+ 0.886226899f
);
256 float Q
= ((((0.012229801f
* z
- 0.329097515f
) * z
+ 1.442710462f
) * z
- 2.118377725f
) * z
+ 1.0f
);
261 // Rational approximation in range [0.7,1)
262 float z
= std::sqrt(-std::log((1.0 - std::abs(x
))/2.0f
));
263 float P
= ((1.641345311f
* z
+ 3.429567803f
) * z
- 1.624906493f
) * z
- 1.970840454f
;
264 float Q
= (1.637067800f
* z
+ 3.543889200f
) * z
+ 1.0f
;
265 res
= std::copysign(1.0f
, x
) * P
/Q
;
268 // Single N-R iteration sufficient for single precision
269 res
= res
- (std::erf(res
) - x
)/( (2.0f
/std::sqrt(M_PI
))*std::exp(-res
*res
));