Change PaddedVector to PaddedHostVector for force CPU buffer
[gromacs.git] / src / gromacs / mdrun / tpi.cpp
bloba72e3607b8dc38a537d38d3ad8d4b58427950aba
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 /*! \internal \file
39 * \brief This file defines the integrator for test particle insertion
41 * \author Berk Hess <hess@kth.se>
42 * \ingroup module_mdrun
44 #include "gmxpre.h"
46 #include <cmath>
47 #include <cstdlib>
48 #include <cstring>
49 #include <ctime>
51 #include <algorithm>
53 #include <cfenv>
55 #include "gromacs/commandline/filenm.h"
56 #include "gromacs/domdec/dlbtiming.h"
57 #include "gromacs/domdec/domdec.h"
58 #include "gromacs/ewald/pme.h"
59 #include "gromacs/fileio/confio.h"
60 #include "gromacs/fileio/trxio.h"
61 #include "gromacs/fileio/xvgr.h"
62 #include "gromacs/gmxlib/chargegroup.h"
63 #include "gromacs/gmxlib/conformation_utilities.h"
64 #include "gromacs/gmxlib/network.h"
65 #include "gromacs/gmxlib/nrnb.h"
66 #include "gromacs/math/units.h"
67 #include "gromacs/math/vec.h"
68 #include "gromacs/mdlib/constr.h"
69 #include "gromacs/mdlib/dispersioncorrection.h"
70 #include "gromacs/mdlib/energyoutput.h"
71 #include "gromacs/mdlib/force.h"
72 #include "gromacs/mdlib/force_flags.h"
73 #include "gromacs/mdlib/gmx_omp_nthreads.h"
74 #include "gromacs/mdlib/mdatoms.h"
75 #include "gromacs/mdlib/tgroup.h"
76 #include "gromacs/mdlib/update.h"
77 #include "gromacs/mdlib/vsite.h"
78 #include "gromacs/mdrunutility/printtime.h"
79 #include "gromacs/mdtypes/commrec.h"
80 #include "gromacs/mdtypes/forcerec.h"
81 #include "gromacs/mdtypes/group.h"
82 #include "gromacs/mdtypes/inputrec.h"
83 #include "gromacs/mdtypes/md_enums.h"
84 #include "gromacs/mdtypes/mdrunoptions.h"
85 #include "gromacs/mdtypes/state.h"
86 #include "gromacs/nbnxm/nbnxm.h"
87 #include "gromacs/pbcutil/pbc.h"
88 #include "gromacs/random/threefry.h"
89 #include "gromacs/random/uniformrealdistribution.h"
90 #include "gromacs/timing/wallcycle.h"
91 #include "gromacs/timing/walltime_accounting.h"
92 #include "gromacs/topology/mtop_util.h"
93 #include "gromacs/trajectory/trajectoryframe.h"
94 #include "gromacs/utility/cstringutil.h"
95 #include "gromacs/utility/fatalerror.h"
96 #include "gromacs/utility/gmxassert.h"
97 #include "gromacs/utility/logger.h"
98 #include "gromacs/utility/smalloc.h"
100 #include "legacysimulator.h"
102 //! Global max algorithm
103 static void global_max(t_commrec *cr, int *n)
105 int *sum, i;
107 snew(sum, cr->nnodes);
108 sum[cr->nodeid] = *n;
109 gmx_sumi(cr->nnodes, sum, cr);
110 for (i = 0; i < cr->nnodes; i++)
112 *n = std::max(*n, sum[i]);
115 sfree(sum);
118 //! Reallocate arrays.
119 static void realloc_bins(double **bin, int *nbin, int nbin_new)
121 int i;
123 if (nbin_new != *nbin)
125 srenew(*bin, nbin_new);
126 for (i = *nbin; i < nbin_new; i++)
128 (*bin)[i] = 0;
130 *nbin = nbin_new;
134 //! Computes and returns the RF exclusion energy for the last molecule starting at \p beginAtom
135 static real
136 reactionFieldExclusionCorrection(gmx::ArrayRef<const gmx::RVec> x,
137 const t_mdatoms &mdatoms,
138 const interaction_const_t &ic,
139 const int beginAtom)
141 real energy = 0;
143 for (int i = beginAtom; i < mdatoms.homenr; i++)
145 const real qi = mdatoms.chargeA[i];
146 energy -= 0.5*qi*qi*ic.c_rf;
148 for (int j = i + 1; j < mdatoms.homenr; j++)
150 const real qj = mdatoms.chargeA[j];
151 const real rsq = distance2(x[i], x[j]);
152 energy += qi*qj*(ic.k_rf*rsq - ic.c_rf);
156 return ic.epsfac*energy;
159 namespace gmx
162 // TODO: Convert to use the nbnxm kernels by putting the system and the teset molecule on two separate search grids
163 void
164 LegacySimulator::do_tpi()
166 GMX_RELEASE_ASSERT(gmx_omp_nthreads_get(emntDefault) == 1, "TPI does not support OpenMP");
168 gmx_localtop_t top;
169 PaddedHostVector<gmx::RVec> f {};
170 real lambda, t, temp, beta, drmax, epot;
171 double embU, sum_embU, *sum_UgembU, V, V_all, VembU_all;
172 t_trxstatus *status;
173 t_trxframe rerun_fr;
174 gmx_bool bDispCorr, bCharge, bRFExcl, bNotLastFrame, bStateChanged, bNS;
175 tensor force_vir, shake_vir, vir, pres;
176 int a_tp0, a_tp1, ngid, gid_tp, nener, e;
177 rvec *x_mol;
178 rvec mu_tot, x_init, dx;
179 int nnodes, frame;
180 int64_t frame_step_prev, frame_step;
181 int64_t nsteps, stepblocksize = 0, step;
182 int64_t seed;
183 int i;
184 FILE *fp_tpi = nullptr;
185 char *ptr, *dump_pdb, **leg, str[STRLEN], str2[STRLEN];
186 double dbl, dump_ener;
187 gmx_bool bCavity;
188 int nat_cavity = 0, d;
189 real *mass_cavity = nullptr, mass_tot;
190 int nbin;
191 double invbinw, *bin, refvolshift, logV, bUlogV;
192 gmx_bool bEnergyOutOfBounds;
193 const char *tpid_leg[2] = {"direct", "reweighted"};
194 auto mdatoms = mdAtoms->mdatoms();
196 GMX_UNUSED_VALUE(outputProvider);
198 GMX_LOG(mdlog.info).asParagraph().
199 appendText("Note that it is planned to change the command gmx mdrun -tpi "
200 "(and -tpic) to make the functionality available in a different "
201 "form in a future version of GROMACS, e.g. gmx test-particle-insertion.");
203 /* Since there is no upper limit to the insertion energies,
204 * we need to set an upper limit for the distribution output.
206 real bU_bin_limit = 50;
207 real bU_logV_bin_limit = bU_bin_limit + 10;
209 nnodes = cr->nnodes;
211 gmx_mtop_generate_local_top(*top_global, &top, inputrec->efep != efepNO);
213 SimulationGroups *groups = &top_global->groups;
215 bCavity = (inputrec->eI == eiTPIC);
216 if (bCavity)
218 ptr = getenv("GMX_TPIC_MASSES");
219 if (ptr == nullptr)
221 nat_cavity = 1;
223 else
225 /* Read (multiple) masses from env var GMX_TPIC_MASSES,
226 * The center of mass of the last atoms is then used for TPIC.
228 nat_cavity = 0;
229 while (sscanf(ptr, "%20lf%n", &dbl, &i) > 0)
231 srenew(mass_cavity, nat_cavity+1);
232 mass_cavity[nat_cavity] = dbl;
233 fprintf(fplog, "mass[%d] = %f\n",
234 nat_cavity+1, mass_cavity[nat_cavity]);
235 nat_cavity++;
236 ptr += i;
238 if (nat_cavity == 0)
240 gmx_fatal(FARGS, "Found %d masses in GMX_TPIC_MASSES", nat_cavity);
246 init_em(fplog,TPI,inputrec,&lambda,nrnb,mu_tot,
247 state_global->box,fr,mdatoms,top,cr,nfile,fnm,NULL,NULL);*/
248 /* We never need full pbc for TPI */
249 fr->ePBC = epbcXYZ;
250 /* Determine the temperature for the Boltzmann weighting */
251 temp = inputrec->opts.ref_t[0];
252 if (fplog)
254 for (i = 1; (i < inputrec->opts.ngtc); i++)
256 if (inputrec->opts.ref_t[i] != temp)
258 fprintf(fplog, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
259 fprintf(stderr, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
262 fprintf(fplog,
263 "\n The temperature for test particle insertion is %.3f K\n\n",
264 temp);
266 beta = 1.0/(BOLTZ*temp);
268 /* Number of insertions per frame */
269 nsteps = inputrec->nsteps;
271 /* Use the same neighborlist with more insertions points
272 * in a sphere of radius drmax around the initial point
274 /* This should be a proper mdp parameter */
275 drmax = inputrec->rtpi;
277 /* An environment variable can be set to dump all configurations
278 * to pdb with an insertion energy <= this value.
280 dump_pdb = getenv("GMX_TPI_DUMP");
281 dump_ener = 0;
282 if (dump_pdb)
284 sscanf(dump_pdb, "%20lf", &dump_ener);
287 atoms2md(top_global, inputrec, -1, nullptr, top_global->natoms, mdAtoms);
288 update_mdatoms(mdatoms, inputrec->fepvals->init_lambda);
290 f.resizeWithPadding(top_global->natoms);
292 /* Print to log file */
293 walltime_accounting_start_time(walltime_accounting);
294 wallcycle_start(wcycle, ewcRUN);
295 print_start(fplog, cr, walltime_accounting, "Test Particle Insertion");
297 /* The last charge group is the group to be inserted */
298 const t_atoms &atomsToInsert = top_global->moltype[top_global->molblock.back().type].atoms;
299 a_tp0 = top_global->natoms - atomsToInsert.nr;
300 a_tp1 = top_global->natoms;
301 if (debug)
303 fprintf(debug, "TPI atoms %d-%d\n", a_tp0, a_tp1);
306 auto x = makeArrayRef(state_global->x);
308 if (EEL_PME(fr->ic->eeltype))
310 gmx_pme_reinit_atoms(fr->pmedata, a_tp0, nullptr);
313 /* With reacion-field we have distance dependent potentials
314 * between excluded atoms, we need to add these separately
315 * for the inserted molecule.
317 real rfExclusionEnergy = 0;
318 if (EEL_RF(fr->ic->eeltype))
320 rfExclusionEnergy = reactionFieldExclusionCorrection(x, *mdatoms, *fr->ic, a_tp0);
321 if (debug)
323 fprintf(debug, "RF exclusion correction for inserted molecule: %f kJ/mol\n", rfExclusionEnergy);
327 snew(x_mol, a_tp1-a_tp0);
329 bDispCorr = (inputrec->eDispCorr != edispcNO);
330 bCharge = FALSE;
331 for (i = a_tp0; i < a_tp1; i++)
333 /* Copy the coordinates of the molecule to be insterted */
334 copy_rvec(x[i], x_mol[i-a_tp0]);
335 /* Check if we need to print electrostatic energies */
336 bCharge |= (mdatoms->chargeA[i] != 0 ||
337 ((mdatoms->chargeB != nullptr) && mdatoms->chargeB[i] != 0));
339 bRFExcl = (bCharge && EEL_RF(fr->ic->eeltype));
341 // Calculate the center of geometry of the molecule to insert
342 rvec cog = { 0, 0, 0 };
343 for (int a = a_tp0; a < a_tp1; a++)
345 rvec_inc(cog, x[a]);
347 svmul(1.0_real/(a_tp1 - a_tp0), cog, cog);
348 real molRadius = 0;
349 for (int a = a_tp0; a < a_tp1; a++)
351 molRadius = std::max(molRadius, distance2(x[a], cog));
353 molRadius = std::sqrt(molRadius);
355 const real maxCutoff = std::max(inputrec->rvdw, inputrec->rcoulomb);
356 if (bCavity)
358 if (norm(cog) > 0.5*maxCutoff && fplog)
360 fprintf(fplog, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
361 fprintf(stderr, "WARNING: Your TPI molecule is not centered at 0,0,0\n");
364 else
366 /* Center the molecule to be inserted at zero */
367 for (i = 0; i < a_tp1-a_tp0; i++)
369 rvec_dec(x_mol[i], cog);
373 if (fplog)
375 fprintf(fplog, "\nWill insert %d atoms %s partial charges\n",
376 a_tp1-a_tp0, bCharge ? "with" : "without");
378 fprintf(fplog, "\nWill insert %" PRId64 " times in each frame of %s\n",
379 nsteps, opt2fn("-rerun", nfile, fnm));
382 if (!bCavity)
384 if (inputrec->nstlist > 1)
387 /* With the same pair list we insert in a sphere of radius rtpi in different orientations */
388 if (drmax == 0 && a_tp1-a_tp0 == 1)
390 gmx_fatal(FARGS, "Re-using the neighborlist %d times for insertions of a single atom in a sphere of radius %f does not make sense", inputrec->nstlist, drmax);
392 if (fplog)
394 fprintf(fplog, "Will use the same neighborlist for %d insertions in a sphere of radius %f\n", inputrec->nstlist, drmax);
398 else
400 if (fplog)
402 fprintf(fplog, "Will insert randomly in a sphere of radius %f around the center of the cavity\n", drmax);
406 /* With the same pair list we insert in a sphere of radius rtpi
407 * in different orientations. We generate the pairlist with all
408 * inserted atoms located in the center of the sphere, so we need
409 * a buffer of size of the sphere and molecule radius.
411 inputrec->rlist = maxCutoff + 2*inputrec->rtpi + 2*molRadius;
412 fr->rlist = inputrec->rlist;
413 fr->nbv->changePairlistRadii(inputrec->rlist, inputrec->rlist);
415 ngid = groups->groups[SimulationAtomGroupType::EnergyOutput].size();
416 gid_tp = GET_CGINFO_GID(fr->cginfo[a_tp0]);
417 for (int a = a_tp0 + 1; a < a_tp1; a++)
419 if (GET_CGINFO_GID(fr->cginfo[a]) != gid_tp)
421 fprintf(fplog,
422 "NOTE: Atoms in the molecule to insert belong to different energy groups.\n"
423 " Only contributions to the group of the first atom will be reported.\n");
424 break;
427 nener = 1 + ngid;
428 if (bDispCorr)
430 nener += 1;
432 if (bCharge)
434 nener += ngid;
435 if (bRFExcl)
437 nener += 1;
439 if (EEL_FULL(fr->ic->eeltype))
441 nener += 1;
444 snew(sum_UgembU, nener);
446 /* Copy the random seed set by the user */
447 seed = inputrec->ld_seed;
449 gmx::ThreeFry2x64<16> rng(seed, gmx::RandomDomain::TestParticleInsertion); // 16 bits internal counter => 2^16 * 2 = 131072 values per stream
450 gmx::UniformRealDistribution<real> dist;
452 if (MASTER(cr))
454 fp_tpi = xvgropen(opt2fn("-tpi", nfile, fnm),
455 "TPI energies", "Time (ps)",
456 "(kJ mol\\S-1\\N) / (nm\\S3\\N)", oenv);
457 xvgr_subtitle(fp_tpi, "f. are averages over one frame", oenv);
458 snew(leg, 4+nener);
459 e = 0;
460 sprintf(str, "-kT log(<Ve\\S-\\betaU\\N>/<V>)");
461 leg[e++] = gmx_strdup(str);
462 sprintf(str, "f. -kT log<e\\S-\\betaU\\N>");
463 leg[e++] = gmx_strdup(str);
464 sprintf(str, "f. <e\\S-\\betaU\\N>");
465 leg[e++] = gmx_strdup(str);
466 sprintf(str, "f. V");
467 leg[e++] = gmx_strdup(str);
468 sprintf(str, "f. <Ue\\S-\\betaU\\N>");
469 leg[e++] = gmx_strdup(str);
470 for (i = 0; i < ngid; i++)
472 sprintf(str, "f. <U\\sVdW %s\\Ne\\S-\\betaU\\N>",
473 *(groups->groupNames[groups->groups[SimulationAtomGroupType::EnergyOutput][i]]));
474 leg[e++] = gmx_strdup(str);
476 if (bDispCorr)
478 sprintf(str, "f. <U\\sdisp c\\Ne\\S-\\betaU\\N>");
479 leg[e++] = gmx_strdup(str);
481 if (bCharge)
483 for (i = 0; i < ngid; i++)
485 sprintf(str, "f. <U\\sCoul %s\\Ne\\S-\\betaU\\N>",
486 *(groups->groupNames[groups->groups[SimulationAtomGroupType::EnergyOutput][i]]));
487 leg[e++] = gmx_strdup(str);
489 if (bRFExcl)
491 sprintf(str, "f. <U\\sRF excl\\Ne\\S-\\betaU\\N>");
492 leg[e++] = gmx_strdup(str);
494 if (EEL_FULL(fr->ic->eeltype))
496 sprintf(str, "f. <U\\sCoul recip\\Ne\\S-\\betaU\\N>");
497 leg[e++] = gmx_strdup(str);
500 xvgr_legend(fp_tpi, 4+nener, leg, oenv);
501 for (i = 0; i < 4+nener; i++)
503 sfree(leg[i]);
505 sfree(leg);
507 clear_rvec(x_init);
508 V_all = 0;
509 VembU_all = 0;
511 invbinw = 10;
512 nbin = 10;
513 snew(bin, nbin);
515 /* Avoid frame step numbers <= -1 */
516 frame_step_prev = -1;
518 bNotLastFrame = read_first_frame(oenv, &status, opt2fn("-rerun", nfile, fnm),
519 &rerun_fr, TRX_NEED_X);
520 frame = 0;
522 if (rerun_fr.natoms - (bCavity ? nat_cavity : 0) !=
523 mdatoms->nr - (a_tp1 - a_tp0))
525 gmx_fatal(FARGS, "Number of atoms in trajectory (%d)%s "
526 "is not equal the number in the run input file (%d) "
527 "minus the number of atoms to insert (%d)\n",
528 rerun_fr.natoms, bCavity ? " minus one" : "",
529 mdatoms->nr, a_tp1-a_tp0);
532 refvolshift = log(det(rerun_fr.box));
534 switch (inputrec->eI)
536 case eiTPI:
537 stepblocksize = inputrec->nstlist;
538 break;
539 case eiTPIC:
540 stepblocksize = 1;
541 break;
542 default:
543 gmx_fatal(FARGS, "Unknown integrator %s", ei_names[inputrec->eI]);
546 while (bNotLastFrame)
548 frame_step = rerun_fr.step;
549 if (frame_step <= frame_step_prev)
551 /* We don't have step number in the trajectory file,
552 * or we have constant or decreasing step numbers.
553 * Ensure we have increasing step numbers, since we use
554 * the step numbers as a counter for random numbers.
556 frame_step = frame_step_prev + 1;
558 frame_step_prev = frame_step;
560 lambda = rerun_fr.lambda;
561 t = rerun_fr.time;
563 sum_embU = 0;
564 for (e = 0; e < nener; e++)
566 sum_UgembU[e] = 0;
569 /* Copy the coordinates from the input trajectory */
570 auto x = makeArrayRef(state_global->x);
571 for (i = 0; i < rerun_fr.natoms; i++)
573 copy_rvec(rerun_fr.x[i], x[i]);
575 copy_mat(rerun_fr.box, state_global->box);
576 const matrix &box = state_global->box;
578 V = det(box);
579 logV = log(V);
581 bStateChanged = TRUE;
582 bNS = TRUE;
584 put_atoms_in_box(fr->ePBC, box, x);
586 /* Put all atoms except for the inserted ones on the grid */
587 rvec vzero = { 0, 0, 0 };
588 rvec boxDiagonal = { box[XX][XX], box[YY][YY], box[ZZ][ZZ] };
589 nbnxn_put_on_grid(fr->nbv.get(), box,
590 0, vzero, boxDiagonal,
591 nullptr, 0, a_tp0, -1,
592 fr->cginfo, x,
593 0, nullptr);
595 step = cr->nodeid*stepblocksize;
596 while (step < nsteps)
598 /* Restart random engine using the frame and insertion step
599 * as counters.
600 * Note that we need to draw several random values per iteration,
601 * but by using the internal subcounter functionality of ThreeFry2x64
602 * we can draw 131072 unique 64-bit values before exhausting
603 * the stream. This is a huge margin, and if something still goes
604 * wrong you will get an exception when the stream is exhausted.
606 rng.restart(frame_step, step);
607 dist.reset(); // erase any memory in the distribution
609 if (!bCavity)
611 /* Random insertion in the whole volume */
612 bNS = (step % inputrec->nstlist == 0);
613 if (bNS)
615 /* Generate a random position in the box */
616 for (d = 0; d < DIM; d++)
618 x_init[d] = dist(rng)*state_global->box[d][d];
622 else
624 /* Random insertion around a cavity location
625 * given by the last coordinate of the trajectory.
627 if (step == 0)
629 if (nat_cavity == 1)
631 /* Copy the location of the cavity */
632 copy_rvec(rerun_fr.x[rerun_fr.natoms-1], x_init);
634 else
636 /* Determine the center of mass of the last molecule */
637 clear_rvec(x_init);
638 mass_tot = 0;
639 for (i = 0; i < nat_cavity; i++)
641 for (d = 0; d < DIM; d++)
643 x_init[d] +=
644 mass_cavity[i]*rerun_fr.x[rerun_fr.natoms-nat_cavity+i][d];
646 mass_tot += mass_cavity[i];
648 for (d = 0; d < DIM; d++)
650 x_init[d] /= mass_tot;
656 if (bNS)
658 for (int a = a_tp0; a < a_tp1; a++)
660 x[a] = x_init;
663 /* Put the inserted molecule on it's own search grid */
664 nbnxn_put_on_grid(fr->nbv.get(), box,
665 1, x_init, x_init,
666 nullptr, a_tp0, a_tp1, -1,
667 fr->cginfo, x,
668 0, nullptr);
670 /* TODO: Avoid updating all atoms at every bNS step */
671 fr->nbv->setAtomProperties(*mdatoms, fr->cginfo);
673 fr->nbv->constructPairlist(Nbnxm::InteractionLocality::Local,
674 &top.excls, step, nrnb);
676 bNS = FALSE;
679 /* Add random displacement uniformly distributed in a sphere
680 * of radius rtpi. We don't need to do this is we generate
681 * a new center location every step.
683 rvec x_tp;
684 if (bCavity || inputrec->nstlist > 1)
686 /* Generate coordinates within |dx|=drmax of x_init */
689 for (d = 0; d < DIM; d++)
691 dx[d] = (2*dist(rng) - 1)*drmax;
694 while (norm2(dx) > drmax*drmax);
695 rvec_add(x_init, dx, x_tp);
697 else
699 copy_rvec(x_init, x_tp);
702 if (a_tp1 - a_tp0 == 1)
704 /* Insert a single atom, just copy the insertion location */
705 copy_rvec(x_tp, x[a_tp0]);
707 else
709 /* Copy the coordinates from the top file */
710 for (i = a_tp0; i < a_tp1; i++)
712 copy_rvec(x_mol[i-a_tp0], x[i]);
714 /* Rotate the molecule randomly */
715 real angleX = 2*M_PI*dist(rng);
716 real angleY = 2*M_PI*dist(rng);
717 real angleZ = 2*M_PI*dist(rng);
718 rotate_conf(a_tp1-a_tp0, state_global->x.rvec_array()+a_tp0, nullptr,
719 angleX, angleY, angleZ);
720 /* Shift to the insertion location */
721 for (i = a_tp0; i < a_tp1; i++)
723 rvec_inc(x[i], x_tp);
727 /* Note: NonLocal refers to the inserted molecule */
728 fr->nbv->convertCoordinates(Nbnxm::AtomLocality::NonLocal, false, x);
730 /* Clear some matrix variables */
731 clear_mat(force_vir);
732 clear_mat(shake_vir);
733 clear_mat(vir);
734 clear_mat(pres);
736 /* Calc energy (no forces) on new positions.
737 * Since we only need the intermolecular energy
738 * and the RF exclusion terms of the inserted molecule occur
739 * within a single charge group we can pass NULL for the graph.
740 * This also avoids shifts that would move charge groups
741 * out of the box. */
742 /* Make do_force do a single node force calculation */
743 cr->nnodes = 1;
745 // TPI might place a particle so close that the potential
746 // is infinite. Since this is intended to happen, we
747 // temporarily suppress any exceptions that the processor
748 // might raise, then restore the old behaviour.
749 std::fenv_t floatingPointEnvironment;
750 std::feholdexcept(&floatingPointEnvironment);
751 do_force(fplog, cr, ms, inputrec, nullptr, nullptr, imdSession,
752 pull_work,
753 step, nrnb, wcycle, &top,
754 state_global->box, state_global->x.arrayRefWithPadding(), &state_global->hist,
755 f.arrayRefWithPadding(), force_vir, mdatoms, enerd, fcd,
756 state_global->lambda,
757 nullptr, fr, mdScheduleWork, nullptr, mu_tot, t, nullptr,
758 GMX_FORCE_NONBONDED | GMX_FORCE_ENERGY |
759 (bStateChanged ? GMX_FORCE_STATECHANGED : 0),
760 DDBalanceRegionHandler(nullptr));
761 std::feclearexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
762 std::feupdateenv(&floatingPointEnvironment);
764 cr->nnodes = nnodes;
765 bStateChanged = FALSE;
767 if (fr->dispersionCorrection)
769 /* Calculate long range corrections to pressure and energy */
770 const DispersionCorrection::Correction correction =
771 fr->dispersionCorrection->calculate(state_global->box, lambda);
772 /* figure out how to rearrange the next 4 lines MRS 8/4/2009 */
773 enerd->term[F_DISPCORR] = correction.energy;
774 enerd->term[F_EPOT] += correction.energy;
775 enerd->term[F_PRES] += correction.pressure;
776 enerd->term[F_DVDL] += correction.dvdl;
778 else
780 enerd->term[F_DISPCORR] = 0;
782 if (EEL_RF(fr->ic->eeltype))
784 enerd->term[F_EPOT] += rfExclusionEnergy;
787 epot = enerd->term[F_EPOT];
788 bEnergyOutOfBounds = FALSE;
790 /* If the compiler doesn't optimize this check away
791 * we catch the NAN energies.
792 * The epot>GMX_REAL_MAX check catches inf values,
793 * which should nicely result in embU=0 through the exp below,
794 * but it does not hurt to check anyhow.
796 /* Non-bonded Interaction usually diverge at r=0.
797 * With tabulated interaction functions the first few entries
798 * should be capped in a consistent fashion between
799 * repulsion, dispersion and Coulomb to avoid accidental
800 * negative values in the total energy.
801 * The table generation code in tables.c does this.
802 * With user tbales the user should take care of this.
804 if (epot != epot || epot > GMX_REAL_MAX)
806 bEnergyOutOfBounds = TRUE;
808 if (bEnergyOutOfBounds)
810 if (debug)
812 fprintf(debug, "\n time %.3f, step %d: non-finite energy %f, using exp(-bU)=0\n", t, static_cast<int>(step), epot);
814 embU = 0;
816 else
818 // Exponent argument is fine in SP range, but output can be in DP range
819 embU = exp(static_cast<double>(-beta*epot));
820 sum_embU += embU;
821 /* Determine the weighted energy contributions of each energy group */
822 e = 0;
823 sum_UgembU[e++] += epot*embU;
824 if (fr->bBHAM)
826 for (i = 0; i < ngid; i++)
828 sum_UgembU[e++] +=
829 enerd->grpp.ener[egBHAMSR][GID(i, gid_tp, ngid)]*embU;
832 else
834 for (i = 0; i < ngid; i++)
836 sum_UgembU[e++] +=
837 enerd->grpp.ener[egLJSR][GID(i, gid_tp, ngid)]*embU;
840 if (bDispCorr)
842 sum_UgembU[e++] += enerd->term[F_DISPCORR]*embU;
844 if (bCharge)
846 for (i = 0; i < ngid; i++)
848 sum_UgembU[e++] += enerd->grpp.ener[egCOULSR][GID(i, gid_tp, ngid)] * embU;
850 if (bRFExcl)
852 sum_UgembU[e++] += rfExclusionEnergy*embU;
854 if (EEL_FULL(fr->ic->eeltype))
856 sum_UgembU[e++] += enerd->term[F_COUL_RECIP]*embU;
861 if (embU == 0 || beta*epot > bU_bin_limit)
863 bin[0]++;
865 else
867 i = gmx::roundToInt((bU_logV_bin_limit
868 - (beta*epot - logV + refvolshift))*invbinw);
869 if (i < 0)
871 i = 0;
873 if (i >= nbin)
875 realloc_bins(&bin, &nbin, i+10);
877 bin[i]++;
880 if (debug)
882 fprintf(debug, "TPI %7d %12.5e %12.5f %12.5f %12.5f\n",
883 static_cast<int>(step), epot, x_tp[XX], x_tp[YY], x_tp[ZZ]);
886 if (dump_pdb && epot <= dump_ener)
888 sprintf(str, "t%g_step%d.pdb", t, static_cast<int>(step));
889 sprintf(str2, "t: %f step %d ener: %f", t, static_cast<int>(step), epot);
890 write_sto_conf_mtop(str, str2, top_global, state_global->x.rvec_array(), state_global->v.rvec_array(),
891 inputrec->ePBC, state_global->box);
894 step++;
895 if ((step/stepblocksize) % cr->nnodes != cr->nodeid)
897 /* Skip all steps assigned to the other MPI ranks */
898 step += (cr->nnodes - 1)*stepblocksize;
902 if (PAR(cr))
904 /* When running in parallel sum the energies over the processes */
905 gmx_sumd(1, &sum_embU, cr);
906 gmx_sumd(nener, sum_UgembU, cr);
909 frame++;
910 V_all += V;
911 VembU_all += V*sum_embU/nsteps;
913 if (fp_tpi)
915 if (mdrunOptions.verbose || frame%10 == 0 || frame < 10)
917 fprintf(stderr, "mu %10.3e <mu> %10.3e\n",
918 -log(sum_embU/nsteps)/beta, -log(VembU_all/V_all)/beta);
921 fprintf(fp_tpi, "%10.3f %12.5e %12.5e %12.5e %12.5e",
923 VembU_all == 0 ? 20/beta : -log(VembU_all/V_all)/beta,
924 sum_embU == 0 ? 20/beta : -log(sum_embU/nsteps)/beta,
925 sum_embU/nsteps, V);
926 for (e = 0; e < nener; e++)
928 fprintf(fp_tpi, " %12.5e", sum_UgembU[e]/nsteps);
930 fprintf(fp_tpi, "\n");
931 fflush(fp_tpi);
934 bNotLastFrame = read_next_frame(oenv, status, &rerun_fr);
935 } /* End of the loop */
936 walltime_accounting_end_time(walltime_accounting);
938 close_trx(status);
940 if (fp_tpi != nullptr)
942 xvgrclose(fp_tpi);
945 if (fplog != nullptr)
947 fprintf(fplog, "\n");
948 fprintf(fplog, " <V> = %12.5e nm^3\n", V_all/frame);
949 const double mu = -log(VembU_all/V_all)/beta;
950 fprintf(fplog, " <mu> = %12.5e kJ/mol\n", mu);
952 if (!std::isfinite(mu))
954 fprintf(fplog, "\nThe computed chemical potential is not finite - consider increasing the number of steps and/or the number of frames to insert into.\n");
958 /* Write the Boltzmann factor histogram */
959 if (PAR(cr))
961 /* When running in parallel sum the bins over the processes */
962 i = nbin;
963 global_max(cr, &i);
964 realloc_bins(&bin, &nbin, i);
965 gmx_sumd(nbin, bin, cr);
967 if (MASTER(cr))
969 fp_tpi = xvgropen(opt2fn("-tpid", nfile, fnm),
970 "TPI energy distribution",
971 "\\betaU - log(V/<V>)", "count", oenv);
972 sprintf(str, "number \\betaU > %g: %9.3e", bU_bin_limit, bin[0]);
973 xvgr_subtitle(fp_tpi, str, oenv);
974 xvgr_legend(fp_tpi, 2, tpid_leg, oenv);
975 for (i = nbin-1; i > 0; i--)
977 bUlogV = -i/invbinw + bU_logV_bin_limit - refvolshift + log(V_all/frame);
978 fprintf(fp_tpi, "%6.2f %10d %12.5e\n",
979 bUlogV,
980 roundToInt(bin[i]),
981 bin[i]*exp(-bUlogV)*V_all/VembU_all);
983 xvgrclose(fp_tpi);
985 sfree(bin);
987 sfree(sum_UgembU);
989 walltime_accounting_set_nsteps_done(walltime_accounting, frame*inputrec->nsteps);
992 } // namespace gmx