2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2018,2019, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
37 * \brief This file defines functions for mdrun to call to make a new
38 * domain decomposition, and check it.
40 * \author Berk Hess <hess@kth.se>
41 * \ingroup module_domdec
46 #include "partition.h"
55 #include "gromacs/domdec/collect.h"
56 #include "gromacs/domdec/dlb.h"
57 #include "gromacs/domdec/dlbtiming.h"
58 #include "gromacs/domdec/domdec.h"
59 #include "gromacs/domdec/domdec_network.h"
60 #include "gromacs/domdec/ga2la.h"
61 #include "gromacs/domdec/localatomsetmanager.h"
62 #include "gromacs/domdec/mdsetup.h"
63 #include "gromacs/ewald/pme.h"
64 #include "gromacs/gmxlib/chargegroup.h"
65 #include "gromacs/gmxlib/network.h"
66 #include "gromacs/gmxlib/nrnb.h"
67 #include "gromacs/imd/imd.h"
68 #include "gromacs/math/functions.h"
69 #include "gromacs/math/vec.h"
70 #include "gromacs/mdlib/forcerec.h"
71 #include "gromacs/mdlib/gmx_omp_nthreads.h"
72 #include "gromacs/mdlib/mdatoms.h"
73 #include "gromacs/mdlib/nsgrid.h"
74 #include "gromacs/mdlib/vsite.h"
75 #include "gromacs/mdtypes/commrec.h"
76 #include "gromacs/mdtypes/forcerec.h"
77 #include "gromacs/mdtypes/inputrec.h"
78 #include "gromacs/mdtypes/md_enums.h"
79 #include "gromacs/mdtypes/nblist.h"
80 #include "gromacs/mdtypes/state.h"
81 #include "gromacs/nbnxm/nbnxm.h"
82 #include "gromacs/pulling/pull.h"
83 #include "gromacs/timing/wallcycle.h"
84 #include "gromacs/topology/mtop_util.h"
85 #include "gromacs/topology/topology.h"
86 #include "gromacs/utility/cstringutil.h"
87 #include "gromacs/utility/fatalerror.h"
88 #include "gromacs/utility/logger.h"
89 #include "gromacs/utility/real.h"
90 #include "gromacs/utility/smalloc.h"
91 #include "gromacs/utility/strconvert.h"
92 #include "gromacs/utility/stringstream.h"
93 #include "gromacs/utility/stringutil.h"
94 #include "gromacs/utility/textwriter.h"
97 #include "cellsizes.h"
98 #include "distribute.h"
99 #include "domdec_constraints.h"
100 #include "domdec_internal.h"
101 #include "domdec_vsite.h"
103 #include "redistribute.h"
106 /*! \brief Turn on DLB when the load imbalance causes this amount of total loss.
108 * There is a bit of overhead with DLB and it's difficult to achieve
109 * a load imbalance of less than 2% with DLB.
111 #define DD_PERF_LOSS_DLB_ON 0.02
113 //! Warn about imbalance due to PP or PP/PME load imbalance at this loss.
114 #define DD_PERF_LOSS_WARN 0.05
117 //! Debug helper printing a DD zone
118 static void print_ddzone(FILE *fp
, int d
, int i
, int j
, gmx_ddzone_t
*zone
)
120 fprintf(fp
, "zone d0 %d d1 %d d2 %d min0 %6.3f max1 %6.3f mch0 %6.3f mch1 %6.3f p1_0 %6.3f p1_1 %6.3f\n",
122 zone
->min0
, zone
->max1
,
123 zone
->mch0
, zone
->mch0
,
124 zone
->p1_0
, zone
->p1_1
);
127 /*! \brief Using the home grid size as input in cell_ns_x0 and cell_ns_x1
128 * takes the extremes over all home and remote zones in the halo
129 * and returns the results in cell_ns_x0 and cell_ns_x1.
130 * Note: only used with the group cut-off scheme.
132 static void dd_move_cellx(gmx_domdec_t
*dd
,
133 const gmx_ddbox_t
*ddbox
,
137 constexpr int c_ddZoneCommMaxNumZones
= 5;
138 gmx_ddzone_t buf_s
[c_ddZoneCommMaxNumZones
];
139 gmx_ddzone_t buf_r
[c_ddZoneCommMaxNumZones
];
140 gmx_ddzone_t buf_e
[c_ddZoneCommMaxNumZones
];
141 gmx_domdec_comm_t
*comm
= dd
->comm
;
145 for (int d
= 1; d
< dd
->ndim
; d
++)
147 int dim
= dd
->dim
[d
];
148 gmx_ddzone_t
&zp
= (d
== 1) ? comm
->zone_d1
[0] : comm
->zone_d2
[0][0];
150 /* Copy the base sizes of the home zone */
151 zp
.min0
= cell_ns_x0
[dim
];
152 zp
.max1
= cell_ns_x1
[dim
];
153 zp
.min1
= cell_ns_x1
[dim
];
154 zp
.mch0
= cell_ns_x0
[dim
];
155 zp
.mch1
= cell_ns_x1
[dim
];
156 zp
.p1_0
= cell_ns_x0
[dim
];
157 zp
.p1_1
= cell_ns_x1
[dim
];
161 gmx::ArrayRef
<DDCellsizesWithDlb
> cellsizes
= comm
->cellsizesWithDlb
;
163 /* Loop backward over the dimensions and aggregate the extremes
166 for (int d
= dd
->ndim
- 2; d
>= 0; d
--)
168 const int dim
= dd
->dim
[d
];
169 const bool applyPbc
= (dim
< ddbox
->npbcdim
);
171 /* Use an rvec to store two reals */
172 extr_s
[d
][0] = cellsizes
[d
+ 1].fracLower
;
173 extr_s
[d
][1] = cellsizes
[d
+ 1].fracUpper
;
174 extr_s
[d
][2] = cellsizes
[d
+ 1].fracUpper
;
177 GMX_ASSERT(pos
< c_ddZoneCommMaxNumZones
, "The buffers should be sufficiently large");
178 /* Store the extremes in the backward sending buffer,
179 * so they get updated separately from the forward communication.
181 for (int d1
= d
; d1
< dd
->ndim
-1; d1
++)
183 gmx_ddzone_t
&buf
= buf_s
[pos
];
185 /* We invert the order to be able to use the same loop for buf_e */
186 buf
.min0
= extr_s
[d1
][1];
187 buf
.max1
= extr_s
[d1
][0];
188 buf
.min1
= extr_s
[d1
][2];
191 /* Store the cell corner of the dimension we communicate along */
192 buf
.p1_0
= comm
->cell_x0
[dim
];
198 buf_s
[pos
] = (dd
->ndim
== 2) ? comm
->zone_d1
[0] : comm
->zone_d2
[0][0];
201 if (dd
->ndim
== 3 && d
== 0)
203 buf_s
[pos
] = comm
->zone_d2
[0][1];
205 buf_s
[pos
] = comm
->zone_d1
[0];
209 /* We only need to communicate the extremes
210 * in the forward direction
212 int numPulses
= comm
->cd
[d
].numPulses();
216 /* Take the minimum to avoid double communication */
217 numPulsesMin
= std::min(numPulses
, dd
->nc
[dim
] - 1 - numPulses
);
221 /* Without PBC we should really not communicate over
222 * the boundaries, but implementing that complicates
223 * the communication setup and therefore we simply
224 * do all communication, but ignore some data.
226 numPulsesMin
= numPulses
;
228 for (int pulse
= 0; pulse
< numPulsesMin
; pulse
++)
230 /* Communicate the extremes forward */
231 bool receiveValidData
= (applyPbc
|| dd
->ci
[dim
] > 0);
233 int numElements
= dd
->ndim
- d
- 1;
234 ddSendrecv(dd
, d
, dddirForward
,
235 extr_s
+ d
, numElements
,
236 extr_r
+ d
, numElements
);
238 if (receiveValidData
)
240 for (int d1
= d
; d1
< dd
->ndim
- 1; d1
++)
242 extr_s
[d1
][0] = std::max(extr_s
[d1
][0], extr_r
[d1
][0]);
243 extr_s
[d1
][1] = std::min(extr_s
[d1
][1], extr_r
[d1
][1]);
244 extr_s
[d1
][2] = std::min(extr_s
[d1
][2], extr_r
[d1
][2]);
249 const int numElementsInBuffer
= pos
;
250 for (int pulse
= 0; pulse
< numPulses
; pulse
++)
252 /* Communicate all the zone information backward */
253 bool receiveValidData
= (applyPbc
|| dd
->ci
[dim
] < dd
->nc
[dim
] - 1);
255 static_assert(sizeof(gmx_ddzone_t
) == c_ddzoneNumReals
*sizeof(real
), "Here we expect gmx_ddzone_t to consist of c_ddzoneNumReals reals (only)");
257 int numReals
= numElementsInBuffer
*c_ddzoneNumReals
;
258 ddSendrecv(dd
, d
, dddirBackward
,
259 gmx::arrayRefFromArray(&buf_s
[0].min0
, numReals
),
260 gmx::arrayRefFromArray(&buf_r
[0].min0
, numReals
));
265 for (int d1
= d
+ 1; d1
< dd
->ndim
; d1
++)
267 /* Determine the decrease of maximum required
268 * communication height along d1 due to the distance along d,
269 * this avoids a lot of useless atom communication.
271 real dist_d
= comm
->cell_x1
[dim
] - buf_r
[0].p1_0
;
274 if (ddbox
->tric_dir
[dim
])
276 /* c is the off-diagonal coupling between the cell planes
277 * along directions d and d1.
279 c
= ddbox
->v
[dim
][dd
->dim
[d1
]][dim
];
285 real det
= (1 + c
*c
)*comm
->cutoff
*comm
->cutoff
- dist_d
*dist_d
;
288 dh
[d1
] = comm
->cutoff
- (c
*dist_d
+ std::sqrt(det
))/(1 + c
*c
);
292 /* A negative value signals out of range */
298 /* Accumulate the extremes over all pulses */
299 for (int i
= 0; i
< numElementsInBuffer
; i
++)
307 if (receiveValidData
)
309 buf_e
[i
].min0
= std::min(buf_e
[i
].min0
, buf_r
[i
].min0
);
310 buf_e
[i
].max1
= std::max(buf_e
[i
].max1
, buf_r
[i
].max1
);
311 buf_e
[i
].min1
= std::min(buf_e
[i
].min1
, buf_r
[i
].min1
);
315 if (dd
->ndim
== 3 && d
== 0 && i
== numElementsInBuffer
- 1)
323 if (receiveValidData
&& dh
[d1
] >= 0)
325 buf_e
[i
].mch0
= std::max(buf_e
[i
].mch0
, buf_r
[i
].mch0
-dh
[d1
]);
326 buf_e
[i
].mch1
= std::max(buf_e
[i
].mch1
, buf_r
[i
].mch1
-dh
[d1
]);
329 /* Copy the received buffer to the send buffer,
330 * to pass the data through with the next pulse.
334 if (((applyPbc
|| dd
->ci
[dim
] + numPulses
< dd
->nc
[dim
]) && pulse
== numPulses
- 1) ||
335 (!applyPbc
&& dd
->ci
[dim
] + 1 + pulse
== dd
->nc
[dim
] - 1))
337 /* Store the extremes */
340 for (int d1
= d
; d1
< dd
->ndim
-1; d1
++)
342 extr_s
[d1
][1] = std::min(extr_s
[d1
][1], buf_e
[pos
].min0
);
343 extr_s
[d1
][0] = std::max(extr_s
[d1
][0], buf_e
[pos
].max1
);
344 extr_s
[d1
][2] = std::min(extr_s
[d1
][2], buf_e
[pos
].min1
);
348 if (d
== 1 || (d
== 0 && dd
->ndim
== 3))
350 for (int i
= d
; i
< 2; i
++)
352 comm
->zone_d2
[1-d
][i
] = buf_e
[pos
];
358 comm
->zone_d1
[1] = buf_e
[pos
];
364 if (d
== 1 || (d
== 0 && dd
->ndim
== 3))
366 for (int i
= d
; i
< 2; i
++)
368 comm
->zone_d2
[1 - d
][i
].dataSet
= 0;
373 comm
->zone_d1
[1].dataSet
= 0;
381 int dim
= dd
->dim
[1];
382 for (int i
= 0; i
< 2; i
++)
384 if (comm
->zone_d1
[i
].dataSet
!= 0)
388 print_ddzone(debug
, 1, i
, 0, &comm
->zone_d1
[i
]);
390 cell_ns_x0
[dim
] = std::min(cell_ns_x0
[dim
], comm
->zone_d1
[i
].min0
);
391 cell_ns_x1
[dim
] = std::max(cell_ns_x1
[dim
], comm
->zone_d1
[i
].max1
);
397 int dim
= dd
->dim
[2];
398 for (int i
= 0; i
< 2; i
++)
400 for (int j
= 0; j
< 2; j
++)
402 if (comm
->zone_d2
[i
][j
].dataSet
!= 0)
406 print_ddzone(debug
, 2, i
, j
, &comm
->zone_d2
[i
][j
]);
408 cell_ns_x0
[dim
] = std::min(cell_ns_x0
[dim
], comm
->zone_d2
[i
][j
].min0
);
409 cell_ns_x1
[dim
] = std::max(cell_ns_x1
[dim
], comm
->zone_d2
[i
][j
].max1
);
414 for (int d
= 1; d
< dd
->ndim
; d
++)
416 cellsizes
[d
].fracLowerMax
= extr_s
[d
-1][0];
417 cellsizes
[d
].fracUpperMin
= extr_s
[d
-1][1];
420 fprintf(debug
, "Cell fraction d %d, max0 %f, min1 %f\n",
421 d
, cellsizes
[d
].fracLowerMax
, cellsizes
[d
].fracUpperMin
);
426 //! Sets the charge-group zones to be equal to the home zone.
427 static void set_zones_ncg_home(gmx_domdec_t
*dd
)
429 gmx_domdec_zones_t
*zones
;
432 zones
= &dd
->comm
->zones
;
434 zones
->cg_range
[0] = 0;
435 for (i
= 1; i
< zones
->n
+1; i
++)
437 zones
->cg_range
[i
] = dd
->ncg_home
;
439 /* zone_ncg1[0] should always be equal to ncg_home */
440 dd
->comm
->zone_ncg1
[0] = dd
->ncg_home
;
443 //! Restore atom groups for the charge groups.
444 static void restoreAtomGroups(gmx_domdec_t
*dd
,
445 const t_state
*state
)
447 gmx::ArrayRef
<const int> atomGroupsState
= state
->cg_gl
;
449 std::vector
<int> &globalAtomGroupIndices
= dd
->globalAtomGroupIndices
;
451 globalAtomGroupIndices
.resize(atomGroupsState
.size());
453 /* Copy back the global charge group indices from state
454 * and rebuild the local charge group to atom index.
456 for (gmx::index i
= 0; i
< atomGroupsState
.ssize(); i
++)
458 globalAtomGroupIndices
[i
] = atomGroupsState
[i
];
461 dd
->ncg_home
= atomGroupsState
.size();
462 dd
->comm
->atomRanges
.setEnd(DDAtomRanges::Type::Home
, atomGroupsState
.ssize());
464 set_zones_ncg_home(dd
);
467 //! Sets the cginfo structures.
468 static void dd_set_cginfo(gmx::ArrayRef
<const int> index_gl
, int cg0
, int cg1
,
469 t_forcerec
*fr
, char *bLocalCG
)
473 const cginfo_mb_t
*cginfo_mb
= fr
->cginfo_mb
;
474 gmx::ArrayRef
<int> cginfo
= fr
->cginfo
;
476 for (int cg
= cg0
; cg
< cg1
; cg
++)
478 cginfo
[cg
] = ddcginfo(cginfo_mb
, index_gl
[cg
]);
482 if (bLocalCG
!= nullptr)
484 for (int cg
= cg0
; cg
< cg1
; cg
++)
486 bLocalCG
[index_gl
[cg
]] = TRUE
;
491 //! Makes the mappings between global and local atom indices during DD repartioning.
492 static void make_dd_indices(gmx_domdec_t
*dd
,
495 const int numZones
= dd
->comm
->zones
.n
;
496 const int *zone2cg
= dd
->comm
->zones
.cg_range
;
497 const int *zone_ncg1
= dd
->comm
->zone_ncg1
;
498 gmx::ArrayRef
<const int> globalAtomGroupIndices
= dd
->globalAtomGroupIndices
;
500 std::vector
<int> &globalAtomIndices
= dd
->globalAtomIndices
;
501 gmx_ga2la_t
&ga2la
= *dd
->ga2la
;
503 if (zone2cg
[1] != dd
->ncg_home
)
505 gmx_incons("dd->ncg_zone is not up to date");
508 /* Make the local to global and global to local atom index */
510 globalAtomIndices
.resize(a
);
511 for (int zone
= 0; zone
< numZones
; zone
++)
522 int cg1
= zone2cg
[zone
+1];
523 int cg1_p1
= cg0
+ zone_ncg1
[zone
];
525 for (int cg
= cg0
; cg
< cg1
; cg
++)
530 /* Signal that this cg is from more than one pulse away */
533 int cg_gl
= globalAtomGroupIndices
[cg
];
534 globalAtomIndices
.push_back(cg_gl
);
535 ga2la
.insert(cg_gl
, {a
, zone1
});
541 //! Checks the charge-group assignements.
542 static int check_bLocalCG(gmx_domdec_t
*dd
, int ncg_sys
, const char *bLocalCG
,
546 if (bLocalCG
== nullptr)
550 for (size_t i
= 0; i
< dd
->globalAtomGroupIndices
.size(); i
++)
552 if (!bLocalCG
[dd
->globalAtomGroupIndices
[i
]])
555 "DD rank %d, %s: atom group %zu, global atom group %d is not marked in bLocalCG (ncg_home %d)\n", dd
->rank
, where
, i
+ 1, dd
->globalAtomGroupIndices
[i
] + 1, dd
->ncg_home
);
560 for (int i
= 0; i
< ncg_sys
; i
++)
567 if (ngl
!= dd
->globalAtomGroupIndices
.size())
569 fprintf(stderr
, "DD rank %d, %s: In bLocalCG %zu atom groups are marked as local, whereas there are %zu\n", dd
->rank
, where
, ngl
, dd
->globalAtomGroupIndices
.size());
576 //! Checks whether global and local atom indices are consistent.
577 static void check_index_consistency(gmx_domdec_t
*dd
,
578 int natoms_sys
, int ncg_sys
,
583 const int numAtomsInZones
= dd
->comm
->atomRanges
.end(DDAtomRanges::Type::Zones
);
585 if (dd
->comm
->DD_debug
> 1)
587 std::vector
<int> have(natoms_sys
);
588 for (int a
= 0; a
< numAtomsInZones
; a
++)
590 int globalAtomIndex
= dd
->globalAtomIndices
[a
];
591 if (have
[globalAtomIndex
] > 0)
593 fprintf(stderr
, "DD rank %d: global atom %d occurs twice: index %d and %d\n", dd
->rank
, globalAtomIndex
+ 1, have
[globalAtomIndex
], a
+1);
597 have
[globalAtomIndex
] = a
+ 1;
602 std::vector
<int> have(numAtomsInZones
);
605 for (int i
= 0; i
< natoms_sys
; i
++)
607 if (const auto entry
= dd
->ga2la
->find(i
))
609 const int a
= entry
->la
;
610 if (a
>= numAtomsInZones
)
612 fprintf(stderr
, "DD rank %d: global atom %d marked as local atom %d, which is larger than nat_tot (%d)\n", dd
->rank
, i
+1, a
+1, numAtomsInZones
);
618 if (dd
->globalAtomIndices
[a
] != i
)
620 fprintf(stderr
, "DD rank %d: global atom %d marked as local atom %d, which has global atom index %d\n", dd
->rank
, i
+1, a
+1, dd
->globalAtomIndices
[a
]+1);
627 if (ngl
!= numAtomsInZones
)
630 "DD rank %d, %s: %d global atom indices, %d local atoms\n",
631 dd
->rank
, where
, ngl
, numAtomsInZones
);
633 for (int a
= 0; a
< numAtomsInZones
; a
++)
638 "DD rank %d, %s: local atom %d, global %d has no global index\n",
639 dd
->rank
, where
, a
+ 1, dd
->globalAtomIndices
[a
] + 1);
643 nerr
+= check_bLocalCG(dd
, ncg_sys
, dd
->comm
->bLocalCG
, where
);
647 gmx_fatal(FARGS
, "DD rank %d, %s: %d atom(group) index inconsistencies",
648 dd
->rank
, where
, nerr
);
652 //! Clear all DD global state indices, starting from \p atomGroupStart and \p atomStart
653 static void clearDDStateIndices(gmx_domdec_t
*dd
,
657 gmx_ga2la_t
&ga2la
= *dd
->ga2la
;
661 /* Clear the whole list without the overhead of searching */
666 const int numAtomsInZones
= dd
->comm
->atomRanges
.end(DDAtomRanges::Type::Zones
);
667 for (int i
= 0; i
< numAtomsInZones
; i
++)
669 ga2la
.erase(dd
->globalAtomIndices
[i
]);
673 char *bLocalCG
= dd
->comm
->bLocalCG
;
676 for (size_t atomGroup
= atomGroupStart
; atomGroup
< dd
->globalAtomGroupIndices
.size(); atomGroup
++)
678 bLocalCG
[dd
->globalAtomGroupIndices
[atomGroup
]] = FALSE
;
682 dd_clear_local_vsite_indices(dd
);
686 dd_clear_local_constraint_indices(dd
);
690 bool check_grid_jump(int64_t step
,
691 const gmx_domdec_t
*dd
,
693 const gmx_ddbox_t
*ddbox
,
696 gmx_domdec_comm_t
*comm
= dd
->comm
;
697 bool invalid
= false;
699 for (int d
= 1; d
< dd
->ndim
; d
++)
701 const DDCellsizesWithDlb
&cellsizes
= comm
->cellsizesWithDlb
[d
];
702 const int dim
= dd
->dim
[d
];
703 const real limit
= grid_jump_limit(comm
, cutoff
, d
);
704 real bfac
= ddbox
->box_size
[dim
];
705 if (ddbox
->tric_dir
[dim
])
707 bfac
*= ddbox
->skew_fac
[dim
];
709 if ((cellsizes
.fracUpper
- cellsizes
.fracLowerMax
)*bfac
< limit
||
710 (cellsizes
.fracLower
- cellsizes
.fracUpperMin
)*bfac
> -limit
)
718 /* This error should never be triggered under normal
719 * circumstances, but you never know ...
721 gmx_fatal(FARGS
, "step %s: The domain decomposition grid has shifted too much in the %c-direction around cell %d %d %d. This should not have happened. Running with fewer ranks might avoid this issue.",
722 gmx_step_str(step
, buf
),
723 dim2char(dim
), dd
->ci
[XX
], dd
->ci
[YY
], dd
->ci
[ZZ
]);
730 //! Return the duration of force calculations on this rank.
731 static float dd_force_load(gmx_domdec_comm_t
*comm
)
740 load
*= 1.0 + (comm
->eFlop
- 1)*(0.1*rand()/RAND_MAX
- 0.05);
745 load
= comm
->cycl
[ddCyclF
];
746 if (comm
->cycl_n
[ddCyclF
] > 1)
748 /* Subtract the maximum of the last n cycle counts
749 * to get rid of possible high counts due to other sources,
750 * for instance system activity, that would otherwise
751 * affect the dynamic load balancing.
753 load
-= comm
->cycl_max
[ddCyclF
];
757 if (comm
->cycl_n
[ddCyclWaitGPU
] && comm
->nrank_gpu_shared
> 1)
759 float gpu_wait
, gpu_wait_sum
;
761 gpu_wait
= comm
->cycl
[ddCyclWaitGPU
];
762 if (comm
->cycl_n
[ddCyclF
] > 1)
764 /* We should remove the WaitGPU time of the same MD step
765 * as the one with the maximum F time, since the F time
766 * and the wait time are not independent.
767 * Furthermore, the step for the max F time should be chosen
768 * the same on all ranks that share the same GPU.
769 * But to keep the code simple, we remove the average instead.
770 * The main reason for artificially long times at some steps
771 * is spurious CPU activity or MPI time, so we don't expect
772 * that changes in the GPU wait time matter a lot here.
774 gpu_wait
*= (comm
->cycl_n
[ddCyclF
] - 1)/static_cast<float>(comm
->cycl_n
[ddCyclF
]);
776 /* Sum the wait times over the ranks that share the same GPU */
777 MPI_Allreduce(&gpu_wait
, &gpu_wait_sum
, 1, MPI_FLOAT
, MPI_SUM
,
778 comm
->mpi_comm_gpu_shared
);
779 /* Replace the wait time by the average over the ranks */
780 load
+= -gpu_wait
+ gpu_wait_sum
/comm
->nrank_gpu_shared
;
788 //! Runs cell size checks and communicates the boundaries.
789 static void comm_dd_ns_cell_sizes(gmx_domdec_t
*dd
,
791 rvec cell_ns_x0
, rvec cell_ns_x1
,
794 gmx_domdec_comm_t
*comm
;
799 for (dim_ind
= 0; dim_ind
< dd
->ndim
; dim_ind
++)
801 dim
= dd
->dim
[dim_ind
];
803 /* Without PBC we don't have restrictions on the outer cells */
804 if (!(dim
>= ddbox
->npbcdim
&&
805 (dd
->ci
[dim
] == 0 || dd
->ci
[dim
] == dd
->nc
[dim
] - 1)) &&
807 (comm
->cell_x1
[dim
] - comm
->cell_x0
[dim
])*ddbox
->skew_fac
[dim
] <
808 comm
->cellsize_min
[dim
])
811 gmx_fatal(FARGS
, "step %s: The %c-size (%f) times the triclinic skew factor (%f) is smaller than the smallest allowed cell size (%f) for domain decomposition grid cell %d %d %d",
812 gmx_step_str(step
, buf
), dim2char(dim
),
813 comm
->cell_x1
[dim
] - comm
->cell_x0
[dim
],
814 ddbox
->skew_fac
[dim
],
815 dd
->comm
->cellsize_min
[dim
],
816 dd
->ci
[XX
], dd
->ci
[YY
], dd
->ci
[ZZ
]);
820 if ((isDlbOn(dd
->comm
) && dd
->ndim
> 1) || ddbox
->nboundeddim
< DIM
)
822 /* Communicate the boundaries and update cell_ns_x0/1 */
823 dd_move_cellx(dd
, ddbox
, cell_ns_x0
, cell_ns_x1
);
824 if (isDlbOn(dd
->comm
) && dd
->ndim
> 1)
826 check_grid_jump(step
, dd
, dd
->comm
->cutoff
, ddbox
, TRUE
);
831 //! Compute and communicate to determine the load distribution across PP ranks.
832 static void get_load_distribution(gmx_domdec_t
*dd
, gmx_wallcycle_t wcycle
)
834 gmx_domdec_comm_t
*comm
;
836 float cell_frac
= 0, sbuf
[DD_NLOAD_MAX
];
841 fprintf(debug
, "get_load_distribution start\n");
844 wallcycle_start(wcycle
, ewcDDCOMMLOAD
);
848 bSepPME
= (dd
->pme_nodeid
>= 0);
850 if (dd
->ndim
== 0 && bSepPME
)
852 /* Without decomposition, but with PME nodes, we need the load */
853 comm
->load
[0].mdf
= comm
->cycl
[ddCyclPPduringPME
];
854 comm
->load
[0].pme
= comm
->cycl
[ddCyclPME
];
857 for (int d
= dd
->ndim
- 1; d
>= 0; d
--)
859 const DDCellsizesWithDlb
*cellsizes
= (isDlbOn(dd
->comm
) ? &comm
->cellsizesWithDlb
[d
] : nullptr);
860 const int dim
= dd
->dim
[d
];
861 /* Check if we participate in the communication in this dimension */
862 if (d
== dd
->ndim
-1 ||
863 (dd
->ci
[dd
->dim
[d
+1]] == 0 && dd
->ci
[dd
->dim
[dd
->ndim
-1]] == 0))
865 load
= &comm
->load
[d
];
866 if (isDlbOn(dd
->comm
))
868 cell_frac
= cellsizes
->fracUpper
- cellsizes
->fracLower
;
873 sbuf
[pos
++] = dd_force_load(comm
);
874 sbuf
[pos
++] = sbuf
[0];
875 if (isDlbOn(dd
->comm
))
877 sbuf
[pos
++] = sbuf
[0];
878 sbuf
[pos
++] = cell_frac
;
881 sbuf
[pos
++] = cellsizes
->fracLowerMax
;
882 sbuf
[pos
++] = cellsizes
->fracUpperMin
;
887 sbuf
[pos
++] = comm
->cycl
[ddCyclPPduringPME
];
888 sbuf
[pos
++] = comm
->cycl
[ddCyclPME
];
893 sbuf
[pos
++] = comm
->load
[d
+1].sum
;
894 sbuf
[pos
++] = comm
->load
[d
+1].max
;
895 if (isDlbOn(dd
->comm
))
897 sbuf
[pos
++] = comm
->load
[d
+1].sum_m
;
898 sbuf
[pos
++] = comm
->load
[d
+1].cvol_min
*cell_frac
;
899 sbuf
[pos
++] = comm
->load
[d
+1].flags
;
902 sbuf
[pos
++] = cellsizes
->fracLowerMax
;
903 sbuf
[pos
++] = cellsizes
->fracUpperMin
;
908 sbuf
[pos
++] = comm
->load
[d
+1].mdf
;
909 sbuf
[pos
++] = comm
->load
[d
+1].pme
;
913 /* Communicate a row in DD direction d.
914 * The communicators are setup such that the root always has rank 0.
917 MPI_Gather(sbuf
, load
->nload
*sizeof(float), MPI_BYTE
,
918 load
->load
, load
->nload
*sizeof(float), MPI_BYTE
,
919 0, comm
->mpi_comm_load
[d
]);
921 if (dd
->ci
[dim
] == dd
->master_ci
[dim
])
923 /* We are the master along this row, process this row */
924 RowMaster
*rowMaster
= nullptr;
928 rowMaster
= cellsizes
->rowMaster
.get();
938 for (int i
= 0; i
< dd
->nc
[dim
]; i
++)
940 load
->sum
+= load
->load
[pos
++];
941 load
->max
= std::max(load
->max
, load
->load
[pos
]);
943 if (isDlbOn(dd
->comm
))
945 if (rowMaster
->dlbIsLimited
)
947 /* This direction could not be load balanced properly,
948 * therefore we need to use the maximum iso the average load.
950 load
->sum_m
= std::max(load
->sum_m
, load
->load
[pos
]);
954 load
->sum_m
+= load
->load
[pos
];
957 load
->cvol_min
= std::min(load
->cvol_min
, load
->load
[pos
]);
961 load
->flags
= gmx::roundToInt(load
->load
[pos
++]);
965 rowMaster
->bounds
[i
].cellFracLowerMax
= load
->load
[pos
++];
966 rowMaster
->bounds
[i
].cellFracUpperMin
= load
->load
[pos
++];
971 load
->mdf
= std::max(load
->mdf
, load
->load
[pos
]);
973 load
->pme
= std::max(load
->pme
, load
->load
[pos
]);
977 if (isDlbOn(comm
) && rowMaster
->dlbIsLimited
)
979 load
->sum_m
*= dd
->nc
[dim
];
980 load
->flags
|= (1<<d
);
988 comm
->nload
+= dd_load_count(comm
);
989 comm
->load_step
+= comm
->cycl
[ddCyclStep
];
990 comm
->load_sum
+= comm
->load
[0].sum
;
991 comm
->load_max
+= comm
->load
[0].max
;
994 for (int d
= 0; d
< dd
->ndim
; d
++)
996 if (comm
->load
[0].flags
& (1<<d
))
1004 comm
->load_mdf
+= comm
->load
[0].mdf
;
1005 comm
->load_pme
+= comm
->load
[0].pme
;
1009 wallcycle_stop(wcycle
, ewcDDCOMMLOAD
);
1013 fprintf(debug
, "get_load_distribution finished\n");
1017 /*! \brief Return the relative performance loss on the total run time
1018 * due to the force calculation load imbalance. */
1019 static float dd_force_load_fraction(gmx_domdec_t
*dd
)
1021 if (dd
->comm
->nload
> 0 && dd
->comm
->load_step
> 0)
1023 return dd
->comm
->load_sum
/(dd
->comm
->load_step
*dd
->nnodes
);
1031 /*! \brief Return the relative performance loss on the total run time
1032 * due to the force calculation load imbalance. */
1033 static float dd_force_imb_perf_loss(gmx_domdec_t
*dd
)
1035 if (dd
->comm
->nload
> 0 && dd
->comm
->load_step
> 0)
1038 (dd
->comm
->load_max
*dd
->nnodes
- dd
->comm
->load_sum
)/
1039 (dd
->comm
->load_step
*dd
->nnodes
);
1047 //! Print load-balance report e.g. at the end of a run.
1048 static void print_dd_load_av(FILE *fplog
, gmx_domdec_t
*dd
)
1050 gmx_domdec_comm_t
*comm
= dd
->comm
;
1052 /* Only the master rank prints loads and only if we measured loads */
1053 if (!DDMASTER(dd
) || comm
->nload
== 0)
1059 int numPpRanks
= dd
->nnodes
;
1060 int numPmeRanks
= (dd
->pme_nodeid
>= 0) ? comm
->npmenodes
: 0;
1061 int numRanks
= numPpRanks
+ numPmeRanks
;
1062 float lossFraction
= 0;
1064 /* Print the average load imbalance and performance loss */
1065 if (dd
->nnodes
> 1 && comm
->load_sum
> 0)
1067 float imbalance
= comm
->load_max
*numPpRanks
/comm
->load_sum
- 1;
1068 lossFraction
= dd_force_imb_perf_loss(dd
);
1070 std::string msg
= "\nDynamic load balancing report:\n";
1071 std::string dlbStateStr
;
1073 switch (dd
->comm
->dlbState
)
1075 case DlbState::offUser
:
1076 dlbStateStr
= "DLB was off during the run per user request.";
1078 case DlbState::offForever
:
1079 /* Currectly this can happen due to performance loss observed, cell size
1080 * limitations or incompatibility with other settings observed during
1081 * determineInitialDlbState(). */
1082 dlbStateStr
= "DLB got disabled because it was unsuitable to use.";
1084 case DlbState::offCanTurnOn
:
1085 dlbStateStr
= "DLB was off during the run due to low measured imbalance.";
1087 case DlbState::offTemporarilyLocked
:
1088 dlbStateStr
= "DLB was locked at the end of the run due to unfinished PP-PME balancing.";
1090 case DlbState::onCanTurnOff
:
1091 dlbStateStr
= "DLB was turned on during the run due to measured imbalance.";
1093 case DlbState::onUser
:
1094 dlbStateStr
= "DLB was permanently on during the run per user request.";
1097 GMX_ASSERT(false, "Undocumented DLB state");
1100 msg
+= " " + dlbStateStr
+ "\n";
1101 msg
+= gmx::formatString(" Average load imbalance: %.1f%%.\n", imbalance
*100);
1102 msg
+= gmx::formatString(" The balanceable part of the MD step is %d%%, load imbalance is computed from this.\n",
1103 gmx::roundToInt(dd_force_load_fraction(dd
)*100));
1104 msg
+= gmx::formatString(" Part of the total run time spent waiting due to load imbalance: %.1f%%.\n",
1106 fprintf(fplog
, "%s", msg
.c_str());
1107 fprintf(stderr
, "\n%s", msg
.c_str());
1110 /* Print during what percentage of steps the load balancing was limited */
1111 bool dlbWasLimited
= false;
1114 sprintf(buf
, " Steps where the load balancing was limited by -rdd, -rcon and/or -dds:");
1115 for (int d
= 0; d
< dd
->ndim
; d
++)
1117 int limitPercentage
= (200*comm
->load_lim
[d
] + 1)/(2*comm
->nload
);
1118 sprintf(buf
+strlen(buf
), " %c %d %%",
1119 dim2char(dd
->dim
[d
]), limitPercentage
);
1120 if (limitPercentage
>= 50)
1122 dlbWasLimited
= true;
1125 sprintf(buf
+ strlen(buf
), "\n");
1126 fprintf(fplog
, "%s", buf
);
1127 fprintf(stderr
, "%s", buf
);
1130 /* Print the performance loss due to separate PME - PP rank imbalance */
1131 float lossFractionPme
= 0;
1132 if (numPmeRanks
> 0 && comm
->load_mdf
> 0 && comm
->load_step
> 0)
1134 float pmeForceRatio
= comm
->load_pme
/comm
->load_mdf
;
1135 lossFractionPme
= (comm
->load_pme
- comm
->load_mdf
)/comm
->load_step
;
1136 if (lossFractionPme
<= 0)
1138 lossFractionPme
*= numPmeRanks
/static_cast<float>(numRanks
);
1142 lossFractionPme
*= numPpRanks
/static_cast<float>(numRanks
);
1144 sprintf(buf
, " Average PME mesh/force load: %5.3f\n", pmeForceRatio
);
1145 fprintf(fplog
, "%s", buf
);
1146 fprintf(stderr
, "%s", buf
);
1147 sprintf(buf
, " Part of the total run time spent waiting due to PP/PME imbalance: %.1f %%\n", std::fabs(lossFractionPme
)*100);
1148 fprintf(fplog
, "%s", buf
);
1149 fprintf(stderr
, "%s", buf
);
1151 fprintf(fplog
, "\n");
1152 fprintf(stderr
, "\n");
1154 if (lossFraction
>= DD_PERF_LOSS_WARN
)
1156 std::string message
= gmx::formatString(
1157 "NOTE: %.1f %% of the available CPU time was lost due to load imbalance\n"
1158 " in the domain decomposition.\n", lossFraction
*100);
1160 bool hadSuggestion
= false;
1163 message
+= " You might want to use dynamic load balancing (option -dlb.)\n";
1164 hadSuggestion
= true;
1166 else if (dlbWasLimited
)
1168 message
+= " You might want to decrease the cell size limit (options -rdd, -rcon and/or -dds).\n";
1169 hadSuggestion
= true;
1171 message
+= gmx::formatString(
1172 " You can %sconsider manually changing the decomposition (option -dd);\n"
1173 " e.g. by using fewer domains along the box dimension in which there is\n"
1174 " considerable inhomogeneity in the simulated system.",
1175 hadSuggestion
? "also " : "");
1178 fprintf(fplog
, "%s\n", message
.c_str());
1179 fprintf(stderr
, "%s\n", message
.c_str());
1181 if (numPmeRanks
> 0 && std::fabs(lossFractionPme
) >= DD_PERF_LOSS_WARN
)
1184 "NOTE: %.1f %% performance was lost because the PME ranks\n"
1185 " had %s work to do than the PP ranks.\n"
1186 " You might want to %s the number of PME ranks\n"
1187 " or %s the cut-off and the grid spacing.\n",
1188 std::fabs(lossFractionPme
*100),
1189 (lossFractionPme
< 0) ? "less" : "more",
1190 (lossFractionPme
< 0) ? "decrease" : "increase",
1191 (lossFractionPme
< 0) ? "decrease" : "increase");
1192 fprintf(fplog
, "%s\n", buf
);
1193 fprintf(stderr
, "%s\n", buf
);
1197 //! Return the minimum communication volume.
1198 static float dd_vol_min(gmx_domdec_t
*dd
)
1200 return dd
->comm
->load
[0].cvol_min
*dd
->nnodes
;
1203 //! Return the DD load flags.
1204 static int dd_load_flags(gmx_domdec_t
*dd
)
1206 return dd
->comm
->load
[0].flags
;
1209 //! Return the reported load imbalance in force calculations.
1210 static float dd_f_imbal(gmx_domdec_t
*dd
)
1212 if (dd
->comm
->load
[0].sum
> 0)
1214 return dd
->comm
->load
[0].max
*dd
->nnodes
/dd
->comm
->load
[0].sum
- 1.0f
;
1218 /* Something is wrong in the cycle counting, report no load imbalance */
1223 //! Returns DD load balance report.
1225 dd_print_load(gmx_domdec_t
*dd
,
1228 gmx::StringOutputStream stream
;
1229 gmx::TextWriter
log(&stream
);
1231 int flags
= dd_load_flags(dd
);
1234 log
.writeString("DD load balancing is limited by minimum cell size in dimension");
1235 for (int d
= 0; d
< dd
->ndim
; d
++)
1239 log
.writeStringFormatted(" %c", dim2char(dd
->dim
[d
]));
1242 log
.ensureLineBreak();
1244 log
.writeString("DD step " + gmx::toString(step
));
1245 if (isDlbOn(dd
->comm
))
1247 log
.writeStringFormatted(" vol min/aver %5.3f%c",
1248 dd_vol_min(dd
), flags
? '!' : ' ');
1252 log
.writeStringFormatted(" load imb.: force %4.1f%%", dd_f_imbal(dd
)*100);
1254 if (dd
->comm
->cycl_n
[ddCyclPME
])
1256 log
.writeStringFormatted(" pme mesh/force %5.3f", dd_pme_f_ratio(dd
));
1258 log
.ensureLineBreak();
1259 return stream
.toString();
1262 //! Prints DD load balance report in mdrun verbose mode.
1263 static void dd_print_load_verbose(gmx_domdec_t
*dd
)
1265 if (isDlbOn(dd
->comm
))
1267 fprintf(stderr
, "vol %4.2f%c ",
1268 dd_vol_min(dd
), dd_load_flags(dd
) ? '!' : ' ');
1272 fprintf(stderr
, "imb F %2d%% ", gmx::roundToInt(dd_f_imbal(dd
)*100));
1274 if (dd
->comm
->cycl_n
[ddCyclPME
])
1276 fprintf(stderr
, "pme/F %4.2f ", dd_pme_f_ratio(dd
));
1280 //! Turns on dynamic load balancing if possible and needed.
1281 static void turn_on_dlb(const gmx::MDLogger
&mdlog
,
1285 gmx_domdec_comm_t
*comm
= dd
->comm
;
1287 real cellsize_min
= comm
->cellsize_min
[dd
->dim
[0]];
1288 for (int d
= 1; d
< dd
->ndim
; d
++)
1290 cellsize_min
= std::min(cellsize_min
, comm
->cellsize_min
[dd
->dim
[d
]]);
1293 /* Turn off DLB if we're too close to the cell size limit. */
1294 if (cellsize_min
< comm
->cellsize_limit
*1.05)
1296 GMX_LOG(mdlog
.info
).appendTextFormatted(
1297 "step %s Measured %.1f %% performance loss due to load imbalance, "
1298 "but the minimum cell size is smaller than 1.05 times the cell size limit. "
1299 "Will no longer try dynamic load balancing.",
1300 gmx::toString(step
).c_str(), dd_force_imb_perf_loss(dd
)*100);
1302 comm
->dlbState
= DlbState::offForever
;
1306 GMX_LOG(mdlog
.info
).appendTextFormatted(
1307 "step %s Turning on dynamic load balancing, because the performance loss due to load imbalance is %.1f %%.",
1308 gmx::toString(step
).c_str(), dd_force_imb_perf_loss(dd
)*100);
1309 comm
->dlbState
= DlbState::onCanTurnOff
;
1311 /* Store the non-DLB performance, so we can check if DLB actually
1312 * improves performance.
1314 GMX_RELEASE_ASSERT(comm
->cycl_n
[ddCyclStep
] > 0, "When we turned on DLB, we should have measured cycles");
1315 comm
->cyclesPerStepBeforeDLB
= comm
->cycl
[ddCyclStep
]/comm
->cycl_n
[ddCyclStep
];
1319 /* We can set the required cell size info here,
1320 * so we do not need to communicate this.
1321 * The grid is completely uniform.
1323 for (int d
= 0; d
< dd
->ndim
; d
++)
1325 RowMaster
*rowMaster
= comm
->cellsizesWithDlb
[d
].rowMaster
.get();
1329 comm
->load
[d
].sum_m
= comm
->load
[d
].sum
;
1331 int nc
= dd
->nc
[dd
->dim
[d
]];
1332 for (int i
= 0; i
< nc
; i
++)
1334 rowMaster
->cellFrac
[i
] = i
/static_cast<real
>(nc
);
1337 rowMaster
->bounds
[i
].cellFracLowerMax
= i
/static_cast<real
>(nc
);
1338 rowMaster
->bounds
[i
].cellFracUpperMin
= (i
+ 1)/static_cast<real
>(nc
);
1341 rowMaster
->cellFrac
[nc
] = 1.0;
1346 //! Turns off dynamic load balancing (but leave it able to turn back on).
1347 static void turn_off_dlb(const gmx::MDLogger
&mdlog
,
1351 GMX_LOG(mdlog
.info
).appendText(
1352 "step " + gmx::toString(step
) + " Turning off dynamic load balancing, because it is degrading performance.");
1353 dd
->comm
->dlbState
= DlbState::offCanTurnOn
;
1354 dd
->comm
->haveTurnedOffDlb
= true;
1355 dd
->comm
->ddPartioningCountFirstDlbOff
= dd
->ddp_count
;
1358 //! Turns off dynamic load balancing permanently.
1359 static void turn_off_dlb_forever(const gmx::MDLogger
&mdlog
,
1363 GMX_RELEASE_ASSERT(dd
->comm
->dlbState
== DlbState::offCanTurnOn
, "Can only turn off DLB forever when it was in the can-turn-on state");
1364 GMX_LOG(mdlog
.info
).appendText(
1365 "step " + gmx::toString(step
) + " Will no longer try dynamic load balancing, as it degraded performance.");
1366 dd
->comm
->dlbState
= DlbState::offForever
;
1369 void set_dd_dlb_max_cutoff(t_commrec
*cr
, real cutoff
)
1371 gmx_domdec_comm_t
*comm
;
1373 comm
= cr
->dd
->comm
;
1375 /* Turn on the DLB limiting (might have been on already) */
1376 comm
->bPMELoadBalDLBLimits
= TRUE
;
1378 /* Change the cut-off limit */
1379 comm
->PMELoadBal_max_cutoff
= cutoff
;
1383 fprintf(debug
, "PME load balancing set a limit to the DLB staggering such that a %f cut-off will continue to fit\n",
1384 comm
->PMELoadBal_max_cutoff
);
1388 //! Merge atom buffers.
1389 static void merge_cg_buffers(int ncell
,
1390 gmx_domdec_comm_dim_t
*cd
, int pulse
,
1392 gmx::ArrayRef
<int> index_gl
,
1394 gmx::ArrayRef
<gmx::RVec
> x
,
1395 gmx::ArrayRef
<const gmx::RVec
> recv_vr
,
1396 cginfo_mb_t
*cginfo_mb
,
1397 gmx::ArrayRef
<int> cginfo
)
1399 gmx_domdec_ind_t
*ind
, *ind_p
;
1400 int p
, cell
, c
, cg
, cg0
, cg1
, cg_gl
;
1403 ind
= &cd
->ind
[pulse
];
1405 /* First correct the already stored data */
1406 shift
= ind
->nrecv
[ncell
];
1407 for (cell
= ncell
-1; cell
>= 0; cell
--)
1409 shift
-= ind
->nrecv
[cell
];
1412 /* Move the cg's present from previous grid pulses */
1413 cg0
= ncg_cell
[ncell
+cell
];
1414 cg1
= ncg_cell
[ncell
+cell
+1];
1415 for (cg
= cg1
-1; cg
>= cg0
; cg
--)
1417 index_gl
[cg
+ shift
] = index_gl
[cg
];
1418 x
[cg
+ shift
] = x
[cg
];
1419 cginfo
[cg
+ shift
] = cginfo
[cg
];
1421 /* Correct the already stored send indices for the shift */
1422 for (p
= 1; p
<= pulse
; p
++)
1424 ind_p
= &cd
->ind
[p
];
1426 for (c
= 0; c
< cell
; c
++)
1428 cg0
+= ind_p
->nsend
[c
];
1430 cg1
= cg0
+ ind_p
->nsend
[cell
];
1431 for (cg
= cg0
; cg
< cg1
; cg
++)
1433 ind_p
->index
[cg
] += shift
;
1439 /* Merge in the communicated buffers */
1442 for (cell
= 0; cell
< ncell
; cell
++)
1444 cg1
= ncg_cell
[ncell
+cell
+1] + shift
;
1445 for (cg
= 0; cg
< ind
->nrecv
[cell
]; cg
++)
1447 /* Copy this atom from the buffer */
1448 index_gl
[cg1
] = recv_i
[cg0
];
1449 x
[cg1
] = recv_vr
[cg0
];
1450 /* Copy information */
1451 cg_gl
= index_gl
[cg1
];
1452 cginfo
[cg1
] = ddcginfo(cginfo_mb
, cg_gl
);
1456 shift
+= ind
->nrecv
[cell
];
1457 ncg_cell
[ncell
+cell
+1] = cg1
;
1461 //! Makes a range partitioning for the atom groups wthin a cell
1462 static void make_cell2at_index(gmx_domdec_comm_dim_t
*cd
,
1466 /* Store the atom block boundaries for easy copying of communication buffers
1468 int g
= atomGroupStart
;
1469 for (int zone
= 0; zone
< nzone
; zone
++)
1471 for (gmx_domdec_ind_t
&ind
: cd
->ind
)
1473 ind
.cell2at0
[zone
] = g
;
1474 g
+= ind
.nrecv
[zone
];
1475 ind
.cell2at1
[zone
] = g
;
1480 //! Returns whether a link is missing.
1481 static gmx_bool
missing_link(t_blocka
*link
, int cg_gl
, const char *bLocalCG
)
1487 for (i
= link
->index
[cg_gl
]; i
< link
->index
[cg_gl
+1]; i
++)
1489 if (!bLocalCG
[link
->a
[i
]])
1498 //! Domain corners for communication, a maximum of 4 i-zones see a j domain
1500 //! The corners for the non-bonded communication.
1502 //! Corner for rounding.
1504 //! Corners for rounding.
1506 //! Corners for bounded communication.
1508 //! Corner for rounding for bonded communication.
1512 //! Determine the corners of the domain(s) we are communicating with.
1514 set_dd_corners(const gmx_domdec_t
*dd
,
1515 int dim0
, int dim1
, int dim2
,
1519 const gmx_domdec_comm_t
*comm
;
1520 const gmx_domdec_zones_t
*zones
;
1525 zones
= &comm
->zones
;
1527 /* Keep the compiler happy */
1531 /* The first dimension is equal for all cells */
1532 c
->c
[0][0] = comm
->cell_x0
[dim0
];
1535 c
->bc
[0] = c
->c
[0][0];
1540 /* This cell row is only seen from the first row */
1541 c
->c
[1][0] = comm
->cell_x0
[dim1
];
1542 /* All rows can see this row */
1543 c
->c
[1][1] = comm
->cell_x0
[dim1
];
1544 if (isDlbOn(dd
->comm
))
1546 c
->c
[1][1] = std::max(comm
->cell_x0
[dim1
], comm
->zone_d1
[1].mch0
);
1549 /* For the multi-body distance we need the maximum */
1550 c
->bc
[1] = std::max(comm
->cell_x0
[dim1
], comm
->zone_d1
[1].p1_0
);
1553 /* Set the upper-right corner for rounding */
1554 c
->cr0
= comm
->cell_x1
[dim0
];
1559 for (j
= 0; j
< 4; j
++)
1561 c
->c
[2][j
] = comm
->cell_x0
[dim2
];
1563 if (isDlbOn(dd
->comm
))
1565 /* Use the maximum of the i-cells that see a j-cell */
1566 for (i
= 0; i
< zones
->nizone
; i
++)
1568 for (j
= zones
->izone
[i
].j0
; j
< zones
->izone
[i
].j1
; j
++)
1573 std::max(c
->c
[2][j
-4],
1574 comm
->zone_d2
[zones
->shift
[i
][dim0
]][zones
->shift
[i
][dim1
]].mch0
);
1580 /* For the multi-body distance we need the maximum */
1581 c
->bc
[2] = comm
->cell_x0
[dim2
];
1582 for (i
= 0; i
< 2; i
++)
1584 for (j
= 0; j
< 2; j
++)
1586 c
->bc
[2] = std::max(c
->bc
[2], comm
->zone_d2
[i
][j
].p1_0
);
1592 /* Set the upper-right corner for rounding */
1593 /* Cell (0,0,0) and cell (1,0,0) can see cell 4 (0,1,1)
1594 * Only cell (0,0,0) can see cell 7 (1,1,1)
1596 c
->cr1
[0] = comm
->cell_x1
[dim1
];
1597 c
->cr1
[3] = comm
->cell_x1
[dim1
];
1598 if (isDlbOn(dd
->comm
))
1600 c
->cr1
[0] = std::max(comm
->cell_x1
[dim1
], comm
->zone_d1
[1].mch1
);
1603 /* For the multi-body distance we need the maximum */
1604 c
->bcr1
= std::max(comm
->cell_x1
[dim1
], comm
->zone_d1
[1].p1_1
);
1611 /*! \brief Add the atom groups we need to send in this pulse from this
1612 * zone to \p localAtomGroups and \p work. */
1614 get_zone_pulse_cgs(gmx_domdec_t
*dd
,
1615 int zonei
, int zone
,
1617 gmx::ArrayRef
<const int> globalAtomGroupIndices
,
1618 int dim
, int dim_ind
,
1619 int dim0
, int dim1
, int dim2
,
1620 real r_comm2
, real r_bcomm2
,
1622 bool distanceIsTriclinic
,
1624 real skew_fac2_d
, real skew_fac_01
,
1625 rvec
*v_d
, rvec
*v_0
, rvec
*v_1
,
1626 const dd_corners_t
*c
,
1627 const rvec sf2_round
,
1628 gmx_bool bDistBonded
,
1633 gmx::ArrayRef
<const int> cginfo
,
1634 std::vector
<int> *localAtomGroups
,
1635 dd_comm_setup_work_t
*work
)
1637 gmx_domdec_comm_t
*comm
;
1639 gmx_bool bDistMB_pulse
;
1641 real r2
, rb2
, r
, tric_sh
;
1648 bScrew
= (dd
->bScrewPBC
&& dim
== XX
);
1650 bDistMB_pulse
= (bDistMB
&& bDistBonded
);
1652 /* Unpack the work data */
1653 std::vector
<int> &ibuf
= work
->atomGroupBuffer
;
1654 std::vector
<gmx::RVec
> &vbuf
= work
->positionBuffer
;
1658 for (cg
= cg0
; cg
< cg1
; cg
++)
1662 if (!distanceIsTriclinic
)
1664 /* Rectangular direction, easy */
1665 r
= cg_cm
[cg
][dim
] - c
->c
[dim_ind
][zone
];
1672 r
= cg_cm
[cg
][dim
] - c
->bc
[dim_ind
];
1678 /* Rounding gives at most a 16% reduction
1679 * in communicated atoms
1681 if (dim_ind
>= 1 && (zonei
== 1 || zonei
== 2))
1683 r
= cg_cm
[cg
][dim0
] - c
->cr0
;
1684 /* This is the first dimension, so always r >= 0 */
1691 if (dim_ind
== 2 && (zonei
== 2 || zonei
== 3))
1693 r
= cg_cm
[cg
][dim1
] - c
->cr1
[zone
];
1700 r
= cg_cm
[cg
][dim1
] - c
->bcr1
;
1710 /* Triclinic direction, more complicated */
1713 /* Rounding, conservative as the skew_fac multiplication
1714 * will slightly underestimate the distance.
1716 if (dim_ind
>= 1 && (zonei
== 1 || zonei
== 2))
1718 rn
[dim0
] = cg_cm
[cg
][dim0
] - c
->cr0
;
1719 for (i
= dim0
+1; i
< DIM
; i
++)
1721 rn
[dim0
] -= cg_cm
[cg
][i
]*v_0
[i
][dim0
];
1723 r2
= rn
[dim0
]*rn
[dim0
]*sf2_round
[dim0
];
1726 rb
[dim0
] = rn
[dim0
];
1729 /* Take care that the cell planes along dim0 might not
1730 * be orthogonal to those along dim1 and dim2.
1732 for (i
= 1; i
<= dim_ind
; i
++)
1735 if (normal
[dim0
][dimd
] > 0)
1737 rn
[dimd
] -= rn
[dim0
]*normal
[dim0
][dimd
];
1740 rb
[dimd
] -= rb
[dim0
]*normal
[dim0
][dimd
];
1745 if (dim_ind
== 2 && (zonei
== 2 || zonei
== 3))
1747 rn
[dim1
] += cg_cm
[cg
][dim1
] - c
->cr1
[zone
];
1749 for (i
= dim1
+1; i
< DIM
; i
++)
1751 tric_sh
-= cg_cm
[cg
][i
]*v_1
[i
][dim1
];
1753 rn
[dim1
] += tric_sh
;
1756 r2
+= rn
[dim1
]*rn
[dim1
]*sf2_round
[dim1
];
1757 /* Take care of coupling of the distances
1758 * to the planes along dim0 and dim1 through dim2.
1760 r2
-= rn
[dim0
]*rn
[dim1
]*skew_fac_01
;
1761 /* Take care that the cell planes along dim1
1762 * might not be orthogonal to that along dim2.
1764 if (normal
[dim1
][dim2
] > 0)
1766 rn
[dim2
] -= rn
[dim1
]*normal
[dim1
][dim2
];
1772 cg_cm
[cg
][dim1
] - c
->bcr1
+ tric_sh
;
1775 rb2
+= rb
[dim1
]*rb
[dim1
]*sf2_round
[dim1
];
1776 /* Take care of coupling of the distances
1777 * to the planes along dim0 and dim1 through dim2.
1779 rb2
-= rb
[dim0
]*rb
[dim1
]*skew_fac_01
;
1780 /* Take care that the cell planes along dim1
1781 * might not be orthogonal to that along dim2.
1783 if (normal
[dim1
][dim2
] > 0)
1785 rb
[dim2
] -= rb
[dim1
]*normal
[dim1
][dim2
];
1790 /* The distance along the communication direction */
1791 rn
[dim
] += cg_cm
[cg
][dim
] - c
->c
[dim_ind
][zone
];
1793 for (i
= dim
+1; i
< DIM
; i
++)
1795 tric_sh
-= cg_cm
[cg
][i
]*v_d
[i
][dim
];
1800 r2
+= rn
[dim
]*rn
[dim
]*skew_fac2_d
;
1801 /* Take care of coupling of the distances
1802 * to the planes along dim0 and dim1 through dim2.
1804 if (dim_ind
== 1 && zonei
== 1)
1806 r2
-= rn
[dim0
]*rn
[dim
]*skew_fac_01
;
1812 rb
[dim
] += cg_cm
[cg
][dim
] - c
->bc
[dim_ind
] + tric_sh
;
1815 rb2
+= rb
[dim
]*rb
[dim
]*skew_fac2_d
;
1816 /* Take care of coupling of the distances
1817 * to the planes along dim0 and dim1 through dim2.
1819 if (dim_ind
== 1 && zonei
== 1)
1821 rb2
-= rb
[dim0
]*rb
[dim
]*skew_fac_01
;
1829 ((bDistMB
&& rb2
< r_bcomm2
) ||
1830 (bDist2B
&& r2
< r_bcomm2
)) &&
1832 (GET_CGINFO_BOND_INTER(cginfo
[cg
]) &&
1833 missing_link(comm
->cglink
, globalAtomGroupIndices
[cg
],
1836 /* Store the local and global atom group indices and position */
1837 localAtomGroups
->push_back(cg
);
1838 ibuf
.push_back(globalAtomGroupIndices
[cg
]);
1842 if (dd
->ci
[dim
] == 0)
1844 /* Correct cg_cm for pbc */
1845 rvec_add(cg_cm
[cg
], box
[dim
], posPbc
);
1848 posPbc
[YY
] = box
[YY
][YY
] - posPbc
[YY
];
1849 posPbc
[ZZ
] = box
[ZZ
][ZZ
] - posPbc
[ZZ
];
1854 copy_rvec(cg_cm
[cg
], posPbc
);
1856 vbuf
.emplace_back(posPbc
[XX
], posPbc
[YY
], posPbc
[ZZ
]);
1863 work
->nsend_zone
= nsend_z
;
1867 static void clearCommSetupData(dd_comm_setup_work_t
*work
)
1869 work
->localAtomGroupBuffer
.clear();
1870 work
->atomGroupBuffer
.clear();
1871 work
->positionBuffer
.clear();
1873 work
->nsend_zone
= 0;
1876 //! Prepare DD communication.
1877 static void setup_dd_communication(gmx_domdec_t
*dd
,
1878 matrix box
, gmx_ddbox_t
*ddbox
,
1881 PaddedVector
<gmx::RVec
> *f
)
1883 int dim_ind
, dim
, dim0
, dim1
, dim2
, dimd
, nat_tot
;
1884 int nzone
, nzone_send
, zone
, zonei
, cg0
, cg1
;
1885 int c
, i
, cg
, cg_gl
;
1886 int *zone_cg_range
, pos_cg
;
1887 gmx_domdec_comm_t
*comm
;
1888 gmx_domdec_zones_t
*zones
;
1889 gmx_domdec_comm_dim_t
*cd
;
1890 cginfo_mb_t
*cginfo_mb
;
1891 gmx_bool bBondComm
, bDist2B
, bDistMB
, bDistBonded
;
1892 dd_corners_t corners
;
1893 rvec
*normal
, *v_d
, *v_0
= nullptr, *v_1
= nullptr;
1894 real skew_fac2_d
, skew_fac_01
;
1899 fprintf(debug
, "Setting up DD communication\n");
1904 if (comm
->dth
.empty())
1906 /* Initialize the thread data.
1907 * This can not be done in init_domain_decomposition,
1908 * as the numbers of threads is determined later.
1910 int numThreads
= gmx_omp_nthreads_get(emntDomdec
);
1911 comm
->dth
.resize(numThreads
);
1914 bBondComm
= comm
->bBondComm
;
1916 /* Do we need to determine extra distances for multi-body bondeds? */
1917 bDistMB
= (comm
->haveInterDomainMultiBodyBondeds
&& isDlbOn(dd
->comm
) && dd
->ndim
> 1);
1919 /* Do we need to determine extra distances for only two-body bondeds? */
1920 bDist2B
= (bBondComm
&& !bDistMB
);
1922 const real r_comm2
= gmx::square(domainToDomainIntoAtomToDomainCutoff(*comm
, comm
->cutoff
));
1923 const real r_bcomm2
= gmx::square(domainToDomainIntoAtomToDomainCutoff(*comm
, comm
->cutoff_mbody
));
1927 fprintf(debug
, "bBondComm %s, r_bc %f\n", gmx::boolToString(bBondComm
), std::sqrt(r_bcomm2
));
1930 zones
= &comm
->zones
;
1933 dim1
= (dd
->ndim
>= 2 ? dd
->dim
[1] : -1);
1934 dim2
= (dd
->ndim
>= 3 ? dd
->dim
[2] : -1);
1936 set_dd_corners(dd
, dim0
, dim1
, dim2
, bDistMB
, &corners
);
1938 /* Triclinic stuff */
1939 normal
= ddbox
->normal
;
1943 v_0
= ddbox
->v
[dim0
];
1944 if (ddbox
->tric_dir
[dim0
] && ddbox
->tric_dir
[dim1
])
1946 /* Determine the coupling coefficient for the distances
1947 * to the cell planes along dim0 and dim1 through dim2.
1948 * This is required for correct rounding.
1951 ddbox
->v
[dim0
][dim1
+1][dim0
]*ddbox
->v
[dim1
][dim1
+1][dim1
];
1954 fprintf(debug
, "\nskew_fac_01 %f\n", skew_fac_01
);
1960 v_1
= ddbox
->v
[dim1
];
1963 zone_cg_range
= zones
->cg_range
;
1964 cginfo_mb
= fr
->cginfo_mb
;
1966 zone_cg_range
[0] = 0;
1967 zone_cg_range
[1] = dd
->ncg_home
;
1968 comm
->zone_ncg1
[0] = dd
->ncg_home
;
1969 pos_cg
= dd
->ncg_home
;
1971 nat_tot
= comm
->atomRanges
.numHomeAtoms();
1973 for (dim_ind
= 0; dim_ind
< dd
->ndim
; dim_ind
++)
1975 dim
= dd
->dim
[dim_ind
];
1976 cd
= &comm
->cd
[dim_ind
];
1978 /* Check if we need to compute triclinic distances along this dim */
1979 bool distanceIsTriclinic
= false;
1980 for (i
= 0; i
<= dim_ind
; i
++)
1982 if (ddbox
->tric_dir
[dd
->dim
[i
]])
1984 distanceIsTriclinic
= true;
1988 if (dim
>= ddbox
->npbcdim
&& dd
->ci
[dim
] == 0)
1990 /* No pbc in this dimension, the first node should not comm. */
1998 v_d
= ddbox
->v
[dim
];
1999 skew_fac2_d
= gmx::square(ddbox
->skew_fac
[dim
]);
2001 cd
->receiveInPlace
= true;
2002 for (int p
= 0; p
< cd
->numPulses(); p
++)
2004 /* Only atoms communicated in the first pulse are used
2005 * for multi-body bonded interactions or for bBondComm.
2007 bDistBonded
= ((bDistMB
|| bDist2B
) && p
== 0);
2009 gmx_domdec_ind_t
*ind
= &cd
->ind
[p
];
2011 /* Thread 0 writes in the global index array */
2013 clearCommSetupData(&comm
->dth
[0]);
2015 for (zone
= 0; zone
< nzone_send
; zone
++)
2017 if (dim_ind
> 0 && distanceIsTriclinic
)
2019 /* Determine slightly more optimized skew_fac's
2021 * This reduces the number of communicated atoms
2022 * by about 10% for 3D DD of rhombic dodecahedra.
2024 for (dimd
= 0; dimd
< dim
; dimd
++)
2026 sf2_round
[dimd
] = 1;
2027 if (ddbox
->tric_dir
[dimd
])
2029 for (i
= dd
->dim
[dimd
]+1; i
< DIM
; i
++)
2031 /* If we are shifted in dimension i
2032 * and the cell plane is tilted forward
2033 * in dimension i, skip this coupling.
2035 if (!(zones
->shift
[nzone
+zone
][i
] &&
2036 ddbox
->v
[dimd
][i
][dimd
] >= 0))
2039 gmx::square(ddbox
->v
[dimd
][i
][dimd
]);
2042 sf2_round
[dimd
] = 1/sf2_round
[dimd
];
2047 zonei
= zone_perm
[dim_ind
][zone
];
2050 /* Here we permutate the zones to obtain a convenient order
2051 * for neighbor searching
2053 cg0
= zone_cg_range
[zonei
];
2054 cg1
= zone_cg_range
[zonei
+1];
2058 /* Look only at the cg's received in the previous grid pulse
2060 cg1
= zone_cg_range
[nzone
+zone
+1];
2061 cg0
= cg1
- cd
->ind
[p
-1].nrecv
[zone
];
2064 const int numThreads
= gmx::ssize(comm
->dth
);
2065 #pragma omp parallel for num_threads(numThreads) schedule(static)
2066 for (int th
= 0; th
< numThreads
; th
++)
2070 dd_comm_setup_work_t
&work
= comm
->dth
[th
];
2072 /* Retain data accumulated into buffers of thread 0 */
2075 clearCommSetupData(&work
);
2078 int cg0_th
= cg0
+ ((cg1
- cg0
)* th
)/numThreads
;
2079 int cg1_th
= cg0
+ ((cg1
- cg0
)*(th
+1))/numThreads
;
2081 /* Get the cg's for this pulse in this zone */
2082 get_zone_pulse_cgs(dd
, zonei
, zone
, cg0_th
, cg1_th
,
2083 dd
->globalAtomGroupIndices
,
2084 dim
, dim_ind
, dim0
, dim1
, dim2
,
2086 box
, distanceIsTriclinic
,
2087 normal
, skew_fac2_d
, skew_fac_01
,
2088 v_d
, v_0
, v_1
, &corners
, sf2_round
,
2089 bDistBonded
, bBondComm
,
2091 state
->x
.rvec_array(),
2093 th
== 0 ? &ind
->index
: &work
.localAtomGroupBuffer
,
2096 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
;
2099 std::vector
<int> &atomGroups
= comm
->dth
[0].atomGroupBuffer
;
2100 std::vector
<gmx::RVec
> &positions
= comm
->dth
[0].positionBuffer
;
2101 ind
->nsend
[zone
] = comm
->dth
[0].nsend_zone
;
2102 /* Append data of threads>=1 to the communication buffers */
2103 for (int th
= 1; th
< numThreads
; th
++)
2105 const dd_comm_setup_work_t
&dth
= comm
->dth
[th
];
2107 ind
->index
.insert(ind
->index
.end(), dth
.localAtomGroupBuffer
.begin(), dth
.localAtomGroupBuffer
.end());
2108 atomGroups
.insert(atomGroups
.end(), dth
.atomGroupBuffer
.begin(), dth
.atomGroupBuffer
.end());
2109 positions
.insert(positions
.end(), dth
.positionBuffer
.begin(), dth
.positionBuffer
.end());
2110 comm
->dth
[0].nat
+= dth
.nat
;
2111 ind
->nsend
[zone
] += dth
.nsend_zone
;
2114 /* Clear the counts in case we do not have pbc */
2115 for (zone
= nzone_send
; zone
< nzone
; zone
++)
2117 ind
->nsend
[zone
] = 0;
2119 ind
->nsend
[nzone
] = ind
->index
.size();
2120 ind
->nsend
[nzone
+ 1] = comm
->dth
[0].nat
;
2121 /* Communicate the number of cg's and atoms to receive */
2122 ddSendrecv(dd
, dim_ind
, dddirBackward
,
2123 ind
->nsend
, nzone
+2,
2124 ind
->nrecv
, nzone
+2);
2128 /* We can receive in place if only the last zone is not empty */
2129 for (zone
= 0; zone
< nzone
-1; zone
++)
2131 if (ind
->nrecv
[zone
] > 0)
2133 cd
->receiveInPlace
= false;
2138 int receiveBufferSize
= 0;
2139 if (!cd
->receiveInPlace
)
2141 receiveBufferSize
= ind
->nrecv
[nzone
];
2143 /* These buffer are actually only needed with in-place */
2144 DDBufferAccess
<int> globalAtomGroupBuffer(comm
->intBuffer
, receiveBufferSize
);
2145 DDBufferAccess
<gmx::RVec
> rvecBuffer(comm
->rvecBuffer
, receiveBufferSize
);
2147 dd_comm_setup_work_t
&work
= comm
->dth
[0];
2149 /* Make space for the global cg indices */
2150 int numAtomGroupsNew
= pos_cg
+ ind
->nrecv
[nzone
];
2151 dd
->globalAtomGroupIndices
.resize(numAtomGroupsNew
);
2152 /* Communicate the global cg indices */
2153 gmx::ArrayRef
<int> integerBufferRef
;
2154 if (cd
->receiveInPlace
)
2156 integerBufferRef
= gmx::arrayRefFromArray(dd
->globalAtomGroupIndices
.data() + pos_cg
, ind
->nrecv
[nzone
]);
2160 integerBufferRef
= globalAtomGroupBuffer
.buffer
;
2162 ddSendrecv
<int>(dd
, dim_ind
, dddirBackward
,
2163 work
.atomGroupBuffer
, integerBufferRef
);
2165 /* Make space for cg_cm */
2166 dd_check_alloc_ncg(fr
, state
, f
, pos_cg
+ ind
->nrecv
[nzone
]);
2168 /* Communicate the coordinates */
2169 gmx::ArrayRef
<gmx::RVec
> rvecBufferRef
;
2170 if (cd
->receiveInPlace
)
2172 rvecBufferRef
= gmx::makeArrayRef(state
->x
).subArray(pos_cg
, ind
->nrecv
[nzone
]);
2176 rvecBufferRef
= rvecBuffer
.buffer
;
2178 ddSendrecv
<gmx::RVec
>(dd
, dim_ind
, dddirBackward
,
2179 work
.positionBuffer
, rvecBufferRef
);
2181 /* Make the charge group index */
2182 if (cd
->receiveInPlace
)
2184 zone
= (p
== 0 ? 0 : nzone
- 1);
2185 while (zone
< nzone
)
2187 for (cg
= 0; cg
< ind
->nrecv
[zone
]; cg
++)
2189 cg_gl
= dd
->globalAtomGroupIndices
[pos_cg
];
2190 fr
->cginfo
[pos_cg
] = ddcginfo(cginfo_mb
, cg_gl
);
2193 /* Update the charge group presence,
2194 * so we can use it in the next pass of the loop.
2196 comm
->bLocalCG
[cg_gl
] = TRUE
;
2202 comm
->zone_ncg1
[nzone
+zone
] = ind
->nrecv
[zone
];
2205 zone_cg_range
[nzone
+zone
] = pos_cg
;
2210 /* This part of the code is never executed with bBondComm. */
2211 merge_cg_buffers(nzone
, cd
, p
, zone_cg_range
,
2212 dd
->globalAtomGroupIndices
, integerBufferRef
.data(),
2213 state
->x
, rvecBufferRef
,
2214 fr
->cginfo_mb
, fr
->cginfo
);
2215 pos_cg
+= ind
->nrecv
[nzone
];
2217 nat_tot
+= ind
->nrecv
[nzone
+1];
2219 if (!cd
->receiveInPlace
)
2221 /* Store the atom block for easy copying of communication buffers */
2222 make_cell2at_index(cd
, nzone
, zone_cg_range
[nzone
]);
2227 comm
->atomRanges
.setEnd(DDAtomRanges::Type::Zones
, nat_tot
);
2231 /* We don't need to update cginfo, since that was alrady done above.
2232 * So we pass NULL for the forcerec.
2234 dd_set_cginfo(dd
->globalAtomGroupIndices
,
2235 dd
->ncg_home
, dd
->globalAtomGroupIndices
.size(),
2236 nullptr, comm
->bLocalCG
);
2241 fprintf(debug
, "Finished setting up DD communication, zones:");
2242 for (c
= 0; c
< zones
->n
; c
++)
2244 fprintf(debug
, " %d", zones
->cg_range
[c
+1]-zones
->cg_range
[c
]);
2246 fprintf(debug
, "\n");
2250 //! Set boundaries for the charge group range.
2251 static void set_cg_boundaries(gmx_domdec_zones_t
*zones
)
2255 for (c
= 0; c
< zones
->nizone
; c
++)
2257 zones
->izone
[c
].cg1
= zones
->cg_range
[c
+1];
2258 zones
->izone
[c
].jcg0
= zones
->cg_range
[zones
->izone
[c
].j0
];
2259 zones
->izone
[c
].jcg1
= zones
->cg_range
[zones
->izone
[c
].j1
];
2263 /*! \brief Set zone dimensions for zones \p zone_start to \p zone_end-1
2265 * Also sets the atom density for the home zone when \p zone_start=0.
2266 * For this \p numMovedChargeGroupsInHomeZone needs to be passed to tell
2267 * how many charge groups will move but are still part of the current range.
2268 * \todo When converting domdec to use proper classes, all these variables
2269 * should be private and a method should return the correct count
2270 * depending on an internal state.
2272 * \param[in,out] dd The domain decomposition struct
2273 * \param[in] box The box
2274 * \param[in] ddbox The domain decomposition box struct
2275 * \param[in] zone_start The start of the zone range to set sizes for
2276 * \param[in] zone_end The end of the zone range to set sizes for
2277 * \param[in] numMovedChargeGroupsInHomeZone The number of charge groups in the home zone that should moved but are still present in dd->comm->zones.cg_range
2279 static void set_zones_size(gmx_domdec_t
*dd
,
2280 matrix box
, const gmx_ddbox_t
*ddbox
,
2281 int zone_start
, int zone_end
,
2282 int numMovedChargeGroupsInHomeZone
)
2284 gmx_domdec_comm_t
*comm
;
2285 gmx_domdec_zones_t
*zones
;
2294 zones
= &comm
->zones
;
2296 /* Do we need to determine extra distances for multi-body bondeds? */
2297 bDistMB
= (comm
->haveInterDomainMultiBodyBondeds
&& isDlbOn(dd
->comm
) && dd
->ndim
> 1);
2299 for (z
= zone_start
; z
< zone_end
; z
++)
2301 /* Copy cell limits to zone limits.
2302 * Valid for non-DD dims and non-shifted dims.
2304 copy_rvec(comm
->cell_x0
, zones
->size
[z
].x0
);
2305 copy_rvec(comm
->cell_x1
, zones
->size
[z
].x1
);
2308 for (d
= 0; d
< dd
->ndim
; d
++)
2312 for (z
= 0; z
< zones
->n
; z
++)
2314 /* With a staggered grid we have different sizes
2315 * for non-shifted dimensions.
2317 if (isDlbOn(dd
->comm
) && zones
->shift
[z
][dim
] == 0)
2321 zones
->size
[z
].x0
[dim
] = comm
->zone_d1
[zones
->shift
[z
][dd
->dim
[d
-1]]].min0
;
2322 zones
->size
[z
].x1
[dim
] = comm
->zone_d1
[zones
->shift
[z
][dd
->dim
[d
-1]]].max1
;
2326 zones
->size
[z
].x0
[dim
] = comm
->zone_d2
[zones
->shift
[z
][dd
->dim
[d
-2]]][zones
->shift
[z
][dd
->dim
[d
-1]]].min0
;
2327 zones
->size
[z
].x1
[dim
] = comm
->zone_d2
[zones
->shift
[z
][dd
->dim
[d
-2]]][zones
->shift
[z
][dd
->dim
[d
-1]]].max1
;
2333 rcmbs
= comm
->cutoff_mbody
;
2334 if (ddbox
->tric_dir
[dim
])
2336 rcs
/= ddbox
->skew_fac
[dim
];
2337 rcmbs
/= ddbox
->skew_fac
[dim
];
2340 /* Set the lower limit for the shifted zone dimensions */
2341 for (z
= zone_start
; z
< zone_end
; z
++)
2343 if (zones
->shift
[z
][dim
] > 0)
2346 if (!isDlbOn(dd
->comm
) || d
== 0)
2348 zones
->size
[z
].x0
[dim
] = comm
->cell_x1
[dim
];
2349 zones
->size
[z
].x1
[dim
] = comm
->cell_x1
[dim
] + rcs
;
2353 /* Here we take the lower limit of the zone from
2354 * the lowest domain of the zone below.
2358 zones
->size
[z
].x0
[dim
] =
2359 comm
->zone_d1
[zones
->shift
[z
][dd
->dim
[d
-1]]].min1
;
2365 zones
->size
[z
].x0
[dim
] =
2366 zones
->size
[zone_perm
[2][z
-4]].x0
[dim
];
2370 zones
->size
[z
].x0
[dim
] =
2371 comm
->zone_d2
[zones
->shift
[z
][dd
->dim
[d
-2]]][zones
->shift
[z
][dd
->dim
[d
-1]]].min1
;
2374 /* A temporary limit, is updated below */
2375 zones
->size
[z
].x1
[dim
] = zones
->size
[z
].x0
[dim
];
2379 for (zi
= 0; zi
< zones
->nizone
; zi
++)
2381 if (zones
->shift
[zi
][dim
] == 0)
2383 /* This takes the whole zone into account.
2384 * With multiple pulses this will lead
2385 * to a larger zone then strictly necessary.
2387 zones
->size
[z
].x1
[dim
] = std::max(zones
->size
[z
].x1
[dim
],
2388 zones
->size
[zi
].x1
[dim
]+rcmbs
);
2396 /* Loop over the i-zones to set the upper limit of each
2399 for (zi
= 0; zi
< zones
->nizone
; zi
++)
2401 if (zones
->shift
[zi
][dim
] == 0)
2403 /* We should only use zones up to zone_end */
2404 int jZoneEnd
= std::min(zones
->izone
[zi
].j1
, zone_end
);
2405 for (z
= zones
->izone
[zi
].j0
; z
< jZoneEnd
; z
++)
2407 if (zones
->shift
[z
][dim
] > 0)
2409 zones
->size
[z
].x1
[dim
] = std::max(zones
->size
[z
].x1
[dim
],
2410 zones
->size
[zi
].x1
[dim
]+rcs
);
2417 for (z
= zone_start
; z
< zone_end
; z
++)
2419 /* Initialization only required to keep the compiler happy */
2420 rvec corner_min
= {0, 0, 0}, corner_max
= {0, 0, 0}, corner
;
2423 /* To determine the bounding box for a zone we need to find
2424 * the extreme corners of 4, 2 or 1 corners.
2426 nc
= 1 << (ddbox
->nboundeddim
- 1);
2428 for (c
= 0; c
< nc
; c
++)
2430 /* Set up a zone corner at x=0, ignoring trilinic couplings */
2434 corner
[YY
] = zones
->size
[z
].x0
[YY
];
2438 corner
[YY
] = zones
->size
[z
].x1
[YY
];
2442 corner
[ZZ
] = zones
->size
[z
].x0
[ZZ
];
2446 corner
[ZZ
] = zones
->size
[z
].x1
[ZZ
];
2448 if (dd
->ndim
== 1 && dd
->dim
[0] < ZZ
&& ZZ
< dd
->npbcdim
&&
2449 box
[ZZ
][1 - dd
->dim
[0]] != 0)
2451 /* With 1D domain decomposition the cg's are not in
2452 * the triclinic box, but triclinic x-y and rectangular y/x-z.
2453 * Shift the corner of the z-vector back to along the box
2454 * vector of dimension d, so it will later end up at 0 along d.
2455 * This can affect the location of this corner along dd->dim[0]
2456 * through the matrix operation below if box[d][dd->dim[0]]!=0.
2458 int d
= 1 - dd
->dim
[0];
2460 corner
[d
] -= corner
[ZZ
]*box
[ZZ
][d
]/box
[ZZ
][ZZ
];
2462 /* Apply the triclinic couplings */
2463 for (i
= YY
; i
< ddbox
->npbcdim
&& i
< DIM
; i
++)
2465 for (j
= XX
; j
< i
; j
++)
2467 corner
[j
] += corner
[i
]*box
[i
][j
]/box
[i
][i
];
2472 copy_rvec(corner
, corner_min
);
2473 copy_rvec(corner
, corner_max
);
2477 for (i
= 0; i
< DIM
; i
++)
2479 corner_min
[i
] = std::min(corner_min
[i
], corner
[i
]);
2480 corner_max
[i
] = std::max(corner_max
[i
], corner
[i
]);
2484 /* Copy the extreme cornes without offset along x */
2485 for (i
= 0; i
< DIM
; i
++)
2487 zones
->size
[z
].bb_x0
[i
] = corner_min
[i
];
2488 zones
->size
[z
].bb_x1
[i
] = corner_max
[i
];
2490 /* Add the offset along x */
2491 zones
->size
[z
].bb_x0
[XX
] += zones
->size
[z
].x0
[XX
];
2492 zones
->size
[z
].bb_x1
[XX
] += zones
->size
[z
].x1
[XX
];
2495 if (zone_start
== 0)
2498 for (dim
= 0; dim
< DIM
; dim
++)
2500 vol
*= zones
->size
[0].x1
[dim
] - zones
->size
[0].x0
[dim
];
2502 zones
->dens_zone0
= (zones
->cg_range
[1] - zones
->cg_range
[0] - numMovedChargeGroupsInHomeZone
)/vol
;
2507 for (z
= zone_start
; z
< zone_end
; z
++)
2509 fprintf(debug
, "zone %d %6.3f - %6.3f %6.3f - %6.3f %6.3f - %6.3f\n",
2511 zones
->size
[z
].x0
[XX
], zones
->size
[z
].x1
[XX
],
2512 zones
->size
[z
].x0
[YY
], zones
->size
[z
].x1
[YY
],
2513 zones
->size
[z
].x0
[ZZ
], zones
->size
[z
].x1
[ZZ
]);
2514 fprintf(debug
, "zone %d bb %6.3f - %6.3f %6.3f - %6.3f %6.3f - %6.3f\n",
2516 zones
->size
[z
].bb_x0
[XX
], zones
->size
[z
].bb_x1
[XX
],
2517 zones
->size
[z
].bb_x0
[YY
], zones
->size
[z
].bb_x1
[YY
],
2518 zones
->size
[z
].bb_x0
[ZZ
], zones
->size
[z
].bb_x1
[ZZ
]);
2523 /*! \brief Order data in \p dataToSort according to \p sort
2525 * Note: both buffers should have at least \p sort.size() elements.
2527 template <typename T
>
2529 orderVector(gmx::ArrayRef
<const gmx_cgsort_t
> sort
,
2530 gmx::ArrayRef
<T
> dataToSort
,
2531 gmx::ArrayRef
<T
> sortBuffer
)
2533 GMX_ASSERT(dataToSort
.size() >= sort
.size(), "The vector needs to be sufficiently large");
2534 GMX_ASSERT(sortBuffer
.size() >= sort
.size(), "The sorting buffer needs to be sufficiently large");
2536 /* Order the data into the temporary buffer */
2538 for (const gmx_cgsort_t
&entry
: sort
)
2540 sortBuffer
[i
++] = dataToSort
[entry
.ind
];
2543 /* Copy back to the original array */
2544 std::copy(sortBuffer
.begin(), sortBuffer
.begin() + sort
.size(),
2545 dataToSort
.begin());
2548 /*! \brief Order data in \p dataToSort according to \p sort
2550 * Note: \p vectorToSort should have at least \p sort.size() elements,
2551 * \p workVector is resized when it is too small.
2553 template <typename T
>
2555 orderVector(gmx::ArrayRef
<const gmx_cgsort_t
> sort
,
2556 gmx::ArrayRef
<T
> vectorToSort
,
2557 std::vector
<T
> *workVector
)
2559 if (gmx::index(workVector
->size()) < sort
.ssize())
2561 workVector
->resize(sort
.size());
2563 orderVector
<T
>(sort
, vectorToSort
, *workVector
);
2566 //! Returns the sorting order for atoms based on the nbnxn grid order in sort
2567 static void dd_sort_order_nbnxn(const t_forcerec
*fr
,
2568 std::vector
<gmx_cgsort_t
> *sort
)
2570 gmx::ArrayRef
<const int> atomOrder
= fr
->nbv
->getLocalAtomOrder();
2572 /* Using push_back() instead of this resize results in much slower code */
2573 sort
->resize(atomOrder
.size());
2574 gmx::ArrayRef
<gmx_cgsort_t
> buffer
= *sort
;
2575 size_t numSorted
= 0;
2576 for (int i
: atomOrder
)
2580 /* The values of nsc and ind_gl are not used in this case */
2581 buffer
[numSorted
++].ind
= i
;
2584 sort
->resize(numSorted
);
2587 //! Returns the sorting state for DD.
2588 static void dd_sort_state(gmx_domdec_t
*dd
, t_forcerec
*fr
, t_state
*state
)
2590 gmx_domdec_sort_t
*sort
= dd
->comm
->sort
.get();
2592 dd_sort_order_nbnxn(fr
, &sort
->sorted
);
2594 /* We alloc with the old size, since cgindex is still old */
2595 DDBufferAccess
<gmx::RVec
> rvecBuffer(dd
->comm
->rvecBuffer
, dd
->ncg_home
);
2597 /* Set the new home atom/charge group count */
2598 dd
->ncg_home
= sort
->sorted
.size();
2601 fprintf(debug
, "Set the new home atom count to %d\n",
2605 /* Reorder the state */
2606 gmx::ArrayRef
<const gmx_cgsort_t
> cgsort
= sort
->sorted
;
2607 GMX_RELEASE_ASSERT(cgsort
.ssize() == dd
->ncg_home
, "We should sort all the home atom groups");
2609 if (state
->flags
& (1 << estX
))
2611 orderVector(cgsort
, makeArrayRef(state
->x
), rvecBuffer
.buffer
);
2613 if (state
->flags
& (1 << estV
))
2615 orderVector(cgsort
, makeArrayRef(state
->v
), rvecBuffer
.buffer
);
2617 if (state
->flags
& (1 << estCGP
))
2619 orderVector(cgsort
, makeArrayRef(state
->cg_p
), rvecBuffer
.buffer
);
2622 /* Reorder the global cg index */
2623 orderVector
<int>(cgsort
, dd
->globalAtomGroupIndices
, &sort
->intBuffer
);
2624 /* Reorder the cginfo */
2625 orderVector
<int>(cgsort
, fr
->cginfo
, &sort
->intBuffer
);
2626 /* Set the home atom number */
2627 dd
->comm
->atomRanges
.setEnd(DDAtomRanges::Type::Home
, dd
->ncg_home
);
2629 /* The atoms are now exactly in grid order, update the grid order */
2630 fr
->nbv
->setLocalAtomOrder();
2633 //! Accumulates load statistics.
2634 static void add_dd_statistics(gmx_domdec_t
*dd
)
2636 gmx_domdec_comm_t
*comm
= dd
->comm
;
2638 for (int i
= 0; i
< static_cast<int>(DDAtomRanges::Type::Number
); i
++)
2640 auto range
= static_cast<DDAtomRanges::Type
>(i
);
2642 comm
->atomRanges
.end(range
) - comm
->atomRanges
.start(range
);
2647 void reset_dd_statistics_counters(gmx_domdec_t
*dd
)
2649 gmx_domdec_comm_t
*comm
= dd
->comm
;
2651 /* Reset all the statistics and counters for total run counting */
2652 for (int i
= 0; i
< static_cast<int>(DDAtomRanges::Type::Number
); i
++)
2654 comm
->sum_nat
[i
] = 0;
2658 comm
->load_step
= 0;
2661 clear_ivec(comm
->load_lim
);
2666 void print_dd_statistics(const t_commrec
*cr
, const t_inputrec
*ir
, FILE *fplog
)
2668 gmx_domdec_comm_t
*comm
= cr
->dd
->comm
;
2670 const int numRanges
= static_cast<int>(DDAtomRanges::Type::Number
);
2671 gmx_sumd(numRanges
, comm
->sum_nat
, cr
);
2673 if (fplog
== nullptr)
2678 fprintf(fplog
, "\n D O M A I N D E C O M P O S I T I O N S T A T I S T I C S\n\n");
2680 for (int i
= static_cast<int>(DDAtomRanges::Type::Zones
); i
< numRanges
; i
++)
2682 auto range
= static_cast<DDAtomRanges::Type
>(i
);
2683 double av
= comm
->sum_nat
[i
]/comm
->ndecomp
;
2686 case DDAtomRanges::Type::Zones
:
2688 " av. #atoms communicated per step for force: %d x %.1f\n",
2691 case DDAtomRanges::Type::Vsites
:
2692 if (cr
->dd
->vsite_comm
)
2695 " av. #atoms communicated per step for vsites: %d x %.1f\n",
2696 (EEL_PME(ir
->coulombtype
) || ir
->coulombtype
== eelEWALD
) ? 3 : 2,
2700 case DDAtomRanges::Type::Constraints
:
2701 if (cr
->dd
->constraint_comm
)
2704 " av. #atoms communicated per step for LINCS: %d x %.1f\n",
2705 1 + ir
->nLincsIter
, av
);
2709 gmx_incons(" Unknown type for DD statistics");
2712 fprintf(fplog
, "\n");
2714 if (comm
->bRecordLoad
&& EI_DYNAMICS(ir
->eI
))
2716 print_dd_load_av(fplog
, cr
->dd
);
2720 // TODO Remove fplog when group scheme and charge groups are gone
2721 void dd_partition_system(FILE *fplog
,
2722 const gmx::MDLogger
&mdlog
,
2724 const t_commrec
*cr
,
2725 gmx_bool bMasterState
,
2727 t_state
*state_global
,
2728 const gmx_mtop_t
&top_global
,
2729 const t_inputrec
*ir
,
2730 gmx::ImdSession
*imdSession
,
2732 t_state
*state_local
,
2733 PaddedVector
<gmx::RVec
> *f
,
2734 gmx::MDAtoms
*mdAtoms
,
2735 gmx_localtop_t
*top_local
,
2738 gmx::Constraints
*constr
,
2740 gmx_wallcycle
*wcycle
,
2744 gmx_domdec_comm_t
*comm
;
2745 gmx_ddbox_t ddbox
= {0};
2746 int64_t step_pcoupl
;
2747 rvec cell_ns_x0
, cell_ns_x1
;
2748 int ncgindex_set
, ncg_moved
, nat_f_novirsum
;
2749 gmx_bool bBoxChanged
, bNStGlobalComm
, bDoDLB
, bCheckWhetherToTurnDlbOn
, bLogLoad
;
2755 wallcycle_start(wcycle
, ewcDOMDEC
);
2760 // TODO if the update code becomes accessible here, use
2761 // upd->deform for this logic.
2762 bBoxChanged
= (bMasterState
|| inputrecDeform(ir
));
2763 if (ir
->epc
!= epcNO
)
2765 /* With nstpcouple > 1 pressure coupling happens.
2766 * one step after calculating the pressure.
2767 * Box scaling happens at the end of the MD step,
2768 * after the DD partitioning.
2769 * We therefore have to do DLB in the first partitioning
2770 * after an MD step where P-coupling occurred.
2771 * We need to determine the last step in which p-coupling occurred.
2772 * MRS -- need to validate this for vv?
2774 int n
= ir
->nstpcouple
;
2777 step_pcoupl
= step
- 1;
2781 step_pcoupl
= ((step
- 1)/n
)*n
+ 1;
2783 if (step_pcoupl
>= comm
->partition_step
)
2789 bNStGlobalComm
= (step
% nstglobalcomm
== 0);
2797 /* Should we do dynamic load balacing this step?
2798 * Since it requires (possibly expensive) global communication,
2799 * we might want to do DLB less frequently.
2801 if (bBoxChanged
|| ir
->epc
!= epcNO
)
2803 bDoDLB
= bBoxChanged
;
2807 bDoDLB
= bNStGlobalComm
;
2811 /* Check if we have recorded loads on the nodes */
2812 if (comm
->bRecordLoad
&& dd_load_count(comm
) > 0)
2814 bCheckWhetherToTurnDlbOn
= dd_dlb_get_should_check_whether_to_turn_dlb_on(dd
);
2816 /* Print load every nstlog, first and last step to the log file */
2817 bLogLoad
= ((ir
->nstlog
> 0 && step
% ir
->nstlog
== 0) ||
2818 comm
->n_load_collect
== 0 ||
2820 (step
+ ir
->nstlist
> ir
->init_step
+ ir
->nsteps
)));
2822 /* Avoid extra communication due to verbose screen output
2823 * when nstglobalcomm is set.
2825 if (bDoDLB
|| bLogLoad
|| bCheckWhetherToTurnDlbOn
||
2826 (bVerbose
&& (ir
->nstlist
== 0 || nstglobalcomm
<= ir
->nstlist
)))
2828 get_load_distribution(dd
, wcycle
);
2833 GMX_LOG(mdlog
.info
).asParagraph().appendText(dd_print_load(dd
, step
-1));
2837 dd_print_load_verbose(dd
);
2840 comm
->n_load_collect
++;
2846 /* Add the measured cycles to the running average */
2847 const float averageFactor
= 0.1f
;
2848 comm
->cyclesPerStepDlbExpAverage
=
2849 (1 - averageFactor
)*comm
->cyclesPerStepDlbExpAverage
+
2850 averageFactor
*comm
->cycl
[ddCyclStep
]/comm
->cycl_n
[ddCyclStep
];
2852 if (comm
->dlbState
== DlbState::onCanTurnOff
&&
2853 dd
->comm
->n_load_have
% c_checkTurnDlbOffInterval
== c_checkTurnDlbOffInterval
- 1)
2855 gmx_bool turnOffDlb
;
2858 /* If the running averaged cycles with DLB are more
2859 * than before we turned on DLB, turn off DLB.
2860 * We will again run and check the cycles without DLB
2861 * and we can then decide if to turn off DLB forever.
2863 turnOffDlb
= (comm
->cyclesPerStepDlbExpAverage
>
2864 comm
->cyclesPerStepBeforeDLB
);
2866 dd_bcast(dd
, sizeof(turnOffDlb
), &turnOffDlb
);
2869 /* To turn off DLB, we need to redistribute the atoms */
2870 dd_collect_state(dd
, state_local
, state_global
);
2871 bMasterState
= TRUE
;
2872 turn_off_dlb(mdlog
, dd
, step
);
2876 else if (bCheckWhetherToTurnDlbOn
)
2878 gmx_bool turnOffDlbForever
= FALSE
;
2879 gmx_bool turnOnDlb
= FALSE
;
2881 /* Since the timings are node dependent, the master decides */
2884 /* If we recently turned off DLB, we want to check if
2885 * performance is better without DLB. We want to do this
2886 * ASAP to minimize the chance that external factors
2887 * slowed down the DLB step are gone here and we
2888 * incorrectly conclude that DLB was causing the slowdown.
2889 * So we measure one nstlist block, no running average.
2891 if (comm
->haveTurnedOffDlb
&&
2892 comm
->cycl
[ddCyclStep
]/comm
->cycl_n
[ddCyclStep
] <
2893 comm
->cyclesPerStepDlbExpAverage
)
2895 /* After turning off DLB we ran nstlist steps in fewer
2896 * cycles than with DLB. This likely means that DLB
2897 * in not benefical, but this could be due to a one
2898 * time unlucky fluctuation, so we require two such
2899 * observations in close succession to turn off DLB
2902 if (comm
->dlbSlowerPartitioningCount
> 0 &&
2903 dd
->ddp_count
< comm
->dlbSlowerPartitioningCount
+ 10*c_checkTurnDlbOnInterval
)
2905 turnOffDlbForever
= TRUE
;
2907 comm
->haveTurnedOffDlb
= false;
2908 /* Register when we last measured DLB slowdown */
2909 comm
->dlbSlowerPartitioningCount
= dd
->ddp_count
;
2913 /* Here we check if the max PME rank load is more than 0.98
2914 * the max PP force load. If so, PP DLB will not help,
2915 * since we are (almost) limited by PME. Furthermore,
2916 * DLB will cause a significant extra x/f redistribution
2917 * cost on the PME ranks, which will then surely result
2918 * in lower total performance.
2920 if (cr
->npmenodes
> 0 &&
2921 dd_pme_f_ratio(dd
) > 1 - DD_PERF_LOSS_DLB_ON
)
2927 turnOnDlb
= (dd_force_imb_perf_loss(dd
) >= DD_PERF_LOSS_DLB_ON
);
2933 gmx_bool turnOffDlbForever
;
2937 turnOffDlbForever
, turnOnDlb
2939 dd_bcast(dd
, sizeof(bools
), &bools
);
2940 if (bools
.turnOffDlbForever
)
2942 turn_off_dlb_forever(mdlog
, dd
, step
);
2944 else if (bools
.turnOnDlb
)
2946 turn_on_dlb(mdlog
, dd
, step
);
2951 comm
->n_load_have
++;
2957 /* Clear the old state */
2958 clearDDStateIndices(dd
, 0, 0);
2961 auto xGlobal
= positionsFromStatePointer(state_global
);
2963 set_ddbox(*dd
, true,
2964 DDMASTER(dd
) ? state_global
->box
: nullptr,
2968 distributeState(mdlog
, dd
, top_global
, state_global
, ddbox
, state_local
, f
);
2970 /* Ensure that we have space for the new distribution */
2971 dd_check_alloc_ncg(fr
, state_local
, f
, dd
->ncg_home
);
2973 inc_nrnb(nrnb
, eNR_CGCM
, comm
->atomRanges
.numHomeAtoms());
2975 dd_set_cginfo(dd
->globalAtomGroupIndices
, 0, dd
->ncg_home
, fr
, comm
->bLocalCG
);
2977 else if (state_local
->ddp_count
!= dd
->ddp_count
)
2979 if (state_local
->ddp_count
> dd
->ddp_count
)
2981 gmx_fatal(FARGS
, "Internal inconsistency state_local->ddp_count (%d) > dd->ddp_count (%" PRId64
")", state_local
->ddp_count
, dd
->ddp_count
);
2984 if (state_local
->ddp_count_cg_gl
!= state_local
->ddp_count
)
2986 gmx_fatal(FARGS
, "Internal inconsistency state_local->ddp_count_cg_gl (%d) != state_local->ddp_count (%d)", state_local
->ddp_count_cg_gl
, state_local
->ddp_count
);
2989 /* Clear the old state */
2990 clearDDStateIndices(dd
, 0, 0);
2992 /* Restore the atom group indices from state_local */
2993 restoreAtomGroups(dd
, state_local
);
2994 make_dd_indices(dd
, 0);
2995 ncgindex_set
= dd
->ncg_home
;
2997 inc_nrnb(nrnb
, eNR_CGCM
, comm
->atomRanges
.numHomeAtoms());
2999 dd_set_cginfo(dd
->globalAtomGroupIndices
, 0, dd
->ncg_home
, fr
, comm
->bLocalCG
);
3001 set_ddbox(*dd
, bMasterState
, state_local
->box
,
3002 true, state_local
->x
, &ddbox
);
3004 bRedist
= isDlbOn(comm
);
3008 /* We have the full state, only redistribute the cgs */
3010 /* Clear the non-home indices */
3011 clearDDStateIndices(dd
, dd
->ncg_home
, comm
->atomRanges
.numHomeAtoms());
3014 /* To avoid global communication, we do not recompute the extent
3015 * of the system for dims without pbc. Therefore we need to copy
3016 * the previously computed values when we do not communicate.
3018 if (!bNStGlobalComm
)
3020 copy_rvec(comm
->box0
, ddbox
.box0
);
3021 copy_rvec(comm
->box_size
, ddbox
.box_size
);
3023 set_ddbox(*dd
, bMasterState
, state_local
->box
,
3024 bNStGlobalComm
, state_local
->x
, &ddbox
);
3029 /* Copy needed for dim's without pbc when avoiding communication */
3030 copy_rvec(ddbox
.box0
, comm
->box0
);
3031 copy_rvec(ddbox
.box_size
, comm
->box_size
);
3033 set_dd_cell_sizes(dd
, &ddbox
, dynamic_dd_box(*dd
), bMasterState
, bDoDLB
,
3036 if (comm
->nstDDDumpGrid
> 0 && step
% comm
->nstDDDumpGrid
== 0)
3038 write_dd_grid_pdb("dd_grid", step
, dd
, state_local
->box
, &ddbox
);
3041 if (comm
->useUpdateGroups
)
3043 comm
->updateGroupsCog
->addCogs(gmx::arrayRefFromArray(dd
->globalAtomGroupIndices
.data(), dd
->ncg_home
),
3047 /* Check if we should sort the charge groups */
3048 const bool bSortCG
= (bMasterState
|| bRedist
);
3050 /* When repartitioning we mark atom groups that will move to neighboring
3051 * DD cells, but we do not move them right away for performance reasons.
3052 * Thus we need to keep track of how many charge groups will move for
3053 * obtaining correct local charge group / atom counts.
3058 wallcycle_sub_start(wcycle
, ewcsDD_REDIST
);
3060 ncgindex_set
= dd
->ncg_home
;
3061 dd_redistribute_cg(fplog
, step
, dd
, ddbox
.tric_dir
,
3065 GMX_RELEASE_ASSERT(bSortCG
, "Sorting is required after redistribution");
3067 if (comm
->useUpdateGroups
)
3069 comm
->updateGroupsCog
->addCogs(gmx::arrayRefFromArray(dd
->globalAtomGroupIndices
.data(), dd
->ncg_home
),
3073 wallcycle_sub_stop(wcycle
, ewcsDD_REDIST
);
3076 // TODO: Integrate this code in the nbnxm module
3077 get_nsgrid_boundaries(ddbox
.nboundeddim
, state_local
->box
,
3079 &comm
->cell_x0
, &comm
->cell_x1
,
3080 dd
->ncg_home
, as_rvec_array(state_local
->x
.data()),
3081 cell_ns_x0
, cell_ns_x1
, &grid_density
);
3085 comm_dd_ns_cell_sizes(dd
, &ddbox
, cell_ns_x0
, cell_ns_x1
, step
);
3088 /* We need to store tric_dir for dd_get_ns_ranges called from ns.c */
3089 copy_ivec(ddbox
.tric_dir
, comm
->tric_dir
);
3093 wallcycle_sub_start(wcycle
, ewcsDD_GRID
);
3095 /* Sort the state on charge group position.
3096 * This enables exact restarts from this step.
3097 * It also improves performance by about 15% with larger numbers
3098 * of atoms per node.
3101 /* Fill the ns grid with the home cell,
3102 * so we can sort with the indices.
3104 set_zones_ncg_home(dd
);
3106 set_zones_size(dd
, state_local
->box
, &ddbox
, 0, 1, ncg_moved
);
3108 nbnxn_put_on_grid(fr
->nbv
.get(), state_local
->box
,
3110 comm
->zones
.size
[0].bb_x0
,
3111 comm
->zones
.size
[0].bb_x1
,
3112 comm
->updateGroupsCog
.get(),
3114 comm
->zones
.dens_zone0
,
3117 ncg_moved
, bRedist
? comm
->movedBuffer
.data() : nullptr);
3121 fprintf(debug
, "Step %s, sorting the %d home charge groups\n",
3122 gmx_step_str(step
, sbuf
), dd
->ncg_home
);
3124 dd_sort_state(dd
, fr
, state_local
);
3126 /* After sorting and compacting we set the correct size */
3127 dd_resize_state(state_local
, f
, comm
->atomRanges
.numHomeAtoms());
3129 /* Rebuild all the indices */
3133 wallcycle_sub_stop(wcycle
, ewcsDD_GRID
);
3137 /* With the group scheme the sorting array is part of the DD state,
3138 * but it just got out of sync, so mark as invalid by emptying it.
3140 if (ir
->cutoff_scheme
== ecutsGROUP
)
3142 comm
->sort
->sorted
.clear();
3146 if (comm
->useUpdateGroups
)
3148 /* The update groups cog's are invalid after sorting
3149 * and need to be cleared before the next partitioning anyhow.
3151 comm
->updateGroupsCog
->clear();
3154 wallcycle_sub_start(wcycle
, ewcsDD_SETUPCOMM
);
3156 /* Setup up the communication and communicate the coordinates */
3157 setup_dd_communication(dd
, state_local
->box
, &ddbox
, fr
, state_local
, f
);
3159 /* Set the indices */
3160 make_dd_indices(dd
, ncgindex_set
);
3162 /* Set the charge group boundaries for neighbor searching */
3163 set_cg_boundaries(&comm
->zones
);
3165 if (fr
->cutoff_scheme
== ecutsVERLET
)
3167 /* When bSortCG=true, we have already set the size for zone 0 */
3168 set_zones_size(dd
, state_local
->box
, &ddbox
,
3169 bSortCG
? 1 : 0, comm
->zones
.n
,
3173 wallcycle_sub_stop(wcycle
, ewcsDD_SETUPCOMM
);
3176 write_dd_pdb("dd_home",step,"dump",top_global,cr,
3177 -1,state_local->x.rvec_array(),state_local->box);
3180 wallcycle_sub_start(wcycle
, ewcsDD_MAKETOP
);
3182 /* Extract a local topology from the global topology */
3183 for (int i
= 0; i
< dd
->ndim
; i
++)
3185 np
[dd
->dim
[i
]] = comm
->cd
[i
].numPulses();
3187 dd_make_local_top(dd
, &comm
->zones
, dd
->npbcdim
, state_local
->box
,
3188 comm
->cellsize_min
, np
,
3190 state_local
->x
.rvec_array(),
3191 top_global
, top_local
);
3193 wallcycle_sub_stop(wcycle
, ewcsDD_MAKETOP
);
3195 wallcycle_sub_start(wcycle
, ewcsDD_MAKECONSTR
);
3197 /* Set up the special atom communication */
3198 int n
= comm
->atomRanges
.end(DDAtomRanges::Type::Zones
);
3199 for (int i
= static_cast<int>(DDAtomRanges::Type::Zones
) + 1; i
< static_cast<int>(DDAtomRanges::Type::Number
); i
++)
3201 auto range
= static_cast<DDAtomRanges::Type
>(i
);
3204 case DDAtomRanges::Type::Vsites
:
3205 if (vsite
&& vsite
->numInterUpdategroupVsites
)
3207 n
= dd_make_local_vsites(dd
, n
, top_local
->idef
.il
);
3210 case DDAtomRanges::Type::Constraints
:
3211 if (dd
->splitConstraints
|| dd
->splitSettles
)
3213 /* Only for inter-cg constraints we need special code */
3214 n
= dd_make_local_constraints(dd
, n
, &top_global
, fr
->cginfo
.data(),
3215 constr
, ir
->nProjOrder
,
3216 top_local
->idef
.il
);
3220 gmx_incons("Unknown special atom type setup");
3222 comm
->atomRanges
.setEnd(range
, n
);
3225 wallcycle_sub_stop(wcycle
, ewcsDD_MAKECONSTR
);
3227 wallcycle_sub_start(wcycle
, ewcsDD_TOPOTHER
);
3229 /* Make space for the extra coordinates for virtual site
3230 * or constraint communication.
3232 state_local
->natoms
= comm
->atomRanges
.numAtomsTotal();
3234 dd_resize_state(state_local
, f
, state_local
->natoms
);
3236 if (fr
->haveDirectVirialContributions
)
3238 if (vsite
&& vsite
->numInterUpdategroupVsites
)
3240 nat_f_novirsum
= comm
->atomRanges
.end(DDAtomRanges::Type::Vsites
);
3244 if (EEL_FULL(ir
->coulombtype
) && dd
->n_intercg_excl
> 0)
3246 nat_f_novirsum
= comm
->atomRanges
.end(DDAtomRanges::Type::Zones
);
3250 nat_f_novirsum
= comm
->atomRanges
.numHomeAtoms();
3259 /* Set the number of atoms required for the force calculation.
3260 * Forces need to be constrained when doing energy
3261 * minimization. For simple simulations we could avoid some
3262 * allocation, zeroing and copying, but this is probably not worth
3263 * the complications and checking.
3265 forcerec_set_ranges(fr
, dd
->ncg_home
, dd
->globalAtomGroupIndices
.size(),
3266 comm
->atomRanges
.end(DDAtomRanges::Type::Zones
),
3267 comm
->atomRanges
.end(DDAtomRanges::Type::Constraints
),
3270 /* Update atom data for mdatoms and several algorithms */
3271 mdAlgorithmsSetupAtomData(cr
, ir
, top_global
, top_local
, fr
,
3272 nullptr, mdAtoms
, constr
, vsite
, nullptr);
3274 auto mdatoms
= mdAtoms
->mdatoms();
3275 if (!thisRankHasDuty(cr
, DUTY_PME
))
3277 /* Send the charges and/or c6/sigmas to our PME only node */
3278 gmx_pme_send_parameters(cr
,
3280 mdatoms
->nChargePerturbed
!= 0, mdatoms
->nTypePerturbed
!= 0,
3281 mdatoms
->chargeA
, mdatoms
->chargeB
,
3282 mdatoms
->sqrt_c6A
, mdatoms
->sqrt_c6B
,
3283 mdatoms
->sigmaA
, mdatoms
->sigmaB
,
3284 dd_pme_maxshift_x(dd
), dd_pme_maxshift_y(dd
));
3289 /* Update the local pull groups */
3290 dd_make_local_pull_groups(cr
, pull_work
);
3293 if (dd
->atomSets
!= nullptr)
3295 /* Update the local atom sets */
3296 dd
->atomSets
->setIndicesInDomainDecomposition(*(dd
->ga2la
));
3299 /* Update the local atoms to be communicated via the IMD protocol if bIMD is TRUE. */
3300 imdSession
->dd_make_local_IMD_atoms(dd
);
3302 add_dd_statistics(dd
);
3304 /* Make sure we only count the cycles for this DD partitioning */
3305 clear_dd_cycle_counts(dd
);
3307 /* Because the order of the atoms might have changed since
3308 * the last vsite construction, we need to communicate the constructing
3309 * atom coordinates again (for spreading the forces this MD step).
3311 dd_move_x_vsites(dd
, state_local
->box
, state_local
->x
.rvec_array());
3313 wallcycle_sub_stop(wcycle
, ewcsDD_TOPOTHER
);
3315 if (comm
->nstDDDump
> 0 && step
% comm
->nstDDDump
== 0)
3317 dd_move_x(dd
, state_local
->box
, state_local
->x
, nullWallcycle
);
3318 write_dd_pdb("dd_dump", step
, "dump", &top_global
, cr
,
3319 -1, state_local
->x
.rvec_array(), state_local
->box
);
3322 /* Store the partitioning step */
3323 comm
->partition_step
= step
;
3325 /* Increase the DD partitioning counter */
3327 /* The state currently matches this DD partitioning count, store it */
3328 state_local
->ddp_count
= dd
->ddp_count
;
3331 /* The DD master node knows the complete cg distribution,
3332 * store the count so we can possibly skip the cg info communication.
3334 comm
->master_cg_ddp_count
= (bSortCG
? 0 : dd
->ddp_count
);
3337 if (comm
->DD_debug
> 0)
3339 /* Set the env var GMX_DD_DEBUG if you suspect corrupted indices */
3340 check_index_consistency(dd
, top_global
.natoms
, ncg_mtop(&top_global
),
3341 "after partitioning");
3344 wallcycle_stop(wcycle
, ewcDOMDEC
);
3347 /*! \brief Check whether bonded interactions are missing, if appropriate */
3348 void checkNumberOfBondedInteractions(const gmx::MDLogger
&mdlog
,
3350 int totalNumberOfBondedInteractions
,
3351 const gmx_mtop_t
*top_global
,
3352 const gmx_localtop_t
*top_local
,
3355 bool *shouldCheckNumberOfBondedInteractions
)
3357 if (*shouldCheckNumberOfBondedInteractions
)
3359 if (totalNumberOfBondedInteractions
!= cr
->dd
->nbonded_global
)
3361 dd_print_missing_interactions(mdlog
, cr
, totalNumberOfBondedInteractions
, top_global
, top_local
, x
, box
); // Does not return
3363 *shouldCheckNumberOfBondedInteractions
= false;