Add replacements for pbc enumerations
[gromacs.git] / src / gromacs / domdec / partition.cpp
blobe36f49cf45c1702b79533a009cdc5d1ce87f011a
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2018,2019, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
35 /*! \internal \file
37 * \brief This file defines functions for mdrun to call to make a new
38 * domain decomposition, and check it.
40 * \author Berk Hess <hess@kth.se>
41 * \ingroup module_domdec
44 #include "gmxpre.h"
46 #include "partition.h"
48 #include "config.h"
50 #include <cassert>
51 #include <cstdio>
53 #include <algorithm>
55 #include "gromacs/domdec/collect.h"
56 #include "gromacs/domdec/dlb.h"
57 #include "gromacs/domdec/dlbtiming.h"
58 #include "gromacs/domdec/domdec.h"
59 #include "gromacs/domdec/domdec_network.h"
60 #include "gromacs/domdec/ga2la.h"
61 #include "gromacs/domdec/localatomsetmanager.h"
62 #include "gromacs/domdec/mdsetup.h"
63 #include "gromacs/ewald/pme.h"
64 #include "gromacs/gmxlib/chargegroup.h"
65 #include "gromacs/gmxlib/network.h"
66 #include "gromacs/gmxlib/nrnb.h"
67 #include "gromacs/imd/imd.h"
68 #include "gromacs/math/functions.h"
69 #include "gromacs/math/vec.h"
70 #include "gromacs/mdlib/forcerec.h"
71 #include "gromacs/mdlib/gmx_omp_nthreads.h"
72 #include "gromacs/mdlib/mdatoms.h"
73 #include "gromacs/mdlib/nsgrid.h"
74 #include "gromacs/mdlib/vsite.h"
75 #include "gromacs/mdtypes/commrec.h"
76 #include "gromacs/mdtypes/forcerec.h"
77 #include "gromacs/mdtypes/inputrec.h"
78 #include "gromacs/mdtypes/md_enums.h"
79 #include "gromacs/mdtypes/nblist.h"
80 #include "gromacs/mdtypes/state.h"
81 #include "gromacs/nbnxm/nbnxm.h"
82 #include "gromacs/pulling/pull.h"
83 #include "gromacs/timing/wallcycle.h"
84 #include "gromacs/topology/mtop_util.h"
85 #include "gromacs/topology/topology.h"
86 #include "gromacs/utility/cstringutil.h"
87 #include "gromacs/utility/fatalerror.h"
88 #include "gromacs/utility/logger.h"
89 #include "gromacs/utility/real.h"
90 #include "gromacs/utility/smalloc.h"
91 #include "gromacs/utility/strconvert.h"
92 #include "gromacs/utility/stringstream.h"
93 #include "gromacs/utility/stringutil.h"
94 #include "gromacs/utility/textwriter.h"
96 #include "box.h"
97 #include "cellsizes.h"
98 #include "distribute.h"
99 #include "domdec_constraints.h"
100 #include "domdec_internal.h"
101 #include "domdec_vsite.h"
102 #include "dump.h"
103 #include "redistribute.h"
104 #include "utility.h"
106 /*! \brief Turn on DLB when the load imbalance causes this amount of total loss.
108 * There is a bit of overhead with DLB and it's difficult to achieve
109 * a load imbalance of less than 2% with DLB.
111 #define DD_PERF_LOSS_DLB_ON 0.02
113 //! Warn about imbalance due to PP or PP/PME load imbalance at this loss.
114 #define DD_PERF_LOSS_WARN 0.05
117 //! Debug helper printing a DD zone
118 static void print_ddzone(FILE *fp, int d, int i, int j, gmx_ddzone_t *zone)
120 fprintf(fp, "zone d0 %d d1 %d d2 %d min0 %6.3f max1 %6.3f mch0 %6.3f mch1 %6.3f p1_0 %6.3f p1_1 %6.3f\n",
121 d, i, j,
122 zone->min0, zone->max1,
123 zone->mch0, zone->mch0,
124 zone->p1_0, zone->p1_1);
127 /*! \brief Using the home grid size as input in cell_ns_x0 and cell_ns_x1
128 * takes the extremes over all home and remote zones in the halo
129 * and returns the results in cell_ns_x0 and cell_ns_x1.
130 * Note: only used with the group cut-off scheme.
132 static void dd_move_cellx(gmx_domdec_t *dd,
133 const gmx_ddbox_t *ddbox,
134 rvec cell_ns_x0,
135 rvec cell_ns_x1)
137 constexpr int c_ddZoneCommMaxNumZones = 5;
138 gmx_ddzone_t buf_s[c_ddZoneCommMaxNumZones];
139 gmx_ddzone_t buf_r[c_ddZoneCommMaxNumZones];
140 gmx_ddzone_t buf_e[c_ddZoneCommMaxNumZones];
141 gmx_domdec_comm_t *comm = dd->comm;
143 rvec extr_s[2];
144 rvec extr_r[2];
145 for (int d = 1; d < dd->ndim; d++)
147 int dim = dd->dim[d];
148 gmx_ddzone_t &zp = (d == 1) ? comm->zone_d1[0] : comm->zone_d2[0][0];
150 /* Copy the base sizes of the home zone */
151 zp.min0 = cell_ns_x0[dim];
152 zp.max1 = cell_ns_x1[dim];
153 zp.min1 = cell_ns_x1[dim];
154 zp.mch0 = cell_ns_x0[dim];
155 zp.mch1 = cell_ns_x1[dim];
156 zp.p1_0 = cell_ns_x0[dim];
157 zp.p1_1 = cell_ns_x1[dim];
158 zp.dataSet = 1;
161 gmx::ArrayRef<DDCellsizesWithDlb> cellsizes = comm->cellsizesWithDlb;
163 /* Loop backward over the dimensions and aggregate the extremes
164 * of the cell sizes.
166 for (int d = dd->ndim - 2; d >= 0; d--)
168 const int dim = dd->dim[d];
169 const bool applyPbc = (dim < ddbox->npbcdim);
171 /* Use an rvec to store two reals */
172 extr_s[d][0] = cellsizes[d + 1].fracLower;
173 extr_s[d][1] = cellsizes[d + 1].fracUpper;
174 extr_s[d][2] = cellsizes[d + 1].fracUpper;
176 int pos = 0;
177 GMX_ASSERT(pos < c_ddZoneCommMaxNumZones, "The buffers should be sufficiently large");
178 /* Store the extremes in the backward sending buffer,
179 * so they get updated separately from the forward communication.
181 for (int d1 = d; d1 < dd->ndim-1; d1++)
183 gmx_ddzone_t &buf = buf_s[pos];
185 /* We invert the order to be able to use the same loop for buf_e */
186 buf.min0 = extr_s[d1][1];
187 buf.max1 = extr_s[d1][0];
188 buf.min1 = extr_s[d1][2];
189 buf.mch0 = 0;
190 buf.mch1 = 0;
191 /* Store the cell corner of the dimension we communicate along */
192 buf.p1_0 = comm->cell_x0[dim];
193 buf.p1_1 = 0;
194 buf.dataSet = 1;
195 pos++;
198 buf_s[pos] = (dd->ndim == 2) ? comm->zone_d1[0] : comm->zone_d2[0][0];
199 pos++;
201 if (dd->ndim == 3 && d == 0)
203 buf_s[pos] = comm->zone_d2[0][1];
204 pos++;
205 buf_s[pos] = comm->zone_d1[0];
206 pos++;
209 /* We only need to communicate the extremes
210 * in the forward direction
212 int numPulses = comm->cd[d].numPulses();
213 int numPulsesMin;
214 if (applyPbc)
216 /* Take the minimum to avoid double communication */
217 numPulsesMin = std::min(numPulses, dd->nc[dim] - 1 - numPulses);
219 else
221 /* Without PBC we should really not communicate over
222 * the boundaries, but implementing that complicates
223 * the communication setup and therefore we simply
224 * do all communication, but ignore some data.
226 numPulsesMin = numPulses;
228 for (int pulse = 0; pulse < numPulsesMin; pulse++)
230 /* Communicate the extremes forward */
231 bool receiveValidData = (applyPbc || dd->ci[dim] > 0);
233 int numElements = dd->ndim - d - 1;
234 ddSendrecv(dd, d, dddirForward,
235 extr_s + d, numElements,
236 extr_r + d, numElements);
238 if (receiveValidData)
240 for (int d1 = d; d1 < dd->ndim - 1; d1++)
242 extr_s[d1][0] = std::max(extr_s[d1][0], extr_r[d1][0]);
243 extr_s[d1][1] = std::min(extr_s[d1][1], extr_r[d1][1]);
244 extr_s[d1][2] = std::min(extr_s[d1][2], extr_r[d1][2]);
249 const int numElementsInBuffer = pos;
250 for (int pulse = 0; pulse < numPulses; pulse++)
252 /* Communicate all the zone information backward */
253 bool receiveValidData = (applyPbc || dd->ci[dim] < dd->nc[dim] - 1);
255 static_assert(sizeof(gmx_ddzone_t) == c_ddzoneNumReals*sizeof(real), "Here we expect gmx_ddzone_t to consist of c_ddzoneNumReals reals (only)");
257 int numReals = numElementsInBuffer*c_ddzoneNumReals;
258 ddSendrecv(dd, d, dddirBackward,
259 gmx::arrayRefFromArray(&buf_s[0].min0, numReals),
260 gmx::arrayRefFromArray(&buf_r[0].min0, numReals));
262 rvec dh = { 0 };
263 if (pulse > 0)
265 for (int d1 = d + 1; d1 < dd->ndim; d1++)
267 /* Determine the decrease of maximum required
268 * communication height along d1 due to the distance along d,
269 * this avoids a lot of useless atom communication.
271 real dist_d = comm->cell_x1[dim] - buf_r[0].p1_0;
273 real c;
274 if (ddbox->tric_dir[dim])
276 /* c is the off-diagonal coupling between the cell planes
277 * along directions d and d1.
279 c = ddbox->v[dim][dd->dim[d1]][dim];
281 else
283 c = 0;
285 real det = (1 + c*c)*comm->cutoff*comm->cutoff - dist_d*dist_d;
286 if (det > 0)
288 dh[d1] = comm->cutoff - (c*dist_d + std::sqrt(det))/(1 + c*c);
290 else
292 /* A negative value signals out of range */
293 dh[d1] = -1;
298 /* Accumulate the extremes over all pulses */
299 for (int i = 0; i < numElementsInBuffer; i++)
301 if (pulse == 0)
303 buf_e[i] = buf_r[i];
305 else
307 if (receiveValidData)
309 buf_e[i].min0 = std::min(buf_e[i].min0, buf_r[i].min0);
310 buf_e[i].max1 = std::max(buf_e[i].max1, buf_r[i].max1);
311 buf_e[i].min1 = std::min(buf_e[i].min1, buf_r[i].min1);
314 int d1;
315 if (dd->ndim == 3 && d == 0 && i == numElementsInBuffer - 1)
317 d1 = 1;
319 else
321 d1 = d + 1;
323 if (receiveValidData && dh[d1] >= 0)
325 buf_e[i].mch0 = std::max(buf_e[i].mch0, buf_r[i].mch0-dh[d1]);
326 buf_e[i].mch1 = std::max(buf_e[i].mch1, buf_r[i].mch1-dh[d1]);
329 /* Copy the received buffer to the send buffer,
330 * to pass the data through with the next pulse.
332 buf_s[i] = buf_r[i];
334 if (((applyPbc || dd->ci[dim] + numPulses < dd->nc[dim]) && pulse == numPulses - 1) ||
335 (!applyPbc && dd->ci[dim] + 1 + pulse == dd->nc[dim] - 1))
337 /* Store the extremes */
338 int pos = 0;
340 for (int d1 = d; d1 < dd->ndim-1; d1++)
342 extr_s[d1][1] = std::min(extr_s[d1][1], buf_e[pos].min0);
343 extr_s[d1][0] = std::max(extr_s[d1][0], buf_e[pos].max1);
344 extr_s[d1][2] = std::min(extr_s[d1][2], buf_e[pos].min1);
345 pos++;
348 if (d == 1 || (d == 0 && dd->ndim == 3))
350 for (int i = d; i < 2; i++)
352 comm->zone_d2[1-d][i] = buf_e[pos];
353 pos++;
356 if (d == 0)
358 comm->zone_d1[1] = buf_e[pos];
359 pos++;
362 else
364 if (d == 1 || (d == 0 && dd->ndim == 3))
366 for (int i = d; i < 2; i++)
368 comm->zone_d2[1 - d][i].dataSet = 0;
371 if (d == 0)
373 comm->zone_d1[1].dataSet = 0;
379 if (dd->ndim >= 2)
381 int dim = dd->dim[1];
382 for (int i = 0; i < 2; i++)
384 if (comm->zone_d1[i].dataSet != 0)
386 if (debug)
388 print_ddzone(debug, 1, i, 0, &comm->zone_d1[i]);
390 cell_ns_x0[dim] = std::min(cell_ns_x0[dim], comm->zone_d1[i].min0);
391 cell_ns_x1[dim] = std::max(cell_ns_x1[dim], comm->zone_d1[i].max1);
395 if (dd->ndim >= 3)
397 int dim = dd->dim[2];
398 for (int i = 0; i < 2; i++)
400 for (int j = 0; j < 2; j++)
402 if (comm->zone_d2[i][j].dataSet != 0)
404 if (debug)
406 print_ddzone(debug, 2, i, j, &comm->zone_d2[i][j]);
408 cell_ns_x0[dim] = std::min(cell_ns_x0[dim], comm->zone_d2[i][j].min0);
409 cell_ns_x1[dim] = std::max(cell_ns_x1[dim], comm->zone_d2[i][j].max1);
414 for (int d = 1; d < dd->ndim; d++)
416 cellsizes[d].fracLowerMax = extr_s[d-1][0];
417 cellsizes[d].fracUpperMin = extr_s[d-1][1];
418 if (debug)
420 fprintf(debug, "Cell fraction d %d, max0 %f, min1 %f\n",
421 d, cellsizes[d].fracLowerMax, cellsizes[d].fracUpperMin);
426 //! Sets the charge-group zones to be equal to the home zone.
427 static void set_zones_ncg_home(gmx_domdec_t *dd)
429 gmx_domdec_zones_t *zones;
430 int i;
432 zones = &dd->comm->zones;
434 zones->cg_range[0] = 0;
435 for (i = 1; i < zones->n+1; i++)
437 zones->cg_range[i] = dd->ncg_home;
439 /* zone_ncg1[0] should always be equal to ncg_home */
440 dd->comm->zone_ncg1[0] = dd->ncg_home;
443 //! Restore atom groups for the charge groups.
444 static void restoreAtomGroups(gmx_domdec_t *dd,
445 const t_state *state)
447 gmx::ArrayRef<const int> atomGroupsState = state->cg_gl;
449 std::vector<int> &globalAtomGroupIndices = dd->globalAtomGroupIndices;
451 globalAtomGroupIndices.resize(atomGroupsState.size());
453 /* Copy back the global charge group indices from state
454 * and rebuild the local charge group to atom index.
456 for (gmx::index i = 0; i < atomGroupsState.ssize(); i++)
458 globalAtomGroupIndices[i] = atomGroupsState[i];
461 dd->ncg_home = atomGroupsState.size();
462 dd->comm->atomRanges.setEnd(DDAtomRanges::Type::Home, atomGroupsState.ssize());
464 set_zones_ncg_home(dd);
467 //! Sets the cginfo structures.
468 static void dd_set_cginfo(gmx::ArrayRef<const int> index_gl, int cg0, int cg1,
469 t_forcerec *fr, char *bLocalCG)
471 if (fr != nullptr)
473 const cginfo_mb_t *cginfo_mb = fr->cginfo_mb;
474 gmx::ArrayRef<int> cginfo = fr->cginfo;
476 for (int cg = cg0; cg < cg1; cg++)
478 cginfo[cg] = ddcginfo(cginfo_mb, index_gl[cg]);
482 if (bLocalCG != nullptr)
484 for (int cg = cg0; cg < cg1; cg++)
486 bLocalCG[index_gl[cg]] = TRUE;
491 //! Makes the mappings between global and local atom indices during DD repartioning.
492 static void make_dd_indices(gmx_domdec_t *dd,
493 const int atomStart)
495 const int numZones = dd->comm->zones.n;
496 const int *zone2cg = dd->comm->zones.cg_range;
497 const int *zone_ncg1 = dd->comm->zone_ncg1;
498 gmx::ArrayRef<const int> globalAtomGroupIndices = dd->globalAtomGroupIndices;
500 std::vector<int> &globalAtomIndices = dd->globalAtomIndices;
501 gmx_ga2la_t &ga2la = *dd->ga2la;
503 if (zone2cg[1] != dd->ncg_home)
505 gmx_incons("dd->ncg_zone is not up to date");
508 /* Make the local to global and global to local atom index */
509 int a = atomStart;
510 globalAtomIndices.resize(a);
511 for (int zone = 0; zone < numZones; zone++)
513 int cg0;
514 if (zone == 0)
516 cg0 = atomStart;
518 else
520 cg0 = zone2cg[zone];
522 int cg1 = zone2cg[zone+1];
523 int cg1_p1 = cg0 + zone_ncg1[zone];
525 for (int cg = cg0; cg < cg1; cg++)
527 int zone1 = zone;
528 if (cg >= cg1_p1)
530 /* Signal that this cg is from more than one pulse away */
531 zone1 += numZones;
533 int cg_gl = globalAtomGroupIndices[cg];
534 globalAtomIndices.push_back(cg_gl);
535 ga2la.insert(cg_gl, {a, zone1});
536 a++;
541 //! Checks the charge-group assignements.
542 static int check_bLocalCG(gmx_domdec_t *dd, int ncg_sys, const char *bLocalCG,
543 const char *where)
545 int nerr = 0;
546 if (bLocalCG == nullptr)
548 return nerr;
550 for (size_t i = 0; i < dd->globalAtomGroupIndices.size(); i++)
552 if (!bLocalCG[dd->globalAtomGroupIndices[i]])
554 fprintf(stderr,
555 "DD rank %d, %s: atom group %zu, global atom group %d is not marked in bLocalCG (ncg_home %d)\n", dd->rank, where, i + 1, dd->globalAtomGroupIndices[i] + 1, dd->ncg_home);
556 nerr++;
559 size_t ngl = 0;
560 for (int i = 0; i < ncg_sys; i++)
562 if (bLocalCG[i])
564 ngl++;
567 if (ngl != dd->globalAtomGroupIndices.size())
569 fprintf(stderr, "DD rank %d, %s: In bLocalCG %zu atom groups are marked as local, whereas there are %zu\n", dd->rank, where, ngl, dd->globalAtomGroupIndices.size());
570 nerr++;
573 return nerr;
576 //! Checks whether global and local atom indices are consistent.
577 static void check_index_consistency(gmx_domdec_t *dd,
578 int natoms_sys, int ncg_sys,
579 const char *where)
581 int nerr = 0;
583 const int numAtomsInZones = dd->comm->atomRanges.end(DDAtomRanges::Type::Zones);
585 if (dd->comm->DD_debug > 1)
587 std::vector<int> have(natoms_sys);
588 for (int a = 0; a < numAtomsInZones; a++)
590 int globalAtomIndex = dd->globalAtomIndices[a];
591 if (have[globalAtomIndex] > 0)
593 fprintf(stderr, "DD rank %d: global atom %d occurs twice: index %d and %d\n", dd->rank, globalAtomIndex + 1, have[globalAtomIndex], a+1);
595 else
597 have[globalAtomIndex] = a + 1;
602 std::vector<int> have(numAtomsInZones);
604 int ngl = 0;
605 for (int i = 0; i < natoms_sys; i++)
607 if (const auto entry = dd->ga2la->find(i))
609 const int a = entry->la;
610 if (a >= numAtomsInZones)
612 fprintf(stderr, "DD rank %d: global atom %d marked as local atom %d, which is larger than nat_tot (%d)\n", dd->rank, i+1, a+1, numAtomsInZones);
613 nerr++;
615 else
617 have[a] = 1;
618 if (dd->globalAtomIndices[a] != i)
620 fprintf(stderr, "DD rank %d: global atom %d marked as local atom %d, which has global atom index %d\n", dd->rank, i+1, a+1, dd->globalAtomIndices[a]+1);
621 nerr++;
624 ngl++;
627 if (ngl != numAtomsInZones)
629 fprintf(stderr,
630 "DD rank %d, %s: %d global atom indices, %d local atoms\n",
631 dd->rank, where, ngl, numAtomsInZones);
633 for (int a = 0; a < numAtomsInZones; a++)
635 if (have[a] == 0)
637 fprintf(stderr,
638 "DD rank %d, %s: local atom %d, global %d has no global index\n",
639 dd->rank, where, a + 1, dd->globalAtomIndices[a] + 1);
643 nerr += check_bLocalCG(dd, ncg_sys, dd->comm->bLocalCG, where);
645 if (nerr > 0)
647 gmx_fatal(FARGS, "DD rank %d, %s: %d atom(group) index inconsistencies",
648 dd->rank, where, nerr);
652 //! Clear all DD global state indices, starting from \p atomGroupStart and \p atomStart
653 static void clearDDStateIndices(gmx_domdec_t *dd,
654 int atomGroupStart,
655 int atomStart)
657 gmx_ga2la_t &ga2la = *dd->ga2la;
659 if (atomStart == 0)
661 /* Clear the whole list without the overhead of searching */
662 ga2la.clear();
664 else
666 const int numAtomsInZones = dd->comm->atomRanges.end(DDAtomRanges::Type::Zones);
667 for (int i = 0; i < numAtomsInZones; i++)
669 ga2la.erase(dd->globalAtomIndices[i]);
673 char *bLocalCG = dd->comm->bLocalCG;
674 if (bLocalCG)
676 for (size_t atomGroup = atomGroupStart; atomGroup < dd->globalAtomGroupIndices.size(); atomGroup++)
678 bLocalCG[dd->globalAtomGroupIndices[atomGroup]] = FALSE;
682 dd_clear_local_vsite_indices(dd);
684 if (dd->constraints)
686 dd_clear_local_constraint_indices(dd);
690 bool check_grid_jump(int64_t step,
691 const gmx_domdec_t *dd,
692 real cutoff,
693 const gmx_ddbox_t *ddbox,
694 gmx_bool bFatal)
696 gmx_domdec_comm_t *comm = dd->comm;
697 bool invalid = false;
699 for (int d = 1; d < dd->ndim; d++)
701 const DDCellsizesWithDlb &cellsizes = comm->cellsizesWithDlb[d];
702 const int dim = dd->dim[d];
703 const real limit = grid_jump_limit(comm, cutoff, d);
704 real bfac = ddbox->box_size[dim];
705 if (ddbox->tric_dir[dim])
707 bfac *= ddbox->skew_fac[dim];
709 if ((cellsizes.fracUpper - cellsizes.fracLowerMax)*bfac < limit ||
710 (cellsizes.fracLower - cellsizes.fracUpperMin)*bfac > -limit)
712 invalid = true;
714 if (bFatal)
716 char buf[22];
718 /* This error should never be triggered under normal
719 * circumstances, but you never know ...
721 gmx_fatal(FARGS, "step %s: The domain decomposition grid has shifted too much in the %c-direction around cell %d %d %d. This should not have happened. Running with fewer ranks might avoid this issue.",
722 gmx_step_str(step, buf),
723 dim2char(dim), dd->ci[XX], dd->ci[YY], dd->ci[ZZ]);
728 return invalid;
730 //! Return the duration of force calculations on this rank.
731 static float dd_force_load(gmx_domdec_comm_t *comm)
733 float load;
735 if (comm->eFlop)
737 load = comm->flop;
738 if (comm->eFlop > 1)
740 load *= 1.0 + (comm->eFlop - 1)*(0.1*rand()/RAND_MAX - 0.05);
743 else
745 load = comm->cycl[ddCyclF];
746 if (comm->cycl_n[ddCyclF] > 1)
748 /* Subtract the maximum of the last n cycle counts
749 * to get rid of possible high counts due to other sources,
750 * for instance system activity, that would otherwise
751 * affect the dynamic load balancing.
753 load -= comm->cycl_max[ddCyclF];
756 #if GMX_MPI
757 if (comm->cycl_n[ddCyclWaitGPU] && comm->nrank_gpu_shared > 1)
759 float gpu_wait, gpu_wait_sum;
761 gpu_wait = comm->cycl[ddCyclWaitGPU];
762 if (comm->cycl_n[ddCyclF] > 1)
764 /* We should remove the WaitGPU time of the same MD step
765 * as the one with the maximum F time, since the F time
766 * and the wait time are not independent.
767 * Furthermore, the step for the max F time should be chosen
768 * the same on all ranks that share the same GPU.
769 * But to keep the code simple, we remove the average instead.
770 * The main reason for artificially long times at some steps
771 * is spurious CPU activity or MPI time, so we don't expect
772 * that changes in the GPU wait time matter a lot here.
774 gpu_wait *= (comm->cycl_n[ddCyclF] - 1)/static_cast<float>(comm->cycl_n[ddCyclF]);
776 /* Sum the wait times over the ranks that share the same GPU */
777 MPI_Allreduce(&gpu_wait, &gpu_wait_sum, 1, MPI_FLOAT, MPI_SUM,
778 comm->mpi_comm_gpu_shared);
779 /* Replace the wait time by the average over the ranks */
780 load += -gpu_wait + gpu_wait_sum/comm->nrank_gpu_shared;
782 #endif
785 return load;
788 //! Runs cell size checks and communicates the boundaries.
789 static void comm_dd_ns_cell_sizes(gmx_domdec_t *dd,
790 gmx_ddbox_t *ddbox,
791 rvec cell_ns_x0, rvec cell_ns_x1,
792 int64_t step)
794 gmx_domdec_comm_t *comm;
795 int dim_ind, dim;
797 comm = dd->comm;
799 for (dim_ind = 0; dim_ind < dd->ndim; dim_ind++)
801 dim = dd->dim[dim_ind];
803 /* Without PBC we don't have restrictions on the outer cells */
804 if (!(dim >= ddbox->npbcdim &&
805 (dd->ci[dim] == 0 || dd->ci[dim] == dd->nc[dim] - 1)) &&
806 isDlbOn(comm) &&
807 (comm->cell_x1[dim] - comm->cell_x0[dim])*ddbox->skew_fac[dim] <
808 comm->cellsize_min[dim])
810 char buf[22];
811 gmx_fatal(FARGS, "step %s: The %c-size (%f) times the triclinic skew factor (%f) is smaller than the smallest allowed cell size (%f) for domain decomposition grid cell %d %d %d",
812 gmx_step_str(step, buf), dim2char(dim),
813 comm->cell_x1[dim] - comm->cell_x0[dim],
814 ddbox->skew_fac[dim],
815 dd->comm->cellsize_min[dim],
816 dd->ci[XX], dd->ci[YY], dd->ci[ZZ]);
820 if ((isDlbOn(dd->comm) && dd->ndim > 1) || ddbox->nboundeddim < DIM)
822 /* Communicate the boundaries and update cell_ns_x0/1 */
823 dd_move_cellx(dd, ddbox, cell_ns_x0, cell_ns_x1);
824 if (isDlbOn(dd->comm) && dd->ndim > 1)
826 check_grid_jump(step, dd, dd->comm->cutoff, ddbox, TRUE);
831 //! Compute and communicate to determine the load distribution across PP ranks.
832 static void get_load_distribution(gmx_domdec_t *dd, gmx_wallcycle_t wcycle)
834 gmx_domdec_comm_t *comm;
835 domdec_load_t *load;
836 float cell_frac = 0, sbuf[DD_NLOAD_MAX];
837 gmx_bool bSepPME;
839 if (debug)
841 fprintf(debug, "get_load_distribution start\n");
844 wallcycle_start(wcycle, ewcDDCOMMLOAD);
846 comm = dd->comm;
848 bSepPME = (dd->pme_nodeid >= 0);
850 if (dd->ndim == 0 && bSepPME)
852 /* Without decomposition, but with PME nodes, we need the load */
853 comm->load[0].mdf = comm->cycl[ddCyclPPduringPME];
854 comm->load[0].pme = comm->cycl[ddCyclPME];
857 for (int d = dd->ndim - 1; d >= 0; d--)
859 const DDCellsizesWithDlb *cellsizes = (isDlbOn(dd->comm) ? &comm->cellsizesWithDlb[d] : nullptr);
860 const int dim = dd->dim[d];
861 /* Check if we participate in the communication in this dimension */
862 if (d == dd->ndim-1 ||
863 (dd->ci[dd->dim[d+1]] == 0 && dd->ci[dd->dim[dd->ndim-1]] == 0))
865 load = &comm->load[d];
866 if (isDlbOn(dd->comm))
868 cell_frac = cellsizes->fracUpper - cellsizes->fracLower;
870 int pos = 0;
871 if (d == dd->ndim-1)
873 sbuf[pos++] = dd_force_load(comm);
874 sbuf[pos++] = sbuf[0];
875 if (isDlbOn(dd->comm))
877 sbuf[pos++] = sbuf[0];
878 sbuf[pos++] = cell_frac;
879 if (d > 0)
881 sbuf[pos++] = cellsizes->fracLowerMax;
882 sbuf[pos++] = cellsizes->fracUpperMin;
885 if (bSepPME)
887 sbuf[pos++] = comm->cycl[ddCyclPPduringPME];
888 sbuf[pos++] = comm->cycl[ddCyclPME];
891 else
893 sbuf[pos++] = comm->load[d+1].sum;
894 sbuf[pos++] = comm->load[d+1].max;
895 if (isDlbOn(dd->comm))
897 sbuf[pos++] = comm->load[d+1].sum_m;
898 sbuf[pos++] = comm->load[d+1].cvol_min*cell_frac;
899 sbuf[pos++] = comm->load[d+1].flags;
900 if (d > 0)
902 sbuf[pos++] = cellsizes->fracLowerMax;
903 sbuf[pos++] = cellsizes->fracUpperMin;
906 if (bSepPME)
908 sbuf[pos++] = comm->load[d+1].mdf;
909 sbuf[pos++] = comm->load[d+1].pme;
912 load->nload = pos;
913 /* Communicate a row in DD direction d.
914 * The communicators are setup such that the root always has rank 0.
916 #if GMX_MPI
917 MPI_Gather(sbuf, load->nload*sizeof(float), MPI_BYTE,
918 load->load, load->nload*sizeof(float), MPI_BYTE,
919 0, comm->mpi_comm_load[d]);
920 #endif
921 if (dd->ci[dim] == dd->master_ci[dim])
923 /* We are the master along this row, process this row */
924 RowMaster *rowMaster = nullptr;
926 if (isDlbOn(comm))
928 rowMaster = cellsizes->rowMaster.get();
930 load->sum = 0;
931 load->max = 0;
932 load->sum_m = 0;
933 load->cvol_min = 1;
934 load->flags = 0;
935 load->mdf = 0;
936 load->pme = 0;
937 int pos = 0;
938 for (int i = 0; i < dd->nc[dim]; i++)
940 load->sum += load->load[pos++];
941 load->max = std::max(load->max, load->load[pos]);
942 pos++;
943 if (isDlbOn(dd->comm))
945 if (rowMaster->dlbIsLimited)
947 /* This direction could not be load balanced properly,
948 * therefore we need to use the maximum iso the average load.
950 load->sum_m = std::max(load->sum_m, load->load[pos]);
952 else
954 load->sum_m += load->load[pos];
956 pos++;
957 load->cvol_min = std::min(load->cvol_min, load->load[pos]);
958 pos++;
959 if (d < dd->ndim-1)
961 load->flags = gmx::roundToInt(load->load[pos++]);
963 if (d > 0)
965 rowMaster->bounds[i].cellFracLowerMax = load->load[pos++];
966 rowMaster->bounds[i].cellFracUpperMin = load->load[pos++];
969 if (bSepPME)
971 load->mdf = std::max(load->mdf, load->load[pos]);
972 pos++;
973 load->pme = std::max(load->pme, load->load[pos]);
974 pos++;
977 if (isDlbOn(comm) && rowMaster->dlbIsLimited)
979 load->sum_m *= dd->nc[dim];
980 load->flags |= (1<<d);
986 if (DDMASTER(dd))
988 comm->nload += dd_load_count(comm);
989 comm->load_step += comm->cycl[ddCyclStep];
990 comm->load_sum += comm->load[0].sum;
991 comm->load_max += comm->load[0].max;
992 if (isDlbOn(comm))
994 for (int d = 0; d < dd->ndim; d++)
996 if (comm->load[0].flags & (1<<d))
998 comm->load_lim[d]++;
1002 if (bSepPME)
1004 comm->load_mdf += comm->load[0].mdf;
1005 comm->load_pme += comm->load[0].pme;
1009 wallcycle_stop(wcycle, ewcDDCOMMLOAD);
1011 if (debug)
1013 fprintf(debug, "get_load_distribution finished\n");
1017 /*! \brief Return the relative performance loss on the total run time
1018 * due to the force calculation load imbalance. */
1019 static float dd_force_load_fraction(gmx_domdec_t *dd)
1021 if (dd->comm->nload > 0 && dd->comm->load_step > 0)
1023 return dd->comm->load_sum/(dd->comm->load_step*dd->nnodes);
1025 else
1027 return 0;
1031 /*! \brief Return the relative performance loss on the total run time
1032 * due to the force calculation load imbalance. */
1033 static float dd_force_imb_perf_loss(gmx_domdec_t *dd)
1035 if (dd->comm->nload > 0 && dd->comm->load_step > 0)
1037 return
1038 (dd->comm->load_max*dd->nnodes - dd->comm->load_sum)/
1039 (dd->comm->load_step*dd->nnodes);
1041 else
1043 return 0;
1047 //! Print load-balance report e.g. at the end of a run.
1048 static void print_dd_load_av(FILE *fplog, gmx_domdec_t *dd)
1050 gmx_domdec_comm_t *comm = dd->comm;
1052 /* Only the master rank prints loads and only if we measured loads */
1053 if (!DDMASTER(dd) || comm->nload == 0)
1055 return;
1058 char buf[STRLEN];
1059 int numPpRanks = dd->nnodes;
1060 int numPmeRanks = (dd->pme_nodeid >= 0) ? comm->npmenodes : 0;
1061 int numRanks = numPpRanks + numPmeRanks;
1062 float lossFraction = 0;
1064 /* Print the average load imbalance and performance loss */
1065 if (dd->nnodes > 1 && comm->load_sum > 0)
1067 float imbalance = comm->load_max*numPpRanks/comm->load_sum - 1;
1068 lossFraction = dd_force_imb_perf_loss(dd);
1070 std::string msg = "\nDynamic load balancing report:\n";
1071 std::string dlbStateStr;
1073 switch (dd->comm->dlbState)
1075 case DlbState::offUser:
1076 dlbStateStr = "DLB was off during the run per user request.";
1077 break;
1078 case DlbState::offForever:
1079 /* Currectly this can happen due to performance loss observed, cell size
1080 * limitations or incompatibility with other settings observed during
1081 * determineInitialDlbState(). */
1082 dlbStateStr = "DLB got disabled because it was unsuitable to use.";
1083 break;
1084 case DlbState::offCanTurnOn:
1085 dlbStateStr = "DLB was off during the run due to low measured imbalance.";
1086 break;
1087 case DlbState::offTemporarilyLocked:
1088 dlbStateStr = "DLB was locked at the end of the run due to unfinished PP-PME balancing.";
1089 break;
1090 case DlbState::onCanTurnOff:
1091 dlbStateStr = "DLB was turned on during the run due to measured imbalance.";
1092 break;
1093 case DlbState::onUser:
1094 dlbStateStr = "DLB was permanently on during the run per user request.";
1095 break;
1096 default:
1097 GMX_ASSERT(false, "Undocumented DLB state");
1100 msg += " " + dlbStateStr + "\n";
1101 msg += gmx::formatString(" Average load imbalance: %.1f%%.\n", imbalance*100);
1102 msg += gmx::formatString(" The balanceable part of the MD step is %d%%, load imbalance is computed from this.\n",
1103 gmx::roundToInt(dd_force_load_fraction(dd)*100));
1104 msg += gmx::formatString(" Part of the total run time spent waiting due to load imbalance: %.1f%%.\n",
1105 lossFraction*100);
1106 fprintf(fplog, "%s", msg.c_str());
1107 fprintf(stderr, "\n%s", msg.c_str());
1110 /* Print during what percentage of steps the load balancing was limited */
1111 bool dlbWasLimited = false;
1112 if (isDlbOn(comm))
1114 sprintf(buf, " Steps where the load balancing was limited by -rdd, -rcon and/or -dds:");
1115 for (int d = 0; d < dd->ndim; d++)
1117 int limitPercentage = (200*comm->load_lim[d] + 1)/(2*comm->nload);
1118 sprintf(buf+strlen(buf), " %c %d %%",
1119 dim2char(dd->dim[d]), limitPercentage);
1120 if (limitPercentage >= 50)
1122 dlbWasLimited = true;
1125 sprintf(buf + strlen(buf), "\n");
1126 fprintf(fplog, "%s", buf);
1127 fprintf(stderr, "%s", buf);
1130 /* Print the performance loss due to separate PME - PP rank imbalance */
1131 float lossFractionPme = 0;
1132 if (numPmeRanks > 0 && comm->load_mdf > 0 && comm->load_step > 0)
1134 float pmeForceRatio = comm->load_pme/comm->load_mdf;
1135 lossFractionPme = (comm->load_pme - comm->load_mdf)/comm->load_step;
1136 if (lossFractionPme <= 0)
1138 lossFractionPme *= numPmeRanks/static_cast<float>(numRanks);
1140 else
1142 lossFractionPme *= numPpRanks/static_cast<float>(numRanks);
1144 sprintf(buf, " Average PME mesh/force load: %5.3f\n", pmeForceRatio);
1145 fprintf(fplog, "%s", buf);
1146 fprintf(stderr, "%s", buf);
1147 sprintf(buf, " Part of the total run time spent waiting due to PP/PME imbalance: %.1f %%\n", std::fabs(lossFractionPme)*100);
1148 fprintf(fplog, "%s", buf);
1149 fprintf(stderr, "%s", buf);
1151 fprintf(fplog, "\n");
1152 fprintf(stderr, "\n");
1154 if (lossFraction >= DD_PERF_LOSS_WARN)
1156 std::string message = gmx::formatString(
1157 "NOTE: %.1f %% of the available CPU time was lost due to load imbalance\n"
1158 " in the domain decomposition.\n", lossFraction*100);
1160 bool hadSuggestion = false;
1161 if (!isDlbOn(comm))
1163 message += " You might want to use dynamic load balancing (option -dlb.)\n";
1164 hadSuggestion = true;
1166 else if (dlbWasLimited)
1168 message += " You might want to decrease the cell size limit (options -rdd, -rcon and/or -dds).\n";
1169 hadSuggestion = true;
1171 message += gmx::formatString(
1172 " You can %sconsider manually changing the decomposition (option -dd);\n"
1173 " e.g. by using fewer domains along the box dimension in which there is\n"
1174 " considerable inhomogeneity in the simulated system.",
1175 hadSuggestion ? "also " : "");
1178 fprintf(fplog, "%s\n", message.c_str());
1179 fprintf(stderr, "%s\n", message.c_str());
1181 if (numPmeRanks > 0 && std::fabs(lossFractionPme) >= DD_PERF_LOSS_WARN)
1183 sprintf(buf,
1184 "NOTE: %.1f %% performance was lost because the PME ranks\n"
1185 " had %s work to do than the PP ranks.\n"
1186 " You might want to %s the number of PME ranks\n"
1187 " or %s the cut-off and the grid spacing.\n",
1188 std::fabs(lossFractionPme*100),
1189 (lossFractionPme < 0) ? "less" : "more",
1190 (lossFractionPme < 0) ? "decrease" : "increase",
1191 (lossFractionPme < 0) ? "decrease" : "increase");
1192 fprintf(fplog, "%s\n", buf);
1193 fprintf(stderr, "%s\n", buf);
1197 //! Return the minimum communication volume.
1198 static float dd_vol_min(gmx_domdec_t *dd)
1200 return dd->comm->load[0].cvol_min*dd->nnodes;
1203 //! Return the DD load flags.
1204 static int dd_load_flags(gmx_domdec_t *dd)
1206 return dd->comm->load[0].flags;
1209 //! Return the reported load imbalance in force calculations.
1210 static float dd_f_imbal(gmx_domdec_t *dd)
1212 if (dd->comm->load[0].sum > 0)
1214 return dd->comm->load[0].max*dd->nnodes/dd->comm->load[0].sum - 1.0f;
1216 else
1218 /* Something is wrong in the cycle counting, report no load imbalance */
1219 return 0.0f;
1223 //! Returns DD load balance report.
1224 static std::string
1225 dd_print_load(gmx_domdec_t *dd,
1226 int64_t step)
1228 gmx::StringOutputStream stream;
1229 gmx::TextWriter log(&stream);
1231 int flags = dd_load_flags(dd);
1232 if (flags)
1234 log.writeString("DD load balancing is limited by minimum cell size in dimension");
1235 for (int d = 0; d < dd->ndim; d++)
1237 if (flags & (1<<d))
1239 log.writeStringFormatted(" %c", dim2char(dd->dim[d]));
1242 log.ensureLineBreak();
1244 log.writeString("DD step " + gmx::toString(step));
1245 if (isDlbOn(dd->comm))
1247 log.writeStringFormatted(" vol min/aver %5.3f%c",
1248 dd_vol_min(dd), flags ? '!' : ' ');
1250 if (dd->nnodes > 1)
1252 log.writeStringFormatted(" load imb.: force %4.1f%%", dd_f_imbal(dd)*100);
1254 if (dd->comm->cycl_n[ddCyclPME])
1256 log.writeStringFormatted(" pme mesh/force %5.3f", dd_pme_f_ratio(dd));
1258 log.ensureLineBreak();
1259 return stream.toString();
1262 //! Prints DD load balance report in mdrun verbose mode.
1263 static void dd_print_load_verbose(gmx_domdec_t *dd)
1265 if (isDlbOn(dd->comm))
1267 fprintf(stderr, "vol %4.2f%c ",
1268 dd_vol_min(dd), dd_load_flags(dd) ? '!' : ' ');
1270 if (dd->nnodes > 1)
1272 fprintf(stderr, "imb F %2d%% ", gmx::roundToInt(dd_f_imbal(dd)*100));
1274 if (dd->comm->cycl_n[ddCyclPME])
1276 fprintf(stderr, "pme/F %4.2f ", dd_pme_f_ratio(dd));
1280 //! Turns on dynamic load balancing if possible and needed.
1281 static void turn_on_dlb(const gmx::MDLogger &mdlog,
1282 gmx_domdec_t *dd,
1283 int64_t step)
1285 gmx_domdec_comm_t *comm = dd->comm;
1287 real cellsize_min = comm->cellsize_min[dd->dim[0]];
1288 for (int d = 1; d < dd->ndim; d++)
1290 cellsize_min = std::min(cellsize_min, comm->cellsize_min[dd->dim[d]]);
1293 /* Turn off DLB if we're too close to the cell size limit. */
1294 if (cellsize_min < comm->cellsize_limit*1.05)
1296 GMX_LOG(mdlog.info).appendTextFormatted(
1297 "step %s Measured %.1f %% performance loss due to load imbalance, "
1298 "but the minimum cell size is smaller than 1.05 times the cell size limit. "
1299 "Will no longer try dynamic load balancing.",
1300 gmx::toString(step).c_str(), dd_force_imb_perf_loss(dd)*100);
1302 comm->dlbState = DlbState::offForever;
1303 return;
1306 GMX_LOG(mdlog.info).appendTextFormatted(
1307 "step %s Turning on dynamic load balancing, because the performance loss due to load imbalance is %.1f %%.",
1308 gmx::toString(step).c_str(), dd_force_imb_perf_loss(dd)*100);
1309 comm->dlbState = DlbState::onCanTurnOff;
1311 /* Store the non-DLB performance, so we can check if DLB actually
1312 * improves performance.
1314 GMX_RELEASE_ASSERT(comm->cycl_n[ddCyclStep] > 0, "When we turned on DLB, we should have measured cycles");
1315 comm->cyclesPerStepBeforeDLB = comm->cycl[ddCyclStep]/comm->cycl_n[ddCyclStep];
1317 set_dlb_limits(dd);
1319 /* We can set the required cell size info here,
1320 * so we do not need to communicate this.
1321 * The grid is completely uniform.
1323 for (int d = 0; d < dd->ndim; d++)
1325 RowMaster *rowMaster = comm->cellsizesWithDlb[d].rowMaster.get();
1327 if (rowMaster)
1329 comm->load[d].sum_m = comm->load[d].sum;
1331 int nc = dd->nc[dd->dim[d]];
1332 for (int i = 0; i < nc; i++)
1334 rowMaster->cellFrac[i] = i/static_cast<real>(nc);
1335 if (d > 0)
1337 rowMaster->bounds[i].cellFracLowerMax = i /static_cast<real>(nc);
1338 rowMaster->bounds[i].cellFracUpperMin = (i + 1)/static_cast<real>(nc);
1341 rowMaster->cellFrac[nc] = 1.0;
1346 //! Turns off dynamic load balancing (but leave it able to turn back on).
1347 static void turn_off_dlb(const gmx::MDLogger &mdlog,
1348 gmx_domdec_t *dd,
1349 int64_t step)
1351 GMX_LOG(mdlog.info).appendText(
1352 "step " + gmx::toString(step) + " Turning off dynamic load balancing, because it is degrading performance.");
1353 dd->comm->dlbState = DlbState::offCanTurnOn;
1354 dd->comm->haveTurnedOffDlb = true;
1355 dd->comm->ddPartioningCountFirstDlbOff = dd->ddp_count;
1358 //! Turns off dynamic load balancing permanently.
1359 static void turn_off_dlb_forever(const gmx::MDLogger &mdlog,
1360 gmx_domdec_t *dd,
1361 int64_t step)
1363 GMX_RELEASE_ASSERT(dd->comm->dlbState == DlbState::offCanTurnOn, "Can only turn off DLB forever when it was in the can-turn-on state");
1364 GMX_LOG(mdlog.info).appendText(
1365 "step " + gmx::toString(step) + " Will no longer try dynamic load balancing, as it degraded performance.");
1366 dd->comm->dlbState = DlbState::offForever;
1369 void set_dd_dlb_max_cutoff(t_commrec *cr, real cutoff)
1371 gmx_domdec_comm_t *comm;
1373 comm = cr->dd->comm;
1375 /* Turn on the DLB limiting (might have been on already) */
1376 comm->bPMELoadBalDLBLimits = TRUE;
1378 /* Change the cut-off limit */
1379 comm->PMELoadBal_max_cutoff = cutoff;
1381 if (debug)
1383 fprintf(debug, "PME load balancing set a limit to the DLB staggering such that a %f cut-off will continue to fit\n",
1384 comm->PMELoadBal_max_cutoff);
1388 //! Merge atom buffers.
1389 static void merge_cg_buffers(int ncell,
1390 gmx_domdec_comm_dim_t *cd, int pulse,
1391 int *ncg_cell,
1392 gmx::ArrayRef<int> index_gl,
1393 const int *recv_i,
1394 gmx::ArrayRef<gmx::RVec> x,
1395 gmx::ArrayRef<const gmx::RVec> recv_vr,
1396 cginfo_mb_t *cginfo_mb,
1397 gmx::ArrayRef<int> cginfo)
1399 gmx_domdec_ind_t *ind, *ind_p;
1400 int p, cell, c, cg, cg0, cg1, cg_gl;
1401 int shift;
1403 ind = &cd->ind[pulse];
1405 /* First correct the already stored data */
1406 shift = ind->nrecv[ncell];
1407 for (cell = ncell-1; cell >= 0; cell--)
1409 shift -= ind->nrecv[cell];
1410 if (shift > 0)
1412 /* Move the cg's present from previous grid pulses */
1413 cg0 = ncg_cell[ncell+cell];
1414 cg1 = ncg_cell[ncell+cell+1];
1415 for (cg = cg1-1; cg >= cg0; cg--)
1417 index_gl[cg + shift] = index_gl[cg];
1418 x[cg + shift] = x[cg];
1419 cginfo[cg + shift] = cginfo[cg];
1421 /* Correct the already stored send indices for the shift */
1422 for (p = 1; p <= pulse; p++)
1424 ind_p = &cd->ind[p];
1425 cg0 = 0;
1426 for (c = 0; c < cell; c++)
1428 cg0 += ind_p->nsend[c];
1430 cg1 = cg0 + ind_p->nsend[cell];
1431 for (cg = cg0; cg < cg1; cg++)
1433 ind_p->index[cg] += shift;
1439 /* Merge in the communicated buffers */
1440 shift = 0;
1441 cg0 = 0;
1442 for (cell = 0; cell < ncell; cell++)
1444 cg1 = ncg_cell[ncell+cell+1] + shift;
1445 for (cg = 0; cg < ind->nrecv[cell]; cg++)
1447 /* Copy this atom from the buffer */
1448 index_gl[cg1] = recv_i[cg0];
1449 x[cg1] = recv_vr[cg0];
1450 /* Copy information */
1451 cg_gl = index_gl[cg1];
1452 cginfo[cg1] = ddcginfo(cginfo_mb, cg_gl);
1453 cg0++;
1454 cg1++;
1456 shift += ind->nrecv[cell];
1457 ncg_cell[ncell+cell+1] = cg1;
1461 //! Makes a range partitioning for the atom groups wthin a cell
1462 static void make_cell2at_index(gmx_domdec_comm_dim_t *cd,
1463 int nzone,
1464 int atomGroupStart)
1466 /* Store the atom block boundaries for easy copying of communication buffers
1468 int g = atomGroupStart;
1469 for (int zone = 0; zone < nzone; zone++)
1471 for (gmx_domdec_ind_t &ind : cd->ind)
1473 ind.cell2at0[zone] = g;
1474 g += ind.nrecv[zone];
1475 ind.cell2at1[zone] = g;
1480 //! Returns whether a link is missing.
1481 static gmx_bool missing_link(t_blocka *link, int cg_gl, const char *bLocalCG)
1483 int i;
1484 gmx_bool bMiss;
1486 bMiss = FALSE;
1487 for (i = link->index[cg_gl]; i < link->index[cg_gl+1]; i++)
1489 if (!bLocalCG[link->a[i]])
1491 bMiss = TRUE;
1495 return bMiss;
1498 //! Domain corners for communication, a maximum of 4 i-zones see a j domain
1499 typedef struct {
1500 //! The corners for the non-bonded communication.
1501 real c[DIM][4];
1502 //! Corner for rounding.
1503 real cr0;
1504 //! Corners for rounding.
1505 real cr1[4];
1506 //! Corners for bounded communication.
1507 real bc[DIM];
1508 //! Corner for rounding for bonded communication.
1509 real bcr1;
1510 } dd_corners_t;
1512 //! Determine the corners of the domain(s) we are communicating with.
1513 static void
1514 set_dd_corners(const gmx_domdec_t *dd,
1515 int dim0, int dim1, int dim2,
1516 gmx_bool bDistMB,
1517 dd_corners_t *c)
1519 const gmx_domdec_comm_t *comm;
1520 const gmx_domdec_zones_t *zones;
1521 int i, j;
1523 comm = dd->comm;
1525 zones = &comm->zones;
1527 /* Keep the compiler happy */
1528 c->cr0 = 0;
1529 c->bcr1 = 0;
1531 /* The first dimension is equal for all cells */
1532 c->c[0][0] = comm->cell_x0[dim0];
1533 if (bDistMB)
1535 c->bc[0] = c->c[0][0];
1537 if (dd->ndim >= 2)
1539 dim1 = dd->dim[1];
1540 /* This cell row is only seen from the first row */
1541 c->c[1][0] = comm->cell_x0[dim1];
1542 /* All rows can see this row */
1543 c->c[1][1] = comm->cell_x0[dim1];
1544 if (isDlbOn(dd->comm))
1546 c->c[1][1] = std::max(comm->cell_x0[dim1], comm->zone_d1[1].mch0);
1547 if (bDistMB)
1549 /* For the multi-body distance we need the maximum */
1550 c->bc[1] = std::max(comm->cell_x0[dim1], comm->zone_d1[1].p1_0);
1553 /* Set the upper-right corner for rounding */
1554 c->cr0 = comm->cell_x1[dim0];
1556 if (dd->ndim >= 3)
1558 dim2 = dd->dim[2];
1559 for (j = 0; j < 4; j++)
1561 c->c[2][j] = comm->cell_x0[dim2];
1563 if (isDlbOn(dd->comm))
1565 /* Use the maximum of the i-cells that see a j-cell */
1566 for (i = 0; i < zones->nizone; i++)
1568 for (j = zones->izone[i].j0; j < zones->izone[i].j1; j++)
1570 if (j >= 4)
1572 c->c[2][j-4] =
1573 std::max(c->c[2][j-4],
1574 comm->zone_d2[zones->shift[i][dim0]][zones->shift[i][dim1]].mch0);
1578 if (bDistMB)
1580 /* For the multi-body distance we need the maximum */
1581 c->bc[2] = comm->cell_x0[dim2];
1582 for (i = 0; i < 2; i++)
1584 for (j = 0; j < 2; j++)
1586 c->bc[2] = std::max(c->bc[2], comm->zone_d2[i][j].p1_0);
1592 /* Set the upper-right corner for rounding */
1593 /* Cell (0,0,0) and cell (1,0,0) can see cell 4 (0,1,1)
1594 * Only cell (0,0,0) can see cell 7 (1,1,1)
1596 c->cr1[0] = comm->cell_x1[dim1];
1597 c->cr1[3] = comm->cell_x1[dim1];
1598 if (isDlbOn(dd->comm))
1600 c->cr1[0] = std::max(comm->cell_x1[dim1], comm->zone_d1[1].mch1);
1601 if (bDistMB)
1603 /* For the multi-body distance we need the maximum */
1604 c->bcr1 = std::max(comm->cell_x1[dim1], comm->zone_d1[1].p1_1);
1611 /*! \brief Add the atom groups we need to send in this pulse from this
1612 * zone to \p localAtomGroups and \p work. */
1613 static void
1614 get_zone_pulse_cgs(gmx_domdec_t *dd,
1615 int zonei, int zone,
1616 int cg0, int cg1,
1617 gmx::ArrayRef<const int> globalAtomGroupIndices,
1618 int dim, int dim_ind,
1619 int dim0, int dim1, int dim2,
1620 real r_comm2, real r_bcomm2,
1621 matrix box,
1622 bool distanceIsTriclinic,
1623 rvec *normal,
1624 real skew_fac2_d, real skew_fac_01,
1625 rvec *v_d, rvec *v_0, rvec *v_1,
1626 const dd_corners_t *c,
1627 const rvec sf2_round,
1628 gmx_bool bDistBonded,
1629 gmx_bool bBondComm,
1630 gmx_bool bDist2B,
1631 gmx_bool bDistMB,
1632 rvec *cg_cm,
1633 gmx::ArrayRef<const int> cginfo,
1634 std::vector<int> *localAtomGroups,
1635 dd_comm_setup_work_t *work)
1637 gmx_domdec_comm_t *comm;
1638 gmx_bool bScrew;
1639 gmx_bool bDistMB_pulse;
1640 int cg, i;
1641 real r2, rb2, r, tric_sh;
1642 rvec rn, rb;
1643 int dimd;
1644 int nsend_z, nat;
1646 comm = dd->comm;
1648 bScrew = (dd->bScrewPBC && dim == XX);
1650 bDistMB_pulse = (bDistMB && bDistBonded);
1652 /* Unpack the work data */
1653 std::vector<int> &ibuf = work->atomGroupBuffer;
1654 std::vector<gmx::RVec> &vbuf = work->positionBuffer;
1655 nsend_z = 0;
1656 nat = work->nat;
1658 for (cg = cg0; cg < cg1; cg++)
1660 r2 = 0;
1661 rb2 = 0;
1662 if (!distanceIsTriclinic)
1664 /* Rectangular direction, easy */
1665 r = cg_cm[cg][dim] - c->c[dim_ind][zone];
1666 if (r > 0)
1668 r2 += r*r;
1670 if (bDistMB_pulse)
1672 r = cg_cm[cg][dim] - c->bc[dim_ind];
1673 if (r > 0)
1675 rb2 += r*r;
1678 /* Rounding gives at most a 16% reduction
1679 * in communicated atoms
1681 if (dim_ind >= 1 && (zonei == 1 || zonei == 2))
1683 r = cg_cm[cg][dim0] - c->cr0;
1684 /* This is the first dimension, so always r >= 0 */
1685 r2 += r*r;
1686 if (bDistMB_pulse)
1688 rb2 += r*r;
1691 if (dim_ind == 2 && (zonei == 2 || zonei == 3))
1693 r = cg_cm[cg][dim1] - c->cr1[zone];
1694 if (r > 0)
1696 r2 += r*r;
1698 if (bDistMB_pulse)
1700 r = cg_cm[cg][dim1] - c->bcr1;
1701 if (r > 0)
1703 rb2 += r*r;
1708 else
1710 /* Triclinic direction, more complicated */
1711 clear_rvec(rn);
1712 clear_rvec(rb);
1713 /* Rounding, conservative as the skew_fac multiplication
1714 * will slightly underestimate the distance.
1716 if (dim_ind >= 1 && (zonei == 1 || zonei == 2))
1718 rn[dim0] = cg_cm[cg][dim0] - c->cr0;
1719 for (i = dim0+1; i < DIM; i++)
1721 rn[dim0] -= cg_cm[cg][i]*v_0[i][dim0];
1723 r2 = rn[dim0]*rn[dim0]*sf2_round[dim0];
1724 if (bDistMB_pulse)
1726 rb[dim0] = rn[dim0];
1727 rb2 = r2;
1729 /* Take care that the cell planes along dim0 might not
1730 * be orthogonal to those along dim1 and dim2.
1732 for (i = 1; i <= dim_ind; i++)
1734 dimd = dd->dim[i];
1735 if (normal[dim0][dimd] > 0)
1737 rn[dimd] -= rn[dim0]*normal[dim0][dimd];
1738 if (bDistMB_pulse)
1740 rb[dimd] -= rb[dim0]*normal[dim0][dimd];
1745 if (dim_ind == 2 && (zonei == 2 || zonei == 3))
1747 rn[dim1] += cg_cm[cg][dim1] - c->cr1[zone];
1748 tric_sh = 0;
1749 for (i = dim1+1; i < DIM; i++)
1751 tric_sh -= cg_cm[cg][i]*v_1[i][dim1];
1753 rn[dim1] += tric_sh;
1754 if (rn[dim1] > 0)
1756 r2 += rn[dim1]*rn[dim1]*sf2_round[dim1];
1757 /* Take care of coupling of the distances
1758 * to the planes along dim0 and dim1 through dim2.
1760 r2 -= rn[dim0]*rn[dim1]*skew_fac_01;
1761 /* Take care that the cell planes along dim1
1762 * might not be orthogonal to that along dim2.
1764 if (normal[dim1][dim2] > 0)
1766 rn[dim2] -= rn[dim1]*normal[dim1][dim2];
1769 if (bDistMB_pulse)
1771 rb[dim1] +=
1772 cg_cm[cg][dim1] - c->bcr1 + tric_sh;
1773 if (rb[dim1] > 0)
1775 rb2 += rb[dim1]*rb[dim1]*sf2_round[dim1];
1776 /* Take care of coupling of the distances
1777 * to the planes along dim0 and dim1 through dim2.
1779 rb2 -= rb[dim0]*rb[dim1]*skew_fac_01;
1780 /* Take care that the cell planes along dim1
1781 * might not be orthogonal to that along dim2.
1783 if (normal[dim1][dim2] > 0)
1785 rb[dim2] -= rb[dim1]*normal[dim1][dim2];
1790 /* The distance along the communication direction */
1791 rn[dim] += cg_cm[cg][dim] - c->c[dim_ind][zone];
1792 tric_sh = 0;
1793 for (i = dim+1; i < DIM; i++)
1795 tric_sh -= cg_cm[cg][i]*v_d[i][dim];
1797 rn[dim] += tric_sh;
1798 if (rn[dim] > 0)
1800 r2 += rn[dim]*rn[dim]*skew_fac2_d;
1801 /* Take care of coupling of the distances
1802 * to the planes along dim0 and dim1 through dim2.
1804 if (dim_ind == 1 && zonei == 1)
1806 r2 -= rn[dim0]*rn[dim]*skew_fac_01;
1809 if (bDistMB_pulse)
1811 clear_rvec(rb);
1812 rb[dim] += cg_cm[cg][dim] - c->bc[dim_ind] + tric_sh;
1813 if (rb[dim] > 0)
1815 rb2 += rb[dim]*rb[dim]*skew_fac2_d;
1816 /* Take care of coupling of the distances
1817 * to the planes along dim0 and dim1 through dim2.
1819 if (dim_ind == 1 && zonei == 1)
1821 rb2 -= rb[dim0]*rb[dim]*skew_fac_01;
1827 if (r2 < r_comm2 ||
1828 (bDistBonded &&
1829 ((bDistMB && rb2 < r_bcomm2) ||
1830 (bDist2B && r2 < r_bcomm2)) &&
1831 (!bBondComm ||
1832 (GET_CGINFO_BOND_INTER(cginfo[cg]) &&
1833 missing_link(comm->cglink, globalAtomGroupIndices[cg],
1834 comm->bLocalCG)))))
1836 /* Store the local and global atom group indices and position */
1837 localAtomGroups->push_back(cg);
1838 ibuf.push_back(globalAtomGroupIndices[cg]);
1839 nsend_z++;
1841 rvec posPbc;
1842 if (dd->ci[dim] == 0)
1844 /* Correct cg_cm for pbc */
1845 rvec_add(cg_cm[cg], box[dim], posPbc);
1846 if (bScrew)
1848 posPbc[YY] = box[YY][YY] - posPbc[YY];
1849 posPbc[ZZ] = box[ZZ][ZZ] - posPbc[ZZ];
1852 else
1854 copy_rvec(cg_cm[cg], posPbc);
1856 vbuf.emplace_back(posPbc[XX], posPbc[YY], posPbc[ZZ]);
1858 nat += 1;
1862 work->nat = nat;
1863 work->nsend_zone = nsend_z;
1866 //! Clear data.
1867 static void clearCommSetupData(dd_comm_setup_work_t *work)
1869 work->localAtomGroupBuffer.clear();
1870 work->atomGroupBuffer.clear();
1871 work->positionBuffer.clear();
1872 work->nat = 0;
1873 work->nsend_zone = 0;
1876 //! Prepare DD communication.
1877 static void setup_dd_communication(gmx_domdec_t *dd,
1878 matrix box, gmx_ddbox_t *ddbox,
1879 t_forcerec *fr,
1880 t_state *state,
1881 PaddedVector<gmx::RVec> *f)
1883 int dim_ind, dim, dim0, dim1, dim2, dimd, nat_tot;
1884 int nzone, nzone_send, zone, zonei, cg0, cg1;
1885 int c, i, cg, cg_gl;
1886 int *zone_cg_range, pos_cg;
1887 gmx_domdec_comm_t *comm;
1888 gmx_domdec_zones_t *zones;
1889 gmx_domdec_comm_dim_t *cd;
1890 cginfo_mb_t *cginfo_mb;
1891 gmx_bool bBondComm, bDist2B, bDistMB, bDistBonded;
1892 dd_corners_t corners;
1893 rvec *normal, *v_d, *v_0 = nullptr, *v_1 = nullptr;
1894 real skew_fac2_d, skew_fac_01;
1895 rvec sf2_round;
1897 if (debug)
1899 fprintf(debug, "Setting up DD communication\n");
1902 comm = dd->comm;
1904 if (comm->dth.empty())
1906 /* Initialize the thread data.
1907 * This can not be done in init_domain_decomposition,
1908 * as the numbers of threads is determined later.
1910 int numThreads = gmx_omp_nthreads_get(emntDomdec);
1911 comm->dth.resize(numThreads);
1914 bBondComm = comm->bBondComm;
1916 /* Do we need to determine extra distances for multi-body bondeds? */
1917 bDistMB = (comm->haveInterDomainMultiBodyBondeds && isDlbOn(dd->comm) && dd->ndim > 1);
1919 /* Do we need to determine extra distances for only two-body bondeds? */
1920 bDist2B = (bBondComm && !bDistMB);
1922 const real r_comm2 = gmx::square(domainToDomainIntoAtomToDomainCutoff(*comm, comm->cutoff));
1923 const real r_bcomm2 = gmx::square(domainToDomainIntoAtomToDomainCutoff(*comm, comm->cutoff_mbody));
1925 if (debug)
1927 fprintf(debug, "bBondComm %s, r_bc %f\n", gmx::boolToString(bBondComm), std::sqrt(r_bcomm2));
1930 zones = &comm->zones;
1932 dim0 = dd->dim[0];
1933 dim1 = (dd->ndim >= 2 ? dd->dim[1] : -1);
1934 dim2 = (dd->ndim >= 3 ? dd->dim[2] : -1);
1936 set_dd_corners(dd, dim0, dim1, dim2, bDistMB, &corners);
1938 /* Triclinic stuff */
1939 normal = ddbox->normal;
1940 skew_fac_01 = 0;
1941 if (dd->ndim >= 2)
1943 v_0 = ddbox->v[dim0];
1944 if (ddbox->tric_dir[dim0] && ddbox->tric_dir[dim1])
1946 /* Determine the coupling coefficient for the distances
1947 * to the cell planes along dim0 and dim1 through dim2.
1948 * This is required for correct rounding.
1950 skew_fac_01 =
1951 ddbox->v[dim0][dim1+1][dim0]*ddbox->v[dim1][dim1+1][dim1];
1952 if (debug)
1954 fprintf(debug, "\nskew_fac_01 %f\n", skew_fac_01);
1958 if (dd->ndim >= 3)
1960 v_1 = ddbox->v[dim1];
1963 zone_cg_range = zones->cg_range;
1964 cginfo_mb = fr->cginfo_mb;
1966 zone_cg_range[0] = 0;
1967 zone_cg_range[1] = dd->ncg_home;
1968 comm->zone_ncg1[0] = dd->ncg_home;
1969 pos_cg = dd->ncg_home;
1971 nat_tot = comm->atomRanges.numHomeAtoms();
1972 nzone = 1;
1973 for (dim_ind = 0; dim_ind < dd->ndim; dim_ind++)
1975 dim = dd->dim[dim_ind];
1976 cd = &comm->cd[dim_ind];
1978 /* Check if we need to compute triclinic distances along this dim */
1979 bool distanceIsTriclinic = false;
1980 for (i = 0; i <= dim_ind; i++)
1982 if (ddbox->tric_dir[dd->dim[i]])
1984 distanceIsTriclinic = true;
1988 if (dim >= ddbox->npbcdim && dd->ci[dim] == 0)
1990 /* No pbc in this dimension, the first node should not comm. */
1991 nzone_send = 0;
1993 else
1995 nzone_send = nzone;
1998 v_d = ddbox->v[dim];
1999 skew_fac2_d = gmx::square(ddbox->skew_fac[dim]);
2001 cd->receiveInPlace = true;
2002 for (int p = 0; p < cd->numPulses(); p++)
2004 /* Only atoms communicated in the first pulse are used
2005 * for multi-body bonded interactions or for bBondComm.
2007 bDistBonded = ((bDistMB || bDist2B) && p == 0);
2009 gmx_domdec_ind_t *ind = &cd->ind[p];
2011 /* Thread 0 writes in the global index array */
2012 ind->index.clear();
2013 clearCommSetupData(&comm->dth[0]);
2015 for (zone = 0; zone < nzone_send; zone++)
2017 if (dim_ind > 0 && distanceIsTriclinic)
2019 /* Determine slightly more optimized skew_fac's
2020 * for rounding.
2021 * This reduces the number of communicated atoms
2022 * by about 10% for 3D DD of rhombic dodecahedra.
2024 for (dimd = 0; dimd < dim; dimd++)
2026 sf2_round[dimd] = 1;
2027 if (ddbox->tric_dir[dimd])
2029 for (i = dd->dim[dimd]+1; i < DIM; i++)
2031 /* If we are shifted in dimension i
2032 * and the cell plane is tilted forward
2033 * in dimension i, skip this coupling.
2035 if (!(zones->shift[nzone+zone][i] &&
2036 ddbox->v[dimd][i][dimd] >= 0))
2038 sf2_round[dimd] +=
2039 gmx::square(ddbox->v[dimd][i][dimd]);
2042 sf2_round[dimd] = 1/sf2_round[dimd];
2047 zonei = zone_perm[dim_ind][zone];
2048 if (p == 0)
2050 /* Here we permutate the zones to obtain a convenient order
2051 * for neighbor searching
2053 cg0 = zone_cg_range[zonei];
2054 cg1 = zone_cg_range[zonei+1];
2056 else
2058 /* Look only at the cg's received in the previous grid pulse
2060 cg1 = zone_cg_range[nzone+zone+1];
2061 cg0 = cg1 - cd->ind[p-1].nrecv[zone];
2064 const int numThreads = gmx::ssize(comm->dth);
2065 #pragma omp parallel for num_threads(numThreads) schedule(static)
2066 for (int th = 0; th < numThreads; th++)
2070 dd_comm_setup_work_t &work = comm->dth[th];
2072 /* Retain data accumulated into buffers of thread 0 */
2073 if (th > 0)
2075 clearCommSetupData(&work);
2078 int cg0_th = cg0 + ((cg1 - cg0)* th )/numThreads;
2079 int cg1_th = cg0 + ((cg1 - cg0)*(th+1))/numThreads;
2081 /* Get the cg's for this pulse in this zone */
2082 get_zone_pulse_cgs(dd, zonei, zone, cg0_th, cg1_th,
2083 dd->globalAtomGroupIndices,
2084 dim, dim_ind, dim0, dim1, dim2,
2085 r_comm2, r_bcomm2,
2086 box, distanceIsTriclinic,
2087 normal, skew_fac2_d, skew_fac_01,
2088 v_d, v_0, v_1, &corners, sf2_round,
2089 bDistBonded, bBondComm,
2090 bDist2B, bDistMB,
2091 state->x.rvec_array(),
2092 fr->cginfo,
2093 th == 0 ? &ind->index : &work.localAtomGroupBuffer,
2094 &work);
2096 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR;
2097 } // END
2099 std::vector<int> &atomGroups = comm->dth[0].atomGroupBuffer;
2100 std::vector<gmx::RVec> &positions = comm->dth[0].positionBuffer;
2101 ind->nsend[zone] = comm->dth[0].nsend_zone;
2102 /* Append data of threads>=1 to the communication buffers */
2103 for (int th = 1; th < numThreads; th++)
2105 const dd_comm_setup_work_t &dth = comm->dth[th];
2107 ind->index.insert(ind->index.end(), dth.localAtomGroupBuffer.begin(), dth.localAtomGroupBuffer.end());
2108 atomGroups.insert(atomGroups.end(), dth.atomGroupBuffer.begin(), dth.atomGroupBuffer.end());
2109 positions.insert(positions.end(), dth.positionBuffer.begin(), dth.positionBuffer.end());
2110 comm->dth[0].nat += dth.nat;
2111 ind->nsend[zone] += dth.nsend_zone;
2114 /* Clear the counts in case we do not have pbc */
2115 for (zone = nzone_send; zone < nzone; zone++)
2117 ind->nsend[zone] = 0;
2119 ind->nsend[nzone] = ind->index.size();
2120 ind->nsend[nzone + 1] = comm->dth[0].nat;
2121 /* Communicate the number of cg's and atoms to receive */
2122 ddSendrecv(dd, dim_ind, dddirBackward,
2123 ind->nsend, nzone+2,
2124 ind->nrecv, nzone+2);
2126 if (p > 0)
2128 /* We can receive in place if only the last zone is not empty */
2129 for (zone = 0; zone < nzone-1; zone++)
2131 if (ind->nrecv[zone] > 0)
2133 cd->receiveInPlace = false;
2138 int receiveBufferSize = 0;
2139 if (!cd->receiveInPlace)
2141 receiveBufferSize = ind->nrecv[nzone];
2143 /* These buffer are actually only needed with in-place */
2144 DDBufferAccess<int> globalAtomGroupBuffer(comm->intBuffer, receiveBufferSize);
2145 DDBufferAccess<gmx::RVec> rvecBuffer(comm->rvecBuffer, receiveBufferSize);
2147 dd_comm_setup_work_t &work = comm->dth[0];
2149 /* Make space for the global cg indices */
2150 int numAtomGroupsNew = pos_cg + ind->nrecv[nzone];
2151 dd->globalAtomGroupIndices.resize(numAtomGroupsNew);
2152 /* Communicate the global cg indices */
2153 gmx::ArrayRef<int> integerBufferRef;
2154 if (cd->receiveInPlace)
2156 integerBufferRef = gmx::arrayRefFromArray(dd->globalAtomGroupIndices.data() + pos_cg, ind->nrecv[nzone]);
2158 else
2160 integerBufferRef = globalAtomGroupBuffer.buffer;
2162 ddSendrecv<int>(dd, dim_ind, dddirBackward,
2163 work.atomGroupBuffer, integerBufferRef);
2165 /* Make space for cg_cm */
2166 dd_check_alloc_ncg(fr, state, f, pos_cg + ind->nrecv[nzone]);
2168 /* Communicate the coordinates */
2169 gmx::ArrayRef<gmx::RVec> rvecBufferRef;
2170 if (cd->receiveInPlace)
2172 rvecBufferRef = gmx::makeArrayRef(state->x).subArray(pos_cg, ind->nrecv[nzone]);
2174 else
2176 rvecBufferRef = rvecBuffer.buffer;
2178 ddSendrecv<gmx::RVec>(dd, dim_ind, dddirBackward,
2179 work.positionBuffer, rvecBufferRef);
2181 /* Make the charge group index */
2182 if (cd->receiveInPlace)
2184 zone = (p == 0 ? 0 : nzone - 1);
2185 while (zone < nzone)
2187 for (cg = 0; cg < ind->nrecv[zone]; cg++)
2189 cg_gl = dd->globalAtomGroupIndices[pos_cg];
2190 fr->cginfo[pos_cg] = ddcginfo(cginfo_mb, cg_gl);
2191 if (bBondComm)
2193 /* Update the charge group presence,
2194 * so we can use it in the next pass of the loop.
2196 comm->bLocalCG[cg_gl] = TRUE;
2198 pos_cg++;
2200 if (p == 0)
2202 comm->zone_ncg1[nzone+zone] = ind->nrecv[zone];
2204 zone++;
2205 zone_cg_range[nzone+zone] = pos_cg;
2208 else
2210 /* This part of the code is never executed with bBondComm. */
2211 merge_cg_buffers(nzone, cd, p, zone_cg_range,
2212 dd->globalAtomGroupIndices, integerBufferRef.data(),
2213 state->x, rvecBufferRef,
2214 fr->cginfo_mb, fr->cginfo);
2215 pos_cg += ind->nrecv[nzone];
2217 nat_tot += ind->nrecv[nzone+1];
2219 if (!cd->receiveInPlace)
2221 /* Store the atom block for easy copying of communication buffers */
2222 make_cell2at_index(cd, nzone, zone_cg_range[nzone]);
2224 nzone += nzone;
2227 comm->atomRanges.setEnd(DDAtomRanges::Type::Zones, nat_tot);
2229 if (!bBondComm)
2231 /* We don't need to update cginfo, since that was alrady done above.
2232 * So we pass NULL for the forcerec.
2234 dd_set_cginfo(dd->globalAtomGroupIndices,
2235 dd->ncg_home, dd->globalAtomGroupIndices.size(),
2236 nullptr, comm->bLocalCG);
2239 if (debug)
2241 fprintf(debug, "Finished setting up DD communication, zones:");
2242 for (c = 0; c < zones->n; c++)
2244 fprintf(debug, " %d", zones->cg_range[c+1]-zones->cg_range[c]);
2246 fprintf(debug, "\n");
2250 //! Set boundaries for the charge group range.
2251 static void set_cg_boundaries(gmx_domdec_zones_t *zones)
2253 int c;
2255 for (c = 0; c < zones->nizone; c++)
2257 zones->izone[c].cg1 = zones->cg_range[c+1];
2258 zones->izone[c].jcg0 = zones->cg_range[zones->izone[c].j0];
2259 zones->izone[c].jcg1 = zones->cg_range[zones->izone[c].j1];
2263 /*! \brief Set zone dimensions for zones \p zone_start to \p zone_end-1
2265 * Also sets the atom density for the home zone when \p zone_start=0.
2266 * For this \p numMovedChargeGroupsInHomeZone needs to be passed to tell
2267 * how many charge groups will move but are still part of the current range.
2268 * \todo When converting domdec to use proper classes, all these variables
2269 * should be private and a method should return the correct count
2270 * depending on an internal state.
2272 * \param[in,out] dd The domain decomposition struct
2273 * \param[in] box The box
2274 * \param[in] ddbox The domain decomposition box struct
2275 * \param[in] zone_start The start of the zone range to set sizes for
2276 * \param[in] zone_end The end of the zone range to set sizes for
2277 * \param[in] numMovedChargeGroupsInHomeZone The number of charge groups in the home zone that should moved but are still present in dd->comm->zones.cg_range
2279 static void set_zones_size(gmx_domdec_t *dd,
2280 matrix box, const gmx_ddbox_t *ddbox,
2281 int zone_start, int zone_end,
2282 int numMovedChargeGroupsInHomeZone)
2284 gmx_domdec_comm_t *comm;
2285 gmx_domdec_zones_t *zones;
2286 gmx_bool bDistMB;
2287 int z, zi, d, dim;
2288 real rcs, rcmbs;
2289 int i, j;
2290 real vol;
2292 comm = dd->comm;
2294 zones = &comm->zones;
2296 /* Do we need to determine extra distances for multi-body bondeds? */
2297 bDistMB = (comm->haveInterDomainMultiBodyBondeds && isDlbOn(dd->comm) && dd->ndim > 1);
2299 for (z = zone_start; z < zone_end; z++)
2301 /* Copy cell limits to zone limits.
2302 * Valid for non-DD dims and non-shifted dims.
2304 copy_rvec(comm->cell_x0, zones->size[z].x0);
2305 copy_rvec(comm->cell_x1, zones->size[z].x1);
2308 for (d = 0; d < dd->ndim; d++)
2310 dim = dd->dim[d];
2312 for (z = 0; z < zones->n; z++)
2314 /* With a staggered grid we have different sizes
2315 * for non-shifted dimensions.
2317 if (isDlbOn(dd->comm) && zones->shift[z][dim] == 0)
2319 if (d == 1)
2321 zones->size[z].x0[dim] = comm->zone_d1[zones->shift[z][dd->dim[d-1]]].min0;
2322 zones->size[z].x1[dim] = comm->zone_d1[zones->shift[z][dd->dim[d-1]]].max1;
2324 else if (d == 2)
2326 zones->size[z].x0[dim] = comm->zone_d2[zones->shift[z][dd->dim[d-2]]][zones->shift[z][dd->dim[d-1]]].min0;
2327 zones->size[z].x1[dim] = comm->zone_d2[zones->shift[z][dd->dim[d-2]]][zones->shift[z][dd->dim[d-1]]].max1;
2332 rcs = comm->cutoff;
2333 rcmbs = comm->cutoff_mbody;
2334 if (ddbox->tric_dir[dim])
2336 rcs /= ddbox->skew_fac[dim];
2337 rcmbs /= ddbox->skew_fac[dim];
2340 /* Set the lower limit for the shifted zone dimensions */
2341 for (z = zone_start; z < zone_end; z++)
2343 if (zones->shift[z][dim] > 0)
2345 dim = dd->dim[d];
2346 if (!isDlbOn(dd->comm) || d == 0)
2348 zones->size[z].x0[dim] = comm->cell_x1[dim];
2349 zones->size[z].x1[dim] = comm->cell_x1[dim] + rcs;
2351 else
2353 /* Here we take the lower limit of the zone from
2354 * the lowest domain of the zone below.
2356 if (z < 4)
2358 zones->size[z].x0[dim] =
2359 comm->zone_d1[zones->shift[z][dd->dim[d-1]]].min1;
2361 else
2363 if (d == 1)
2365 zones->size[z].x0[dim] =
2366 zones->size[zone_perm[2][z-4]].x0[dim];
2368 else
2370 zones->size[z].x0[dim] =
2371 comm->zone_d2[zones->shift[z][dd->dim[d-2]]][zones->shift[z][dd->dim[d-1]]].min1;
2374 /* A temporary limit, is updated below */
2375 zones->size[z].x1[dim] = zones->size[z].x0[dim];
2377 if (bDistMB)
2379 for (zi = 0; zi < zones->nizone; zi++)
2381 if (zones->shift[zi][dim] == 0)
2383 /* This takes the whole zone into account.
2384 * With multiple pulses this will lead
2385 * to a larger zone then strictly necessary.
2387 zones->size[z].x1[dim] = std::max(zones->size[z].x1[dim],
2388 zones->size[zi].x1[dim]+rcmbs);
2396 /* Loop over the i-zones to set the upper limit of each
2397 * j-zone they see.
2399 for (zi = 0; zi < zones->nizone; zi++)
2401 if (zones->shift[zi][dim] == 0)
2403 /* We should only use zones up to zone_end */
2404 int jZoneEnd = std::min(zones->izone[zi].j1, zone_end);
2405 for (z = zones->izone[zi].j0; z < jZoneEnd; z++)
2407 if (zones->shift[z][dim] > 0)
2409 zones->size[z].x1[dim] = std::max(zones->size[z].x1[dim],
2410 zones->size[zi].x1[dim]+rcs);
2417 for (z = zone_start; z < zone_end; z++)
2419 /* Initialization only required to keep the compiler happy */
2420 rvec corner_min = {0, 0, 0}, corner_max = {0, 0, 0}, corner;
2421 int nc, c;
2423 /* To determine the bounding box for a zone we need to find
2424 * the extreme corners of 4, 2 or 1 corners.
2426 nc = 1 << (ddbox->nboundeddim - 1);
2428 for (c = 0; c < nc; c++)
2430 /* Set up a zone corner at x=0, ignoring trilinic couplings */
2431 corner[XX] = 0;
2432 if ((c & 1) == 0)
2434 corner[YY] = zones->size[z].x0[YY];
2436 else
2438 corner[YY] = zones->size[z].x1[YY];
2440 if ((c & 2) == 0)
2442 corner[ZZ] = zones->size[z].x0[ZZ];
2444 else
2446 corner[ZZ] = zones->size[z].x1[ZZ];
2448 if (dd->ndim == 1 && dd->dim[0] < ZZ && ZZ < dd->npbcdim &&
2449 box[ZZ][1 - dd->dim[0]] != 0)
2451 /* With 1D domain decomposition the cg's are not in
2452 * the triclinic box, but triclinic x-y and rectangular y/x-z.
2453 * Shift the corner of the z-vector back to along the box
2454 * vector of dimension d, so it will later end up at 0 along d.
2455 * This can affect the location of this corner along dd->dim[0]
2456 * through the matrix operation below if box[d][dd->dim[0]]!=0.
2458 int d = 1 - dd->dim[0];
2460 corner[d] -= corner[ZZ]*box[ZZ][d]/box[ZZ][ZZ];
2462 /* Apply the triclinic couplings */
2463 for (i = YY; i < ddbox->npbcdim && i < DIM; i++)
2465 for (j = XX; j < i; j++)
2467 corner[j] += corner[i]*box[i][j]/box[i][i];
2470 if (c == 0)
2472 copy_rvec(corner, corner_min);
2473 copy_rvec(corner, corner_max);
2475 else
2477 for (i = 0; i < DIM; i++)
2479 corner_min[i] = std::min(corner_min[i], corner[i]);
2480 corner_max[i] = std::max(corner_max[i], corner[i]);
2484 /* Copy the extreme cornes without offset along x */
2485 for (i = 0; i < DIM; i++)
2487 zones->size[z].bb_x0[i] = corner_min[i];
2488 zones->size[z].bb_x1[i] = corner_max[i];
2490 /* Add the offset along x */
2491 zones->size[z].bb_x0[XX] += zones->size[z].x0[XX];
2492 zones->size[z].bb_x1[XX] += zones->size[z].x1[XX];
2495 if (zone_start == 0)
2497 vol = 1;
2498 for (dim = 0; dim < DIM; dim++)
2500 vol *= zones->size[0].x1[dim] - zones->size[0].x0[dim];
2502 zones->dens_zone0 = (zones->cg_range[1] - zones->cg_range[0] - numMovedChargeGroupsInHomeZone)/vol;
2505 if (debug)
2507 for (z = zone_start; z < zone_end; z++)
2509 fprintf(debug, "zone %d %6.3f - %6.3f %6.3f - %6.3f %6.3f - %6.3f\n",
2511 zones->size[z].x0[XX], zones->size[z].x1[XX],
2512 zones->size[z].x0[YY], zones->size[z].x1[YY],
2513 zones->size[z].x0[ZZ], zones->size[z].x1[ZZ]);
2514 fprintf(debug, "zone %d bb %6.3f - %6.3f %6.3f - %6.3f %6.3f - %6.3f\n",
2516 zones->size[z].bb_x0[XX], zones->size[z].bb_x1[XX],
2517 zones->size[z].bb_x0[YY], zones->size[z].bb_x1[YY],
2518 zones->size[z].bb_x0[ZZ], zones->size[z].bb_x1[ZZ]);
2523 /*! \brief Order data in \p dataToSort according to \p sort
2525 * Note: both buffers should have at least \p sort.size() elements.
2527 template <typename T>
2528 static void
2529 orderVector(gmx::ArrayRef<const gmx_cgsort_t> sort,
2530 gmx::ArrayRef<T> dataToSort,
2531 gmx::ArrayRef<T> sortBuffer)
2533 GMX_ASSERT(dataToSort.size() >= sort.size(), "The vector needs to be sufficiently large");
2534 GMX_ASSERT(sortBuffer.size() >= sort.size(), "The sorting buffer needs to be sufficiently large");
2536 /* Order the data into the temporary buffer */
2537 size_t i = 0;
2538 for (const gmx_cgsort_t &entry : sort)
2540 sortBuffer[i++] = dataToSort[entry.ind];
2543 /* Copy back to the original array */
2544 std::copy(sortBuffer.begin(), sortBuffer.begin() + sort.size(),
2545 dataToSort.begin());
2548 /*! \brief Order data in \p dataToSort according to \p sort
2550 * Note: \p vectorToSort should have at least \p sort.size() elements,
2551 * \p workVector is resized when it is too small.
2553 template <typename T>
2554 static void
2555 orderVector(gmx::ArrayRef<const gmx_cgsort_t> sort,
2556 gmx::ArrayRef<T> vectorToSort,
2557 std::vector<T> *workVector)
2559 if (gmx::index(workVector->size()) < sort.ssize())
2561 workVector->resize(sort.size());
2563 orderVector<T>(sort, vectorToSort, *workVector);
2566 //! Returns the sorting order for atoms based on the nbnxn grid order in sort
2567 static void dd_sort_order_nbnxn(const t_forcerec *fr,
2568 std::vector<gmx_cgsort_t> *sort)
2570 gmx::ArrayRef<const int> atomOrder = fr->nbv->getLocalAtomOrder();
2572 /* Using push_back() instead of this resize results in much slower code */
2573 sort->resize(atomOrder.size());
2574 gmx::ArrayRef<gmx_cgsort_t> buffer = *sort;
2575 size_t numSorted = 0;
2576 for (int i : atomOrder)
2578 if (i >= 0)
2580 /* The values of nsc and ind_gl are not used in this case */
2581 buffer[numSorted++].ind = i;
2584 sort->resize(numSorted);
2587 //! Returns the sorting state for DD.
2588 static void dd_sort_state(gmx_domdec_t *dd, t_forcerec *fr, t_state *state)
2590 gmx_domdec_sort_t *sort = dd->comm->sort.get();
2592 dd_sort_order_nbnxn(fr, &sort->sorted);
2594 /* We alloc with the old size, since cgindex is still old */
2595 DDBufferAccess<gmx::RVec> rvecBuffer(dd->comm->rvecBuffer, dd->ncg_home);
2597 /* Set the new home atom/charge group count */
2598 dd->ncg_home = sort->sorted.size();
2599 if (debug)
2601 fprintf(debug, "Set the new home atom count to %d\n",
2602 dd->ncg_home);
2605 /* Reorder the state */
2606 gmx::ArrayRef<const gmx_cgsort_t> cgsort = sort->sorted;
2607 GMX_RELEASE_ASSERT(cgsort.ssize() == dd->ncg_home, "We should sort all the home atom groups");
2609 if (state->flags & (1 << estX))
2611 orderVector(cgsort, makeArrayRef(state->x), rvecBuffer.buffer);
2613 if (state->flags & (1 << estV))
2615 orderVector(cgsort, makeArrayRef(state->v), rvecBuffer.buffer);
2617 if (state->flags & (1 << estCGP))
2619 orderVector(cgsort, makeArrayRef(state->cg_p), rvecBuffer.buffer);
2622 /* Reorder the global cg index */
2623 orderVector<int>(cgsort, dd->globalAtomGroupIndices, &sort->intBuffer);
2624 /* Reorder the cginfo */
2625 orderVector<int>(cgsort, fr->cginfo, &sort->intBuffer);
2626 /* Set the home atom number */
2627 dd->comm->atomRanges.setEnd(DDAtomRanges::Type::Home, dd->ncg_home);
2629 /* The atoms are now exactly in grid order, update the grid order */
2630 fr->nbv->setLocalAtomOrder();
2633 //! Accumulates load statistics.
2634 static void add_dd_statistics(gmx_domdec_t *dd)
2636 gmx_domdec_comm_t *comm = dd->comm;
2638 for (int i = 0; i < static_cast<int>(DDAtomRanges::Type::Number); i++)
2640 auto range = static_cast<DDAtomRanges::Type>(i);
2641 comm->sum_nat[i] +=
2642 comm->atomRanges.end(range) - comm->atomRanges.start(range);
2644 comm->ndecomp++;
2647 void reset_dd_statistics_counters(gmx_domdec_t *dd)
2649 gmx_domdec_comm_t *comm = dd->comm;
2651 /* Reset all the statistics and counters for total run counting */
2652 for (int i = 0; i < static_cast<int>(DDAtomRanges::Type::Number); i++)
2654 comm->sum_nat[i] = 0;
2656 comm->ndecomp = 0;
2657 comm->nload = 0;
2658 comm->load_step = 0;
2659 comm->load_sum = 0;
2660 comm->load_max = 0;
2661 clear_ivec(comm->load_lim);
2662 comm->load_mdf = 0;
2663 comm->load_pme = 0;
2666 void print_dd_statistics(const t_commrec *cr, const t_inputrec *ir, FILE *fplog)
2668 gmx_domdec_comm_t *comm = cr->dd->comm;
2670 const int numRanges = static_cast<int>(DDAtomRanges::Type::Number);
2671 gmx_sumd(numRanges, comm->sum_nat, cr);
2673 if (fplog == nullptr)
2675 return;
2678 fprintf(fplog, "\n D O M A I N D E C O M P O S I T I O N S T A T I S T I C S\n\n");
2680 for (int i = static_cast<int>(DDAtomRanges::Type::Zones); i < numRanges; i++)
2682 auto range = static_cast<DDAtomRanges::Type>(i);
2683 double av = comm->sum_nat[i]/comm->ndecomp;
2684 switch (range)
2686 case DDAtomRanges::Type::Zones:
2687 fprintf(fplog,
2688 " av. #atoms communicated per step for force: %d x %.1f\n",
2689 2, av);
2690 break;
2691 case DDAtomRanges::Type::Vsites:
2692 if (cr->dd->vsite_comm)
2694 fprintf(fplog,
2695 " av. #atoms communicated per step for vsites: %d x %.1f\n",
2696 (EEL_PME(ir->coulombtype) || ir->coulombtype == eelEWALD) ? 3 : 2,
2697 av);
2699 break;
2700 case DDAtomRanges::Type::Constraints:
2701 if (cr->dd->constraint_comm)
2703 fprintf(fplog,
2704 " av. #atoms communicated per step for LINCS: %d x %.1f\n",
2705 1 + ir->nLincsIter, av);
2707 break;
2708 default:
2709 gmx_incons(" Unknown type for DD statistics");
2712 fprintf(fplog, "\n");
2714 if (comm->bRecordLoad && EI_DYNAMICS(ir->eI))
2716 print_dd_load_av(fplog, cr->dd);
2720 // TODO Remove fplog when group scheme and charge groups are gone
2721 void dd_partition_system(FILE *fplog,
2722 const gmx::MDLogger &mdlog,
2723 int64_t step,
2724 const t_commrec *cr,
2725 gmx_bool bMasterState,
2726 int nstglobalcomm,
2727 t_state *state_global,
2728 const gmx_mtop_t &top_global,
2729 const t_inputrec *ir,
2730 gmx::ImdSession *imdSession,
2731 pull_t *pull_work,
2732 t_state *state_local,
2733 PaddedVector<gmx::RVec> *f,
2734 gmx::MDAtoms *mdAtoms,
2735 gmx_localtop_t *top_local,
2736 t_forcerec *fr,
2737 gmx_vsite_t *vsite,
2738 gmx::Constraints *constr,
2739 t_nrnb *nrnb,
2740 gmx_wallcycle *wcycle,
2741 gmx_bool bVerbose)
2743 gmx_domdec_t *dd;
2744 gmx_domdec_comm_t *comm;
2745 gmx_ddbox_t ddbox = {0};
2746 int64_t step_pcoupl;
2747 rvec cell_ns_x0, cell_ns_x1;
2748 int ncgindex_set, ncg_moved, nat_f_novirsum;
2749 gmx_bool bBoxChanged, bNStGlobalComm, bDoDLB, bCheckWhetherToTurnDlbOn, bLogLoad;
2750 gmx_bool bRedist;
2751 ivec np;
2752 real grid_density;
2753 char sbuf[22];
2755 wallcycle_start(wcycle, ewcDOMDEC);
2757 dd = cr->dd;
2758 comm = dd->comm;
2760 // TODO if the update code becomes accessible here, use
2761 // upd->deform for this logic.
2762 bBoxChanged = (bMasterState || inputrecDeform(ir));
2763 if (ir->epc != epcNO)
2765 /* With nstpcouple > 1 pressure coupling happens.
2766 * one step after calculating the pressure.
2767 * Box scaling happens at the end of the MD step,
2768 * after the DD partitioning.
2769 * We therefore have to do DLB in the first partitioning
2770 * after an MD step where P-coupling occurred.
2771 * We need to determine the last step in which p-coupling occurred.
2772 * MRS -- need to validate this for vv?
2774 int n = ir->nstpcouple;
2775 if (n == 1)
2777 step_pcoupl = step - 1;
2779 else
2781 step_pcoupl = ((step - 1)/n)*n + 1;
2783 if (step_pcoupl >= comm->partition_step)
2785 bBoxChanged = TRUE;
2789 bNStGlobalComm = (step % nstglobalcomm == 0);
2791 if (!isDlbOn(comm))
2793 bDoDLB = FALSE;
2795 else
2797 /* Should we do dynamic load balacing this step?
2798 * Since it requires (possibly expensive) global communication,
2799 * we might want to do DLB less frequently.
2801 if (bBoxChanged || ir->epc != epcNO)
2803 bDoDLB = bBoxChanged;
2805 else
2807 bDoDLB = bNStGlobalComm;
2811 /* Check if we have recorded loads on the nodes */
2812 if (comm->bRecordLoad && dd_load_count(comm) > 0)
2814 bCheckWhetherToTurnDlbOn = dd_dlb_get_should_check_whether_to_turn_dlb_on(dd);
2816 /* Print load every nstlog, first and last step to the log file */
2817 bLogLoad = ((ir->nstlog > 0 && step % ir->nstlog == 0) ||
2818 comm->n_load_collect == 0 ||
2819 (ir->nsteps >= 0 &&
2820 (step + ir->nstlist > ir->init_step + ir->nsteps)));
2822 /* Avoid extra communication due to verbose screen output
2823 * when nstglobalcomm is set.
2825 if (bDoDLB || bLogLoad || bCheckWhetherToTurnDlbOn ||
2826 (bVerbose && (ir->nstlist == 0 || nstglobalcomm <= ir->nstlist)))
2828 get_load_distribution(dd, wcycle);
2829 if (DDMASTER(dd))
2831 if (bLogLoad)
2833 GMX_LOG(mdlog.info).asParagraph().appendText(dd_print_load(dd, step-1));
2835 if (bVerbose)
2837 dd_print_load_verbose(dd);
2840 comm->n_load_collect++;
2842 if (isDlbOn(comm))
2844 if (DDMASTER(dd))
2846 /* Add the measured cycles to the running average */
2847 const float averageFactor = 0.1f;
2848 comm->cyclesPerStepDlbExpAverage =
2849 (1 - averageFactor)*comm->cyclesPerStepDlbExpAverage +
2850 averageFactor*comm->cycl[ddCyclStep]/comm->cycl_n[ddCyclStep];
2852 if (comm->dlbState == DlbState::onCanTurnOff &&
2853 dd->comm->n_load_have % c_checkTurnDlbOffInterval == c_checkTurnDlbOffInterval - 1)
2855 gmx_bool turnOffDlb;
2856 if (DDMASTER(dd))
2858 /* If the running averaged cycles with DLB are more
2859 * than before we turned on DLB, turn off DLB.
2860 * We will again run and check the cycles without DLB
2861 * and we can then decide if to turn off DLB forever.
2863 turnOffDlb = (comm->cyclesPerStepDlbExpAverage >
2864 comm->cyclesPerStepBeforeDLB);
2866 dd_bcast(dd, sizeof(turnOffDlb), &turnOffDlb);
2867 if (turnOffDlb)
2869 /* To turn off DLB, we need to redistribute the atoms */
2870 dd_collect_state(dd, state_local, state_global);
2871 bMasterState = TRUE;
2872 turn_off_dlb(mdlog, dd, step);
2876 else if (bCheckWhetherToTurnDlbOn)
2878 gmx_bool turnOffDlbForever = FALSE;
2879 gmx_bool turnOnDlb = FALSE;
2881 /* Since the timings are node dependent, the master decides */
2882 if (DDMASTER(dd))
2884 /* If we recently turned off DLB, we want to check if
2885 * performance is better without DLB. We want to do this
2886 * ASAP to minimize the chance that external factors
2887 * slowed down the DLB step are gone here and we
2888 * incorrectly conclude that DLB was causing the slowdown.
2889 * So we measure one nstlist block, no running average.
2891 if (comm->haveTurnedOffDlb &&
2892 comm->cycl[ddCyclStep]/comm->cycl_n[ddCyclStep] <
2893 comm->cyclesPerStepDlbExpAverage)
2895 /* After turning off DLB we ran nstlist steps in fewer
2896 * cycles than with DLB. This likely means that DLB
2897 * in not benefical, but this could be due to a one
2898 * time unlucky fluctuation, so we require two such
2899 * observations in close succession to turn off DLB
2900 * forever.
2902 if (comm->dlbSlowerPartitioningCount > 0 &&
2903 dd->ddp_count < comm->dlbSlowerPartitioningCount + 10*c_checkTurnDlbOnInterval)
2905 turnOffDlbForever = TRUE;
2907 comm->haveTurnedOffDlb = false;
2908 /* Register when we last measured DLB slowdown */
2909 comm->dlbSlowerPartitioningCount = dd->ddp_count;
2911 else
2913 /* Here we check if the max PME rank load is more than 0.98
2914 * the max PP force load. If so, PP DLB will not help,
2915 * since we are (almost) limited by PME. Furthermore,
2916 * DLB will cause a significant extra x/f redistribution
2917 * cost on the PME ranks, which will then surely result
2918 * in lower total performance.
2920 if (cr->npmenodes > 0 &&
2921 dd_pme_f_ratio(dd) > 1 - DD_PERF_LOSS_DLB_ON)
2923 turnOnDlb = FALSE;
2925 else
2927 turnOnDlb = (dd_force_imb_perf_loss(dd) >= DD_PERF_LOSS_DLB_ON);
2931 struct
2933 gmx_bool turnOffDlbForever;
2934 gmx_bool turnOnDlb;
2936 bools {
2937 turnOffDlbForever, turnOnDlb
2939 dd_bcast(dd, sizeof(bools), &bools);
2940 if (bools.turnOffDlbForever)
2942 turn_off_dlb_forever(mdlog, dd, step);
2944 else if (bools.turnOnDlb)
2946 turn_on_dlb(mdlog, dd, step);
2947 bDoDLB = TRUE;
2951 comm->n_load_have++;
2954 bRedist = FALSE;
2955 if (bMasterState)
2957 /* Clear the old state */
2958 clearDDStateIndices(dd, 0, 0);
2959 ncgindex_set = 0;
2961 auto xGlobal = positionsFromStatePointer(state_global);
2963 set_ddbox(*dd, true,
2964 DDMASTER(dd) ? state_global->box : nullptr,
2965 true, xGlobal,
2966 &ddbox);
2968 distributeState(mdlog, dd, top_global, state_global, ddbox, state_local, f);
2970 /* Ensure that we have space for the new distribution */
2971 dd_check_alloc_ncg(fr, state_local, f, dd->ncg_home);
2973 inc_nrnb(nrnb, eNR_CGCM, comm->atomRanges.numHomeAtoms());
2975 dd_set_cginfo(dd->globalAtomGroupIndices, 0, dd->ncg_home, fr, comm->bLocalCG);
2977 else if (state_local->ddp_count != dd->ddp_count)
2979 if (state_local->ddp_count > dd->ddp_count)
2981 gmx_fatal(FARGS, "Internal inconsistency state_local->ddp_count (%d) > dd->ddp_count (%" PRId64 ")", state_local->ddp_count, dd->ddp_count);
2984 if (state_local->ddp_count_cg_gl != state_local->ddp_count)
2986 gmx_fatal(FARGS, "Internal inconsistency state_local->ddp_count_cg_gl (%d) != state_local->ddp_count (%d)", state_local->ddp_count_cg_gl, state_local->ddp_count);
2989 /* Clear the old state */
2990 clearDDStateIndices(dd, 0, 0);
2992 /* Restore the atom group indices from state_local */
2993 restoreAtomGroups(dd, state_local);
2994 make_dd_indices(dd, 0);
2995 ncgindex_set = dd->ncg_home;
2997 inc_nrnb(nrnb, eNR_CGCM, comm->atomRanges.numHomeAtoms());
2999 dd_set_cginfo(dd->globalAtomGroupIndices, 0, dd->ncg_home, fr, comm->bLocalCG);
3001 set_ddbox(*dd, bMasterState, state_local->box,
3002 true, state_local->x, &ddbox);
3004 bRedist = isDlbOn(comm);
3006 else
3008 /* We have the full state, only redistribute the cgs */
3010 /* Clear the non-home indices */
3011 clearDDStateIndices(dd, dd->ncg_home, comm->atomRanges.numHomeAtoms());
3012 ncgindex_set = 0;
3014 /* To avoid global communication, we do not recompute the extent
3015 * of the system for dims without pbc. Therefore we need to copy
3016 * the previously computed values when we do not communicate.
3018 if (!bNStGlobalComm)
3020 copy_rvec(comm->box0, ddbox.box0 );
3021 copy_rvec(comm->box_size, ddbox.box_size);
3023 set_ddbox(*dd, bMasterState, state_local->box,
3024 bNStGlobalComm, state_local->x, &ddbox);
3026 bBoxChanged = TRUE;
3027 bRedist = TRUE;
3029 /* Copy needed for dim's without pbc when avoiding communication */
3030 copy_rvec(ddbox.box0, comm->box0 );
3031 copy_rvec(ddbox.box_size, comm->box_size);
3033 set_dd_cell_sizes(dd, &ddbox, dynamic_dd_box(*dd), bMasterState, bDoDLB,
3034 step, wcycle);
3036 if (comm->nstDDDumpGrid > 0 && step % comm->nstDDDumpGrid == 0)
3038 write_dd_grid_pdb("dd_grid", step, dd, state_local->box, &ddbox);
3041 if (comm->useUpdateGroups)
3043 comm->updateGroupsCog->addCogs(gmx::arrayRefFromArray(dd->globalAtomGroupIndices.data(), dd->ncg_home),
3044 state_local->x);
3047 /* Check if we should sort the charge groups */
3048 const bool bSortCG = (bMasterState || bRedist);
3050 /* When repartitioning we mark atom groups that will move to neighboring
3051 * DD cells, but we do not move them right away for performance reasons.
3052 * Thus we need to keep track of how many charge groups will move for
3053 * obtaining correct local charge group / atom counts.
3055 ncg_moved = 0;
3056 if (bRedist)
3058 wallcycle_sub_start(wcycle, ewcsDD_REDIST);
3060 ncgindex_set = dd->ncg_home;
3061 dd_redistribute_cg(fplog, step, dd, ddbox.tric_dir,
3062 state_local, f, fr,
3063 nrnb, &ncg_moved);
3065 GMX_RELEASE_ASSERT(bSortCG, "Sorting is required after redistribution");
3067 if (comm->useUpdateGroups)
3069 comm->updateGroupsCog->addCogs(gmx::arrayRefFromArray(dd->globalAtomGroupIndices.data(), dd->ncg_home),
3070 state_local->x);
3073 wallcycle_sub_stop(wcycle, ewcsDD_REDIST);
3076 // TODO: Integrate this code in the nbnxm module
3077 get_nsgrid_boundaries(ddbox.nboundeddim, state_local->box,
3078 dd, &ddbox,
3079 &comm->cell_x0, &comm->cell_x1,
3080 dd->ncg_home, as_rvec_array(state_local->x.data()),
3081 cell_ns_x0, cell_ns_x1, &grid_density);
3083 if (bBoxChanged)
3085 comm_dd_ns_cell_sizes(dd, &ddbox, cell_ns_x0, cell_ns_x1, step);
3088 /* We need to store tric_dir for dd_get_ns_ranges called from ns.c */
3089 copy_ivec(ddbox.tric_dir, comm->tric_dir);
3091 if (bSortCG)
3093 wallcycle_sub_start(wcycle, ewcsDD_GRID);
3095 /* Sort the state on charge group position.
3096 * This enables exact restarts from this step.
3097 * It also improves performance by about 15% with larger numbers
3098 * of atoms per node.
3101 /* Fill the ns grid with the home cell,
3102 * so we can sort with the indices.
3104 set_zones_ncg_home(dd);
3106 set_zones_size(dd, state_local->box, &ddbox, 0, 1, ncg_moved);
3108 nbnxn_put_on_grid(fr->nbv.get(), state_local->box,
3110 comm->zones.size[0].bb_x0,
3111 comm->zones.size[0].bb_x1,
3112 comm->updateGroupsCog.get(),
3113 0, dd->ncg_home,
3114 comm->zones.dens_zone0,
3115 fr->cginfo,
3116 state_local->x,
3117 ncg_moved, bRedist ? comm->movedBuffer.data() : nullptr);
3119 if (debug)
3121 fprintf(debug, "Step %s, sorting the %d home charge groups\n",
3122 gmx_step_str(step, sbuf), dd->ncg_home);
3124 dd_sort_state(dd, fr, state_local);
3126 /* After sorting and compacting we set the correct size */
3127 dd_resize_state(state_local, f, comm->atomRanges.numHomeAtoms());
3129 /* Rebuild all the indices */
3130 dd->ga2la->clear();
3131 ncgindex_set = 0;
3133 wallcycle_sub_stop(wcycle, ewcsDD_GRID);
3135 else
3137 /* With the group scheme the sorting array is part of the DD state,
3138 * but it just got out of sync, so mark as invalid by emptying it.
3140 if (ir->cutoff_scheme == ecutsGROUP)
3142 comm->sort->sorted.clear();
3146 if (comm->useUpdateGroups)
3148 /* The update groups cog's are invalid after sorting
3149 * and need to be cleared before the next partitioning anyhow.
3151 comm->updateGroupsCog->clear();
3154 wallcycle_sub_start(wcycle, ewcsDD_SETUPCOMM);
3156 /* Setup up the communication and communicate the coordinates */
3157 setup_dd_communication(dd, state_local->box, &ddbox, fr, state_local, f);
3159 /* Set the indices */
3160 make_dd_indices(dd, ncgindex_set);
3162 /* Set the charge group boundaries for neighbor searching */
3163 set_cg_boundaries(&comm->zones);
3165 if (fr->cutoff_scheme == ecutsVERLET)
3167 /* When bSortCG=true, we have already set the size for zone 0 */
3168 set_zones_size(dd, state_local->box, &ddbox,
3169 bSortCG ? 1 : 0, comm->zones.n,
3173 wallcycle_sub_stop(wcycle, ewcsDD_SETUPCOMM);
3176 write_dd_pdb("dd_home",step,"dump",top_global,cr,
3177 -1,state_local->x.rvec_array(),state_local->box);
3180 wallcycle_sub_start(wcycle, ewcsDD_MAKETOP);
3182 /* Extract a local topology from the global topology */
3183 for (int i = 0; i < dd->ndim; i++)
3185 np[dd->dim[i]] = comm->cd[i].numPulses();
3187 dd_make_local_top(dd, &comm->zones, dd->npbcdim, state_local->box,
3188 comm->cellsize_min, np,
3190 state_local->x.rvec_array(),
3191 top_global, top_local);
3193 wallcycle_sub_stop(wcycle, ewcsDD_MAKETOP);
3195 wallcycle_sub_start(wcycle, ewcsDD_MAKECONSTR);
3197 /* Set up the special atom communication */
3198 int n = comm->atomRanges.end(DDAtomRanges::Type::Zones);
3199 for (int i = static_cast<int>(DDAtomRanges::Type::Zones) + 1; i < static_cast<int>(DDAtomRanges::Type::Number); i++)
3201 auto range = static_cast<DDAtomRanges::Type>(i);
3202 switch (range)
3204 case DDAtomRanges::Type::Vsites:
3205 if (vsite && vsite->numInterUpdategroupVsites)
3207 n = dd_make_local_vsites(dd, n, top_local->idef.il);
3209 break;
3210 case DDAtomRanges::Type::Constraints:
3211 if (dd->splitConstraints || dd->splitSettles)
3213 /* Only for inter-cg constraints we need special code */
3214 n = dd_make_local_constraints(dd, n, &top_global, fr->cginfo.data(),
3215 constr, ir->nProjOrder,
3216 top_local->idef.il);
3218 break;
3219 default:
3220 gmx_incons("Unknown special atom type setup");
3222 comm->atomRanges.setEnd(range, n);
3225 wallcycle_sub_stop(wcycle, ewcsDD_MAKECONSTR);
3227 wallcycle_sub_start(wcycle, ewcsDD_TOPOTHER);
3229 /* Make space for the extra coordinates for virtual site
3230 * or constraint communication.
3232 state_local->natoms = comm->atomRanges.numAtomsTotal();
3234 dd_resize_state(state_local, f, state_local->natoms);
3236 if (fr->haveDirectVirialContributions)
3238 if (vsite && vsite->numInterUpdategroupVsites)
3240 nat_f_novirsum = comm->atomRanges.end(DDAtomRanges::Type::Vsites);
3242 else
3244 if (EEL_FULL(ir->coulombtype) && dd->n_intercg_excl > 0)
3246 nat_f_novirsum = comm->atomRanges.end(DDAtomRanges::Type::Zones);
3248 else
3250 nat_f_novirsum = comm->atomRanges.numHomeAtoms();
3254 else
3256 nat_f_novirsum = 0;
3259 /* Set the number of atoms required for the force calculation.
3260 * Forces need to be constrained when doing energy
3261 * minimization. For simple simulations we could avoid some
3262 * allocation, zeroing and copying, but this is probably not worth
3263 * the complications and checking.
3265 forcerec_set_ranges(fr, dd->ncg_home, dd->globalAtomGroupIndices.size(),
3266 comm->atomRanges.end(DDAtomRanges::Type::Zones),
3267 comm->atomRanges.end(DDAtomRanges::Type::Constraints),
3268 nat_f_novirsum);
3270 /* Update atom data for mdatoms and several algorithms */
3271 mdAlgorithmsSetupAtomData(cr, ir, top_global, top_local, fr,
3272 nullptr, mdAtoms, constr, vsite, nullptr);
3274 auto mdatoms = mdAtoms->mdatoms();
3275 if (!thisRankHasDuty(cr, DUTY_PME))
3277 /* Send the charges and/or c6/sigmas to our PME only node */
3278 gmx_pme_send_parameters(cr,
3279 fr->ic,
3280 mdatoms->nChargePerturbed != 0, mdatoms->nTypePerturbed != 0,
3281 mdatoms->chargeA, mdatoms->chargeB,
3282 mdatoms->sqrt_c6A, mdatoms->sqrt_c6B,
3283 mdatoms->sigmaA, mdatoms->sigmaB,
3284 dd_pme_maxshift_x(dd), dd_pme_maxshift_y(dd));
3287 if (ir->bPull)
3289 /* Update the local pull groups */
3290 dd_make_local_pull_groups(cr, pull_work);
3293 if (dd->atomSets != nullptr)
3295 /* Update the local atom sets */
3296 dd->atomSets->setIndicesInDomainDecomposition(*(dd->ga2la));
3299 /* Update the local atoms to be communicated via the IMD protocol if bIMD is TRUE. */
3300 imdSession->dd_make_local_IMD_atoms(dd);
3302 add_dd_statistics(dd);
3304 /* Make sure we only count the cycles for this DD partitioning */
3305 clear_dd_cycle_counts(dd);
3307 /* Because the order of the atoms might have changed since
3308 * the last vsite construction, we need to communicate the constructing
3309 * atom coordinates again (for spreading the forces this MD step).
3311 dd_move_x_vsites(dd, state_local->box, state_local->x.rvec_array());
3313 wallcycle_sub_stop(wcycle, ewcsDD_TOPOTHER);
3315 if (comm->nstDDDump > 0 && step % comm->nstDDDump == 0)
3317 dd_move_x(dd, state_local->box, state_local->x, nullWallcycle);
3318 write_dd_pdb("dd_dump", step, "dump", &top_global, cr,
3319 -1, state_local->x.rvec_array(), state_local->box);
3322 /* Store the partitioning step */
3323 comm->partition_step = step;
3325 /* Increase the DD partitioning counter */
3326 dd->ddp_count++;
3327 /* The state currently matches this DD partitioning count, store it */
3328 state_local->ddp_count = dd->ddp_count;
3329 if (bMasterState)
3331 /* The DD master node knows the complete cg distribution,
3332 * store the count so we can possibly skip the cg info communication.
3334 comm->master_cg_ddp_count = (bSortCG ? 0 : dd->ddp_count);
3337 if (comm->DD_debug > 0)
3339 /* Set the env var GMX_DD_DEBUG if you suspect corrupted indices */
3340 check_index_consistency(dd, top_global.natoms, ncg_mtop(&top_global),
3341 "after partitioning");
3344 wallcycle_stop(wcycle, ewcDOMDEC);
3347 /*! \brief Check whether bonded interactions are missing, if appropriate */
3348 void checkNumberOfBondedInteractions(const gmx::MDLogger &mdlog,
3349 t_commrec *cr,
3350 int totalNumberOfBondedInteractions,
3351 const gmx_mtop_t *top_global,
3352 const gmx_localtop_t *top_local,
3353 const rvec *x,
3354 const matrix box,
3355 bool *shouldCheckNumberOfBondedInteractions)
3357 if (*shouldCheckNumberOfBondedInteractions)
3359 if (totalNumberOfBondedInteractions != cr->dd->nbonded_global)
3361 dd_print_missing_interactions(mdlog, cr, totalNumberOfBondedInteractions, top_global, top_local, x, box); // Does not return
3363 *shouldCheckNumberOfBondedInteractions = false;