2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2016,2017,2018, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
38 * Implements classes for quadratic spline table functions
40 * \author Erik Lindahl <erik.lindahl@gmail.com>
41 * \ingroup module_tables
45 #include "quadraticsplinetable.h"
51 #include <initializer_list>
55 #include "gromacs/tables/tableinput.h"
56 #include "gromacs/utility/alignedallocator.h"
57 #include "gromacs/utility/arrayref.h"
58 #include "gromacs/utility/exceptions.h"
59 #include "gromacs/utility/real.h"
61 #include "splineutil.h"
69 /*! \brief Construct the data for a single quadratic table from analytical functions
71 * \param[in] function Analytical functiojn
72 * \param[in] derivative Analytical derivative
73 * \param[in] range Upper/lower limit of region to tabulate
74 * \param[in] spacing Distance between table points
75 * \param[out] functionTableData Output table with function data
76 * \param[out] derivativeTableData OUtput table with (adjusted) derivative data
79 fillSingleQuadraticSplineTableData(const std::function
<double(double)> &function
,
80 const std::function
<double(double)> &derivative
,
81 const std::pair
<real
, real
> &range
,
83 std::vector
<real
> *functionTableData
,
84 std::vector
<real
> *derivativeTableData
)
86 std::size_t endIndex
= static_cast<std::size_t>(range
.second
/ spacing
+ 2);
88 functionTableData
->resize(endIndex
);
89 derivativeTableData
->resize(endIndex
);
91 double maxMagnitude
= 0.0001*GMX_REAL_MAX
;
92 bool functionIsInRange
= true;
93 std::size_t lastIndexInRange
= endIndex
- 1;
95 for (int i
= endIndex
- 1; i
>= 0; i
--)
97 double x
= i
* spacing
;
98 double tmpFunctionValue
;
99 double tmpDerivativeValue
;
101 if (range
.first
> 0 && i
== 0)
103 // Avoid x==0 if it is not in the range, since it can lead to
104 // singularities even if the value for i==1 was within or required magnitude
105 functionIsInRange
= false;
108 if (functionIsInRange
)
110 tmpFunctionValue
= function(x
);
112 // Calculate third derivative term (2nd derivative of the derivative)
113 // Make sure we stay in range. In practice this means we use one-sided
114 // interpolation at the interval endpoints (indentical to an offset for 3-point formula)
115 const double h
= std::pow( GMX_DOUBLE_EPS
, 0.25 );
116 double y
= std::min( std::max(x
, range
.first
+ h
), range
.second
- h
);
117 double thirdDerivativeValue
= ( derivative(y
+h
) - 2.0 * derivative(y
) + derivative(y
-h
) ) / ( h
* h
);
119 tmpDerivativeValue
= derivative(x
) - spacing
* spacing
* thirdDerivativeValue
/ 12.0;
121 if (std::abs(tmpFunctionValue
) > maxMagnitude
|| std::abs(tmpDerivativeValue
) > maxMagnitude
)
123 functionIsInRange
= false; // Once this happens, it never resets to true again
127 if (functionIsInRange
)
129 (*functionTableData
)[i
] = tmpFunctionValue
;
130 (*derivativeTableData
)[i
] = tmpDerivativeValue
;
135 // Once the function or derivative (more likely) has reached very large values,
136 // we simply make a linear function from the last in-range value of the derivative.
137 double lastIndexFunction
= (*functionTableData
)[lastIndexInRange
];
138 double lastIndexDerivative
= (*derivativeTableData
)[lastIndexInRange
];
139 (*functionTableData
)[i
] = lastIndexFunction
+ lastIndexDerivative
* (i
- lastIndexInRange
) * spacing
;
140 (*derivativeTableData
)[i
] = lastIndexDerivative
;
146 /*! \brief Construct the data for a single quadratic table from vector data
148 * \param[in] function Input vector with function data
149 * \param[in] derivative Input vector with derivative data
150 * \param[in] inputSpacing Distance between points in input vectors
151 * \param[in] range Upper/lower limit of region to tabulate
152 * \param[in] spacing Distance between table points
153 * \param[out] functionTableData Output table with function data
154 * \param[out] derivativeTableData OUtput table with (adjusted) derivative data
157 fillSingleQuadraticSplineTableData(ArrayRef
<const double> function
,
158 ArrayRef
<const double> derivative
,
160 const std::pair
<real
, real
> &range
,
162 std::vector
<real
> *functionTableData
,
163 std::vector
<real
> *derivativeTableData
)
165 std::size_t endIndex
= static_cast<std::size_t>(range
.second
/ spacing
+ 2);
167 functionTableData
->resize(endIndex
);
168 derivativeTableData
->resize(endIndex
);
170 std::vector
<double> thirdDerivative(internal::vectorSecondDerivative(derivative
, inputSpacing
));
172 double maxMagnitude
= 0.0001*GMX_REAL_MAX
;
173 bool functionIsInRange
= true;
174 std::size_t lastIndexInRange
= endIndex
- 1;
176 for (int i
= endIndex
- 1; i
>= 0; i
--)
178 double x
= i
* spacing
;
179 double tmpFunctionValue
;
180 double tmpDerivativeValue
;
182 if (range
.first
> 0 && i
== 0)
184 // Avoid x==0 if it is not in the range, since it can lead to
185 // singularities even if the value for i==1 was within or required magnitude
186 functionIsInRange
= false;
189 if (functionIsInRange
)
191 // Step 1: Interpolate the function value at x from input table.
192 double inputXTab
= x
/ inputSpacing
;
193 int inputIndex
= static_cast<std::size_t>(inputXTab
);
194 double inputEps
= inputXTab
- inputIndex
;
196 // Linear interpolation of input derivative and third derivative
197 double thirdDerivativeValue
= (1.0 - inputEps
) * thirdDerivative
[inputIndex
] + inputEps
* thirdDerivative
[inputIndex
+1];
198 double derivativeValue
= (1.0 - inputEps
) * derivative
[inputIndex
] + inputEps
* derivative
[inputIndex
+1];
200 // Quadratic interpolation for function value
201 tmpFunctionValue
= function
[inputIndex
] + 0.5 * (derivative
[inputIndex
] + derivativeValue
) * inputEps
* inputSpacing
;
202 tmpDerivativeValue
= derivativeValue
- spacing
* spacing
* thirdDerivativeValue
/ 12.0;
204 if (std::abs(tmpFunctionValue
) > maxMagnitude
|| std::abs(tmpDerivativeValue
) > maxMagnitude
)
206 functionIsInRange
= false; // Once this happens, it never resets to true again
210 if (functionIsInRange
)
212 (*functionTableData
)[i
] = tmpFunctionValue
;
213 (*derivativeTableData
)[i
] = tmpDerivativeValue
;
218 // Once the function or derivative (more likely) has reached very large values,
219 // we simply make a linear function from the last in-range value of the derivative.
220 double lastIndexFunction
= (*functionTableData
)[lastIndexInRange
];
221 double lastIndexDerivative
= (*derivativeTableData
)[lastIndexInRange
];
222 (*functionTableData
)[i
] = lastIndexFunction
+ lastIndexDerivative
* (i
- lastIndexInRange
) * spacing
;
223 (*derivativeTableData
)[i
] = lastIndexDerivative
;
228 /*! \brief Create merged DDFZ vector from function & derivative data
230 * \param functionTableData Function values
231 * \param derivativeTableData Derivative values. We have already subtracted the
232 * small third derivative component when calling this
233 * function, but in practice it is just an arbitrary
235 * \param ddfzTableData Vector four times longer, filled with
236 * the derivative, the difference to the next derivative
237 * point, the function value, and zero.
239 * \throws If the vector lengths do not match.
242 fillDdfzTableData(const std::vector
<real
> &functionTableData
,
243 const std::vector
<real
> &derivativeTableData
,
244 std::vector
<real
> *ddfzTableData
)
246 GMX_ASSERT(functionTableData
.size() == derivativeTableData
.size(), "Mismatching vector lengths");
248 std::size_t points
= functionTableData
.size();
250 ddfzTableData
->resize(4 * points
);
252 for (std::size_t i
= 0; i
< points
; i
++)
254 (*ddfzTableData
)[4*i
] = derivativeTableData
[i
];
256 double nextDerivative
= ( i
< functionTableData
.size() - 1 ) ? derivativeTableData
[i
+1] : 0.0;
258 (*ddfzTableData
)[4*i
+ 1] = nextDerivative
- derivativeTableData
[i
];
259 (*ddfzTableData
)[4*i
+ 2] = functionTableData
[i
];
260 (*ddfzTableData
)[4*i
+ 3] = 0.0;
269 QuadraticSplineTable::defaultTolerance
= 10.0 * GMX_FLOAT_EPS
;
272 QuadraticSplineTable::QuadraticSplineTable(std::initializer_list
<AnalyticalSplineTableInput
> analyticalInputList
,
273 const std::pair
<real
, real
> &range
,
275 : numFuncInTable_(analyticalInputList
.size()), range_(range
)
277 // Sanity check on input values
278 if (range_
.first
< 0.0 || (range_
.second
-range_
.first
) < 0.001)
280 GMX_THROW(InvalidInputError("Range to tabulate cannot include negative values and must span at least 0.001"));
283 if (tolerance
< GMX_REAL_EPS
)
285 GMX_THROW(ToleranceError("Table tolerance cannot be smaller than GMX_REAL_EPS"));
288 double minQuotient
= GMX_REAL_MAX
;
290 // loop over all functions to find smallest spacing
291 for (const auto &thisFuncInput
: analyticalInputList
)
295 internal::throwUnlessDerivativeIsConsistentWithFunction(thisFuncInput
.function
, thisFuncInput
.derivative
, range_
);
297 catch (gmx::GromacsException
&ex
)
299 ex
.prependContext("Error generating quadratic spline table for function '" + thisFuncInput
.desc
+ "'");
302 // Calculate the required table spacing h. The error we make with linear interpolation
303 // of the derivative will be described by the third-derivative correction term.
304 // This means we can compute the required spacing as h = sqrt(12*tolerance*min(f'/f''')),
305 // where f'/f''' is the first and third derivative of the function, respectively.
307 double thisMinQuotient
= internal::findSmallestQuotientOfFunctionAndSecondDerivative(thisFuncInput
.derivative
, range_
);
309 minQuotient
= std::min(minQuotient
, thisMinQuotient
);
312 double spacing
= std::sqrt(12.0 * tolerance
* minQuotient
);
314 halfSpacing_
= 0.5 * spacing
;
315 tableScale_
= 1.0 / spacing
;
317 if (range_
.second
* tableScale_
> 1e6
)
319 GMX_THROW(ToleranceError("Over a million points would be required for table; decrease range or increase tolerance"));
322 // Loop over all tables again.
323 // Here we create the actual table for each function, and then
324 // combine them into a multiplexed table function.
325 std::size_t funcIndex
= 0;
327 for (const auto &thisFuncInput
: analyticalInputList
)
331 std::vector
<real
> tmpFuncTableData
;
332 std::vector
<real
> tmpDerTableData
;
333 std::vector
<real
> tmpDdfzTableData
;
335 fillSingleQuadraticSplineTableData(thisFuncInput
.function
,
336 thisFuncInput
.derivative
,
342 fillDdfzTableData(tmpFuncTableData
, tmpDerTableData
, &tmpDdfzTableData
);
344 internal::fillMultiplexedTableData(tmpDerTableData
, &derivativeMultiTableData_
,
345 1, numFuncInTable_
, funcIndex
);
347 internal::fillMultiplexedTableData(tmpDdfzTableData
, &ddfzMultiTableData_
,
348 4, numFuncInTable_
, funcIndex
);
352 catch (gmx::GromacsException
&ex
)
354 ex
.prependContext("Error generating quadratic spline table for function '" + thisFuncInput
.desc
+ "'");
361 QuadraticSplineTable::QuadraticSplineTable(std::initializer_list
<NumericalSplineTableInput
> numericalInputList
,
362 const std::pair
<real
, real
> &range
,
364 : numFuncInTable_(numericalInputList
.size()), range_(range
)
366 // Sanity check on input values
367 if (range
.first
< 0.0 || (range
.second
-range
.first
) < 0.001)
369 GMX_THROW(InvalidInputError("Range to tabulate cannot include negative values and must span at least 0.001"));
372 if (tolerance
< GMX_REAL_EPS
)
374 GMX_THROW(ToleranceError("Table tolerance cannot be smaller than GMX_REAL_EPS"));
377 double minQuotient
= GMX_REAL_MAX
;
379 // loop over all functions to find smallest spacing
380 for (auto thisFuncInput
: numericalInputList
)
384 // We do not yet know what the margin is, but we need to test that we at least cover
385 // the requested range before starting to calculate derivatives
386 if (thisFuncInput
.function
.size() < range_
.second
/ thisFuncInput
.spacing
+ 1)
388 GMX_THROW(InconsistentInputError("Table input vectors must cover requested range, and a margin beyond the upper endpoint"));
391 if (thisFuncInput
.function
.size() != thisFuncInput
.derivative
.size())
393 GMX_THROW(InconsistentInputError("Function and derivative vectors have different lengths"));
396 internal::throwUnlessDerivativeIsConsistentWithFunction(thisFuncInput
.function
, thisFuncInput
.derivative
, thisFuncInput
.spacing
, range_
);
398 catch (gmx::GromacsException
&ex
)
400 ex
.prependContext("Error generating quadratic spline table for function '" + thisFuncInput
.desc
+ "'");
403 // Calculate the required table spacing h. The error we make with linear interpolation
404 // of the derivative will be described by the third-derivative correction term.
405 // This means we can compute the required spacing as h = sqrt(12*tolerance*min(f'/f''')),
406 // where f'/f''' is the first and third derivative of the function, respectively.
407 // Since we already have an analytical form of the derivative, we reduce the numerical
408 // errors by calculating the quotient of the function and second derivative of the
409 // input-derivative-analytical function instead.
411 double thisMinQuotient
= internal::findSmallestQuotientOfFunctionAndSecondDerivative(thisFuncInput
.derivative
, thisFuncInput
.spacing
, range_
);
413 minQuotient
= std::min(minQuotient
, thisMinQuotient
);
416 double spacing
= std::sqrt(12.0 * tolerance
* minQuotient
);
418 halfSpacing_
= 0.5 * spacing
;
419 tableScale_
= 1.0 / spacing
;
421 if (range_
.second
* tableScale_
> 1e6
)
423 GMX_THROW(ToleranceError("Requested tolerance would require over a million points in table"));
426 // Loop over all tables again.
427 // Here we create the actual table for each function, and then
428 // combine them into a multiplexed table function.
429 std::size_t funcIndex
= 0;
431 for (auto thisFuncInput
: numericalInputList
)
435 if (spacing
< thisFuncInput
.spacing
)
437 GMX_THROW(ToleranceError("Input vector spacing cannot achieve tolerance requested"));
440 std::vector
<real
> tmpFuncTableData
;
441 std::vector
<real
> tmpDerTableData
;
442 std::vector
<real
> tmpDdfzTableData
;
444 fillSingleQuadraticSplineTableData(thisFuncInput
.function
,
445 thisFuncInput
.derivative
,
446 thisFuncInput
.spacing
,
452 fillDdfzTableData(tmpFuncTableData
, tmpDerTableData
, &tmpDdfzTableData
);
454 internal::fillMultiplexedTableData(tmpDerTableData
, &derivativeMultiTableData_
,
455 1, numFuncInTable_
, funcIndex
);
457 internal::fillMultiplexedTableData(tmpDdfzTableData
, &ddfzMultiTableData_
,
458 4, numFuncInTable_
, funcIndex
);
462 catch (gmx::GromacsException
&ex
)
464 ex
.prependContext("Error generating quadratic spline table for function '" + thisFuncInput
.desc
+ "'");