Simplify t_forcerec destruction
[gromacs.git] / src / gromacs / mdlib / forcerec.cpp
blob66c4c33b5647d48e047a7d9ff49dc7f9224b7f78
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013-2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #include "gmxpre.h"
39 #include "forcerec.h"
41 #include "config.h"
43 #include <cassert>
44 #include <cmath>
45 #include <cstdlib>
46 #include <cstring>
48 #include <algorithm>
49 #include <memory>
51 #include "gromacs/commandline/filenm.h"
52 #include "gromacs/domdec/domdec.h"
53 #include "gromacs/domdec/domdec_struct.h"
54 #include "gromacs/ewald/ewald.h"
55 #include "gromacs/ewald/ewald_utils.h"
56 #include "gromacs/ewald/pme_pp_comm_gpu.h"
57 #include "gromacs/fileio/filetypes.h"
58 #include "gromacs/gmxlib/network.h"
59 #include "gromacs/gmxlib/nonbonded/nonbonded.h"
60 #include "gromacs/gpu_utils/gpu_utils.h"
61 #include "gromacs/hardware/hw_info.h"
62 #include "gromacs/listed_forces/gpubonded.h"
63 #include "gromacs/listed_forces/manage_threading.h"
64 #include "gromacs/listed_forces/pairs.h"
65 #include "gromacs/math/functions.h"
66 #include "gromacs/math/units.h"
67 #include "gromacs/math/utilities.h"
68 #include "gromacs/math/vec.h"
69 #include "gromacs/mdlib/dispersioncorrection.h"
70 #include "gromacs/mdlib/force.h"
71 #include "gromacs/mdlib/forcerec_threading.h"
72 #include "gromacs/mdlib/gmx_omp_nthreads.h"
73 #include "gromacs/mdlib/md_support.h"
74 #include "gromacs/mdlib/qmmm.h"
75 #include "gromacs/mdlib/rf_util.h"
76 #include "gromacs/mdlib/wall.h"
77 #include "gromacs/mdtypes/commrec.h"
78 #include "gromacs/mdtypes/fcdata.h"
79 #include "gromacs/mdtypes/group.h"
80 #include "gromacs/mdtypes/iforceprovider.h"
81 #include "gromacs/mdtypes/inputrec.h"
82 #include "gromacs/mdtypes/md_enums.h"
83 #include "gromacs/nbnxm/gpu_data_mgmt.h"
84 #include "gromacs/nbnxm/nbnxm.h"
85 #include "gromacs/nbnxm/nbnxm_geometry.h"
86 #include "gromacs/pbcutil/ishift.h"
87 #include "gromacs/pbcutil/pbc.h"
88 #include "gromacs/tables/forcetable.h"
89 #include "gromacs/topology/mtop_util.h"
90 #include "gromacs/trajectory/trajectoryframe.h"
91 #include "gromacs/utility/cstringutil.h"
92 #include "gromacs/utility/exceptions.h"
93 #include "gromacs/utility/fatalerror.h"
94 #include "gromacs/utility/gmxassert.h"
95 #include "gromacs/utility/logger.h"
96 #include "gromacs/utility/physicalnodecommunicator.h"
97 #include "gromacs/utility/pleasecite.h"
98 #include "gromacs/utility/smalloc.h"
99 #include "gromacs/utility/strconvert.h"
101 /*! \brief environment variable to enable GPU P2P communication */
102 static const bool c_enableGpuPmePpComms =
103 (getenv("GMX_GPU_PME_PP_COMMS") != nullptr) && GMX_THREAD_MPI && (GMX_GPU == GMX_GPU_CUDA);
105 static std::vector<real> mk_nbfp(const gmx_ffparams_t* idef, gmx_bool bBHAM)
107 std::vector<real> nbfp;
108 int atnr;
110 atnr = idef->atnr;
111 if (bBHAM)
113 nbfp.resize(3 * atnr * atnr);
114 int k = 0;
115 for (int i = 0; (i < atnr); i++)
117 for (int j = 0; (j < atnr); j++, k++)
119 BHAMA(nbfp, atnr, i, j) = idef->iparams[k].bham.a;
120 BHAMB(nbfp, atnr, i, j) = idef->iparams[k].bham.b;
121 /* nbfp now includes the 6.0 derivative prefactor */
122 BHAMC(nbfp, atnr, i, j) = idef->iparams[k].bham.c * 6.0;
126 else
128 nbfp.resize(2 * atnr * atnr);
129 int k = 0;
130 for (int i = 0; (i < atnr); i++)
132 for (int j = 0; (j < atnr); j++, k++)
134 /* nbfp now includes the 6.0/12.0 derivative prefactors */
135 C6(nbfp, atnr, i, j) = idef->iparams[k].lj.c6 * 6.0;
136 C12(nbfp, atnr, i, j) = idef->iparams[k].lj.c12 * 12.0;
141 return nbfp;
144 static real* make_ljpme_c6grid(const gmx_ffparams_t* idef, t_forcerec* fr)
146 int i, j, k, atnr;
147 real c6, c6i, c6j, c12i, c12j, epsi, epsj, sigmai, sigmaj;
148 real* grid;
150 /* For LJ-PME simulations, we correct the energies with the reciprocal space
151 * inside of the cut-off. To do this the non-bonded kernels needs to have
152 * access to the C6-values used on the reciprocal grid in pme.c
155 atnr = idef->atnr;
156 snew(grid, 2 * atnr * atnr);
157 for (i = k = 0; (i < atnr); i++)
159 for (j = 0; (j < atnr); j++, k++)
161 c6i = idef->iparams[i * (atnr + 1)].lj.c6;
162 c12i = idef->iparams[i * (atnr + 1)].lj.c12;
163 c6j = idef->iparams[j * (atnr + 1)].lj.c6;
164 c12j = idef->iparams[j * (atnr + 1)].lj.c12;
165 c6 = std::sqrt(c6i * c6j);
166 if (fr->ljpme_combination_rule == eljpmeLB && !gmx_numzero(c6) && !gmx_numzero(c12i)
167 && !gmx_numzero(c12j))
169 sigmai = gmx::sixthroot(c12i / c6i);
170 sigmaj = gmx::sixthroot(c12j / c6j);
171 epsi = c6i * c6i / c12i;
172 epsj = c6j * c6j / c12j;
173 c6 = std::sqrt(epsi * epsj) * gmx::power6(0.5 * (sigmai + sigmaj));
175 /* Store the elements at the same relative positions as C6 in nbfp in order
176 * to simplify access in the kernels
178 grid[2 * (atnr * i + j)] = c6 * 6.0;
181 return grid;
184 enum
186 acNONE = 0,
187 acCONSTRAINT,
188 acSETTLE
191 static std::vector<cginfo_mb_t> init_cginfo_mb(const gmx_mtop_t* mtop, const t_forcerec* fr, gmx_bool* bFEP_NonBonded)
193 gmx_bool* type_VDW;
194 int* a_con;
196 snew(type_VDW, fr->ntype);
197 for (int ai = 0; ai < fr->ntype; ai++)
199 type_VDW[ai] = FALSE;
200 for (int j = 0; j < fr->ntype; j++)
202 type_VDW[ai] = type_VDW[ai] || fr->bBHAM || C6(fr->nbfp, fr->ntype, ai, j) != 0
203 || C12(fr->nbfp, fr->ntype, ai, j) != 0;
207 *bFEP_NonBonded = FALSE;
209 std::vector<cginfo_mb_t> cginfoPerMolblock;
210 int a_offset = 0;
211 for (size_t mb = 0; mb < mtop->molblock.size(); mb++)
213 const gmx_molblock_t& molb = mtop->molblock[mb];
214 const gmx_moltype_t& molt = mtop->moltype[molb.type];
215 const t_blocka& excl = molt.excls;
217 /* Check if the cginfo is identical for all molecules in this block.
218 * If so, we only need an array of the size of one molecule.
219 * Otherwise we make an array of #mol times #cgs per molecule.
221 gmx_bool bId = TRUE;
222 for (int m = 0; m < molb.nmol; m++)
224 const int am = m * molt.atoms.nr;
225 for (int a = 0; a < molt.atoms.nr; a++)
227 if (getGroupType(mtop->groups, SimulationAtomGroupType::QuantumMechanics, a_offset + am + a)
228 != getGroupType(mtop->groups, SimulationAtomGroupType::QuantumMechanics, a_offset + a))
230 bId = FALSE;
232 if (!mtop->groups.groupNumbers[SimulationAtomGroupType::QuantumMechanics].empty())
234 if (mtop->groups.groupNumbers[SimulationAtomGroupType::QuantumMechanics][a_offset + am + a]
235 != mtop->groups.groupNumbers[SimulationAtomGroupType::QuantumMechanics][a_offset + a])
237 bId = FALSE;
243 cginfo_mb_t cginfo_mb;
244 cginfo_mb.cg_start = a_offset;
245 cginfo_mb.cg_end = a_offset + molb.nmol * molt.atoms.nr;
246 cginfo_mb.cg_mod = (bId ? 1 : molb.nmol) * molt.atoms.nr;
247 cginfo_mb.cginfo.resize(cginfo_mb.cg_mod);
248 gmx::ArrayRef<int> cginfo = cginfo_mb.cginfo;
250 /* Set constraints flags for constrained atoms */
251 snew(a_con, molt.atoms.nr);
252 for (int ftype = 0; ftype < F_NRE; ftype++)
254 if (interaction_function[ftype].flags & IF_CONSTRAINT)
256 const int nral = NRAL(ftype);
257 for (int ia = 0; ia < molt.ilist[ftype].size(); ia += 1 + nral)
259 int a;
261 for (a = 0; a < nral; a++)
263 a_con[molt.ilist[ftype].iatoms[ia + 1 + a]] =
264 (ftype == F_SETTLE ? acSETTLE : acCONSTRAINT);
270 for (int m = 0; m < (bId ? 1 : molb.nmol); m++)
272 const int molculeOffsetInBlock = m * molt.atoms.nr;
273 for (int a = 0; a < molt.atoms.nr; a++)
275 const t_atom& atom = molt.atoms.atom[a];
276 int& atomInfo = cginfo[molculeOffsetInBlock + a];
278 /* Store the energy group in cginfo */
279 int gid = getGroupType(mtop->groups, SimulationAtomGroupType::EnergyOutput,
280 a_offset + molculeOffsetInBlock + a);
281 SET_CGINFO_GID(atomInfo, gid);
283 bool bHaveVDW = (type_VDW[atom.type] || type_VDW[atom.typeB]);
284 bool bHaveQ = (atom.q != 0 || atom.qB != 0);
286 bool haveExclusions = false;
287 /* Loop over all the exclusions of atom ai */
288 for (int j = excl.index[a]; j < excl.index[a + 1]; j++)
290 if (excl.a[j] != a)
292 haveExclusions = true;
293 break;
297 switch (a_con[a])
299 case acCONSTRAINT: SET_CGINFO_CONSTR(atomInfo); break;
300 case acSETTLE: SET_CGINFO_SETTLE(atomInfo); break;
301 default: break;
303 if (haveExclusions)
305 SET_CGINFO_EXCL_INTER(atomInfo);
307 if (bHaveVDW)
309 SET_CGINFO_HAS_VDW(atomInfo);
311 if (bHaveQ)
313 SET_CGINFO_HAS_Q(atomInfo);
315 if (fr->efep != efepNO && PERTURBED(atom))
317 SET_CGINFO_FEP(atomInfo);
318 *bFEP_NonBonded = TRUE;
323 sfree(a_con);
325 cginfoPerMolblock.push_back(cginfo_mb);
327 a_offset += molb.nmol * molt.atoms.nr;
329 sfree(type_VDW);
331 return cginfoPerMolblock;
334 static std::vector<int> cginfo_expand(const int nmb, gmx::ArrayRef<const cginfo_mb_t> cgi_mb)
336 const int ncg = cgi_mb[nmb - 1].cg_end;
338 std::vector<int> cginfo(ncg);
340 int mb = 0;
341 for (int cg = 0; cg < ncg; cg++)
343 while (cg >= cgi_mb[mb].cg_end)
345 mb++;
347 cginfo[cg] = cgi_mb[mb].cginfo[(cg - cgi_mb[mb].cg_start) % cgi_mb[mb].cg_mod];
350 return cginfo;
353 /* Sets the sum of charges (squared) and C6 in the system in fr.
354 * Returns whether the system has a net charge.
356 static bool set_chargesum(FILE* log, t_forcerec* fr, const gmx_mtop_t* mtop)
358 /*This now calculates sum for q and c6*/
359 double qsum, q2sum, q, c6sum, c6;
361 qsum = 0;
362 q2sum = 0;
363 c6sum = 0;
364 for (const gmx_molblock_t& molb : mtop->molblock)
366 int nmol = molb.nmol;
367 const t_atoms* atoms = &mtop->moltype[molb.type].atoms;
368 for (int i = 0; i < atoms->nr; i++)
370 q = atoms->atom[i].q;
371 qsum += nmol * q;
372 q2sum += nmol * q * q;
373 c6 = mtop->ffparams.iparams[atoms->atom[i].type * (mtop->ffparams.atnr + 1)].lj.c6;
374 c6sum += nmol * c6;
377 fr->qsum[0] = qsum;
378 fr->q2sum[0] = q2sum;
379 fr->c6sum[0] = c6sum;
381 if (fr->efep != efepNO)
383 qsum = 0;
384 q2sum = 0;
385 c6sum = 0;
386 for (const gmx_molblock_t& molb : mtop->molblock)
388 int nmol = molb.nmol;
389 const t_atoms* atoms = &mtop->moltype[molb.type].atoms;
390 for (int i = 0; i < atoms->nr; i++)
392 q = atoms->atom[i].qB;
393 qsum += nmol * q;
394 q2sum += nmol * q * q;
395 c6 = mtop->ffparams.iparams[atoms->atom[i].typeB * (mtop->ffparams.atnr + 1)].lj.c6;
396 c6sum += nmol * c6;
398 fr->qsum[1] = qsum;
399 fr->q2sum[1] = q2sum;
400 fr->c6sum[1] = c6sum;
403 else
405 fr->qsum[1] = fr->qsum[0];
406 fr->q2sum[1] = fr->q2sum[0];
407 fr->c6sum[1] = fr->c6sum[0];
409 if (log)
411 if (fr->efep == efepNO)
413 fprintf(log, "System total charge: %.3f\n", fr->qsum[0]);
415 else
417 fprintf(log, "System total charge, top. A: %.3f top. B: %.3f\n", fr->qsum[0], fr->qsum[1]);
421 /* A cut-off of 1e-4 is used to catch rounding errors due to ascii input */
422 return (std::abs(fr->qsum[0]) > 1e-4 || std::abs(fr->qsum[1]) > 1e-4);
425 static real calcBuckinghamBMax(FILE* fplog, const gmx_mtop_t* mtop)
427 const t_atoms *at1, *at2;
428 int i, j, tpi, tpj, ntypes;
429 real b, bmin;
431 if (fplog)
433 fprintf(fplog, "Determining largest Buckingham b parameter for table\n");
435 ntypes = mtop->ffparams.atnr;
437 bmin = -1;
438 real bham_b_max = 0;
439 for (size_t mt1 = 0; mt1 < mtop->moltype.size(); mt1++)
441 at1 = &mtop->moltype[mt1].atoms;
442 for (i = 0; (i < at1->nr); i++)
444 tpi = at1->atom[i].type;
445 if (tpi >= ntypes)
447 gmx_fatal(FARGS, "Atomtype[%d] = %d, maximum = %d", i, tpi, ntypes);
450 for (size_t mt2 = mt1; mt2 < mtop->moltype.size(); mt2++)
452 at2 = &mtop->moltype[mt2].atoms;
453 for (j = 0; (j < at2->nr); j++)
455 tpj = at2->atom[j].type;
456 if (tpj >= ntypes)
458 gmx_fatal(FARGS, "Atomtype[%d] = %d, maximum = %d", j, tpj, ntypes);
460 b = mtop->ffparams.iparams[tpi * ntypes + tpj].bham.b;
461 if (b > bham_b_max)
463 bham_b_max = b;
465 if ((b < bmin) || (bmin == -1))
467 bmin = b;
473 if (fplog)
475 fprintf(fplog, "Buckingham b parameters, min: %g, max: %g\n", bmin, bham_b_max);
478 return bham_b_max;
481 /*!\brief If there's bonded interactions of type \c ftype1 or \c
482 * ftype2 present in the topology, build an array of the number of
483 * interactions present for each bonded interaction index found in the
484 * topology.
486 * \c ftype1 or \c ftype2 may be set to -1 to disable seeking for a
487 * valid type with that parameter.
489 * \c count will be reallocated as necessary to fit the largest bonded
490 * interaction index found, and its current size will be returned in
491 * \c ncount. It will contain zero for every bonded interaction index
492 * for which no interactions are present in the topology.
494 static void count_tables(int ftype1, int ftype2, const gmx_mtop_t* mtop, int* ncount, int** count)
496 int ftype, i, j, tabnr;
498 // Loop over all moleculetypes
499 for (const gmx_moltype_t& molt : mtop->moltype)
501 // Loop over all interaction types
502 for (ftype = 0; ftype < F_NRE; ftype++)
504 // If the current interaction type is one of the types whose tables we're trying to count...
505 if (ftype == ftype1 || ftype == ftype2)
507 const InteractionList& il = molt.ilist[ftype];
508 const int stride = 1 + NRAL(ftype);
509 // ... and there are actually some interactions for this type
510 for (i = 0; i < il.size(); i += stride)
512 // Find out which table index the user wanted
513 tabnr = mtop->ffparams.iparams[il.iatoms[i]].tab.table;
514 if (tabnr < 0)
516 gmx_fatal(FARGS, "A bonded table number is smaller than 0: %d\n", tabnr);
518 // Make room for this index in the data structure
519 if (tabnr >= *ncount)
521 srenew(*count, tabnr + 1);
522 for (j = *ncount; j < tabnr + 1; j++)
524 (*count)[j] = 0;
526 *ncount = tabnr + 1;
528 // Record that this table index is used and must have a valid file
529 (*count)[tabnr]++;
536 /*!\brief If there's bonded interactions of flavour \c tabext and type
537 * \c ftype1 or \c ftype2 present in the topology, seek them in the
538 * list of filenames passed to mdrun, and make bonded tables from
539 * those files.
541 * \c ftype1 or \c ftype2 may be set to -1 to disable seeking for a
542 * valid type with that parameter.
544 * A fatal error occurs if no matching filename is found.
546 static bondedtable_t* make_bonded_tables(FILE* fplog,
547 int ftype1,
548 int ftype2,
549 const gmx_mtop_t* mtop,
550 gmx::ArrayRef<const std::string> tabbfnm,
551 const char* tabext)
553 int ncount, *count;
554 bondedtable_t* tab;
556 tab = nullptr;
558 ncount = 0;
559 count = nullptr;
560 count_tables(ftype1, ftype2, mtop, &ncount, &count);
562 // Are there any relevant tabulated bond interactions?
563 if (ncount > 0)
565 snew(tab, ncount);
566 for (int i = 0; i < ncount; i++)
568 // Do any interactions exist that requires this table?
569 if (count[i] > 0)
571 // This pattern enforces the current requirement that
572 // table filenames end in a characteristic sequence
573 // before the file type extension, and avoids table 13
574 // being recognized and used for table 1.
575 std::string patternToFind = gmx::formatString("_%s%d.%s", tabext, i, ftp2ext(efXVG));
576 bool madeTable = false;
577 for (gmx::index j = 0; j < tabbfnm.ssize() && !madeTable; ++j)
579 if (gmx::endsWith(tabbfnm[j], patternToFind))
581 // Finally read the table from the file found
582 tab[i] = make_bonded_table(fplog, tabbfnm[j].c_str(), NRAL(ftype1) - 2);
583 madeTable = true;
586 if (!madeTable)
588 bool isPlural = (ftype2 != -1);
589 gmx_fatal(FARGS,
590 "Tabulated interaction of type '%s%s%s' with index %d cannot be used "
591 "because no table file whose name matched '%s' was passed via the "
592 "gmx mdrun -tableb command-line option.",
593 interaction_function[ftype1].longname, isPlural ? "' or '" : "",
594 isPlural ? interaction_function[ftype2].longname : "", i,
595 patternToFind.c_str());
599 sfree(count);
602 return tab;
605 void forcerec_set_ranges(t_forcerec* fr, int natoms_force, int natoms_force_constr, int natoms_f_novirsum)
607 fr->natoms_force = natoms_force;
608 fr->natoms_force_constr = natoms_force_constr;
610 if (fr->natoms_force_constr > fr->nalloc_force)
612 fr->nalloc_force = over_alloc_dd(fr->natoms_force_constr);
615 if (fr->haveDirectVirialContributions)
617 fr->forceBufferForDirectVirialContributions.resize(natoms_f_novirsum);
621 static real cutoff_inf(real cutoff)
623 if (cutoff == 0)
625 cutoff = GMX_CUTOFF_INF;
628 return cutoff;
631 /*! \brief Print Coulomb Ewald citations and set ewald coefficients */
632 static void initCoulombEwaldParameters(FILE* fp,
633 const t_inputrec* ir,
634 bool systemHasNetCharge,
635 interaction_const_t* ic)
637 if (!EEL_PME_EWALD(ir->coulombtype))
639 return;
642 if (fp)
644 fprintf(fp, "Will do PME sum in reciprocal space for electrostatic interactions.\n");
646 if (ir->coulombtype == eelP3M_AD)
648 please_cite(fp, "Hockney1988");
649 please_cite(fp, "Ballenegger2012");
651 else
653 please_cite(fp, "Essmann95a");
656 if (ir->ewald_geometry == eewg3DC)
658 if (fp)
660 fprintf(fp, "Using the Ewald3DC correction for systems with a slab geometry%s.\n",
661 systemHasNetCharge ? " and net charge" : "");
663 please_cite(fp, "In-Chul99a");
664 if (systemHasNetCharge)
666 please_cite(fp, "Ballenegger2009");
671 ic->ewaldcoeff_q = calc_ewaldcoeff_q(ir->rcoulomb, ir->ewald_rtol);
672 if (fp)
674 fprintf(fp, "Using a Gaussian width (1/beta) of %g nm for Ewald\n", 1 / ic->ewaldcoeff_q);
677 if (ic->coulomb_modifier == eintmodPOTSHIFT)
679 GMX_RELEASE_ASSERT(ic->rcoulomb != 0, "Cutoff radius cannot be zero");
680 ic->sh_ewald = std::erfc(ic->ewaldcoeff_q * ic->rcoulomb) / ic->rcoulomb;
682 else
684 ic->sh_ewald = 0;
688 /*! \brief Print Van der Waals Ewald citations and set ewald coefficients */
689 static void initVdwEwaldParameters(FILE* fp, const t_inputrec* ir, interaction_const_t* ic)
691 if (!EVDW_PME(ir->vdwtype))
693 return;
696 if (fp)
698 fprintf(fp, "Will do PME sum in reciprocal space for LJ dispersion interactions.\n");
699 please_cite(fp, "Essmann95a");
701 ic->ewaldcoeff_lj = calc_ewaldcoeff_lj(ir->rvdw, ir->ewald_rtol_lj);
702 if (fp)
704 fprintf(fp, "Using a Gaussian width (1/beta) of %g nm for LJ Ewald\n", 1 / ic->ewaldcoeff_lj);
707 if (ic->vdw_modifier == eintmodPOTSHIFT)
709 real crc2 = gmx::square(ic->ewaldcoeff_lj * ic->rvdw);
710 ic->sh_lj_ewald = (std::exp(-crc2) * (1 + crc2 + 0.5 * crc2 * crc2) - 1) / gmx::power6(ic->rvdw);
712 else
714 ic->sh_lj_ewald = 0;
718 /* Generate Coulomb and/or Van der Waals Ewald long-range correction tables
720 * Tables are generated for one or both, depending on if the pointers
721 * are non-null. The spacing for both table sets is the same and obeys
722 * both accuracy requirements, when relevant.
724 static void init_ewald_f_table(const interaction_const_t& ic,
725 EwaldCorrectionTables* coulombTables,
726 EwaldCorrectionTables* vdwTables)
728 const bool useCoulombTable = (EEL_PME_EWALD(ic.eeltype) && coulombTables != nullptr);
729 const bool useVdwTable = (EVDW_PME(ic.vdwtype) && vdwTables != nullptr);
731 /* Get the Ewald table spacing based on Coulomb and/or LJ
732 * Ewald coefficients and rtol.
734 const real tableScale = ewald_spline3_table_scale(ic, useCoulombTable, useVdwTable);
736 const int tableSize = static_cast<int>(ic.rcoulomb * tableScale) + 2;
738 if (useCoulombTable)
740 *coulombTables =
741 generateEwaldCorrectionTables(tableSize, tableScale, ic.ewaldcoeff_q, v_q_ewald_lr);
744 if (useVdwTable)
746 *vdwTables = generateEwaldCorrectionTables(tableSize, tableScale, ic.ewaldcoeff_lj, v_lj_ewald_lr);
750 void init_interaction_const_tables(FILE* fp, interaction_const_t* ic)
752 if (EEL_PME_EWALD(ic->eeltype))
754 init_ewald_f_table(*ic, ic->coulombEwaldTables.get(), nullptr);
755 if (fp != nullptr)
757 fprintf(fp, "Initialized non-bonded Coulomb Ewald tables, spacing: %.2e size: %zu\n\n",
758 1 / ic->coulombEwaldTables->scale, ic->coulombEwaldTables->tableF.size());
763 static void clear_force_switch_constants(shift_consts_t* sc)
765 sc->c2 = 0;
766 sc->c3 = 0;
767 sc->cpot = 0;
770 static void force_switch_constants(real p, real rsw, real rc, shift_consts_t* sc)
772 /* Here we determine the coefficient for shifting the force to zero
773 * between distance rsw and the cut-off rc.
774 * For a potential of r^-p, we have force p*r^-(p+1).
775 * But to save flops we absorb p in the coefficient.
776 * Thus we get:
777 * force/p = r^-(p+1) + c2*r^2 + c3*r^3
778 * potential = r^-p + c2/3*r^3 + c3/4*r^4 + cpot
780 sc->c2 = ((p + 1) * rsw - (p + 4) * rc) / (pow(rc, p + 2) * gmx::square(rc - rsw));
781 sc->c3 = -((p + 1) * rsw - (p + 3) * rc) / (pow(rc, p + 2) * gmx::power3(rc - rsw));
782 sc->cpot = -pow(rc, -p) + p * sc->c2 / 3 * gmx::power3(rc - rsw)
783 + p * sc->c3 / 4 * gmx::power4(rc - rsw);
786 static void potential_switch_constants(real rsw, real rc, switch_consts_t* sc)
788 /* The switch function is 1 at rsw and 0 at rc.
789 * The derivative and second derivate are zero at both ends.
790 * rsw = max(r - r_switch, 0)
791 * sw = 1 + c3*rsw^3 + c4*rsw^4 + c5*rsw^5
792 * dsw = 3*c3*rsw^2 + 4*c4*rsw^3 + 5*c5*rsw^4
793 * force = force*dsw - potential*sw
794 * potential *= sw
796 sc->c3 = -10 / gmx::power3(rc - rsw);
797 sc->c4 = 15 / gmx::power4(rc - rsw);
798 sc->c5 = -6 / gmx::power5(rc - rsw);
801 /*! \brief Construct interaction constants
803 * This data is used (particularly) by search and force code for
804 * short-range interactions. Many of these are constant for the whole
805 * simulation; some are constant only after PME tuning completes.
807 static void init_interaction_const(FILE* fp,
808 interaction_const_t** interaction_const,
809 const t_inputrec* ir,
810 const gmx_mtop_t* mtop,
811 bool systemHasNetCharge)
813 interaction_const_t* ic = new interaction_const_t;
815 ic->cutoff_scheme = ir->cutoff_scheme;
817 ic->coulombEwaldTables = std::make_unique<EwaldCorrectionTables>();
819 /* Lennard-Jones */
820 ic->vdwtype = ir->vdwtype;
821 ic->vdw_modifier = ir->vdw_modifier;
822 ic->reppow = mtop->ffparams.reppow;
823 ic->rvdw = cutoff_inf(ir->rvdw);
824 ic->rvdw_switch = ir->rvdw_switch;
825 ic->ljpme_comb_rule = ir->ljpme_combination_rule;
826 ic->useBuckingham = (mtop->ffparams.functype[0] == F_BHAM);
827 if (ic->useBuckingham)
829 ic->buckinghamBMax = calcBuckinghamBMax(fp, mtop);
832 initVdwEwaldParameters(fp, ir, ic);
834 clear_force_switch_constants(&ic->dispersion_shift);
835 clear_force_switch_constants(&ic->repulsion_shift);
837 switch (ic->vdw_modifier)
839 case eintmodPOTSHIFT:
840 /* Only shift the potential, don't touch the force */
841 ic->dispersion_shift.cpot = -1.0 / gmx::power6(ic->rvdw);
842 ic->repulsion_shift.cpot = -1.0 / gmx::power12(ic->rvdw);
843 break;
844 case eintmodFORCESWITCH:
845 /* Switch the force, switch and shift the potential */
846 force_switch_constants(6.0, ic->rvdw_switch, ic->rvdw, &ic->dispersion_shift);
847 force_switch_constants(12.0, ic->rvdw_switch, ic->rvdw, &ic->repulsion_shift);
848 break;
849 case eintmodPOTSWITCH:
850 /* Switch the potential and force */
851 potential_switch_constants(ic->rvdw_switch, ic->rvdw, &ic->vdw_switch);
852 break;
853 case eintmodNONE:
854 case eintmodEXACTCUTOFF:
855 /* Nothing to do here */
856 break;
857 default: gmx_incons("unimplemented potential modifier");
860 /* Electrostatics */
861 ic->eeltype = ir->coulombtype;
862 ic->coulomb_modifier = ir->coulomb_modifier;
863 ic->rcoulomb = cutoff_inf(ir->rcoulomb);
864 ic->rcoulomb_switch = ir->rcoulomb_switch;
865 ic->epsilon_r = ir->epsilon_r;
867 /* Set the Coulomb energy conversion factor */
868 if (ic->epsilon_r != 0)
870 ic->epsfac = ONE_4PI_EPS0 / ic->epsilon_r;
872 else
874 /* eps = 0 is infinite dieletric: no Coulomb interactions */
875 ic->epsfac = 0;
878 /* Reaction-field */
879 if (EEL_RF(ic->eeltype))
881 GMX_RELEASE_ASSERT(ic->eeltype != eelGRF_NOTUSED, "GRF is no longer supported");
882 ic->epsilon_rf = ir->epsilon_rf;
884 calc_rffac(fp, ic->epsilon_r, ic->epsilon_rf, ic->rcoulomb, &ic->k_rf, &ic->c_rf);
886 else
888 /* For plain cut-off we might use the reaction-field kernels */
889 ic->epsilon_rf = ic->epsilon_r;
890 ic->k_rf = 0;
891 if (ir->coulomb_modifier == eintmodPOTSHIFT)
893 ic->c_rf = 1 / ic->rcoulomb;
895 else
897 ic->c_rf = 0;
901 initCoulombEwaldParameters(fp, ir, systemHasNetCharge, ic);
903 if (fp != nullptr)
905 real dispersion_shift;
907 dispersion_shift = ic->dispersion_shift.cpot;
908 if (EVDW_PME(ic->vdwtype))
910 dispersion_shift -= ic->sh_lj_ewald;
912 fprintf(fp, "Potential shift: LJ r^-12: %.3e r^-6: %.3e", ic->repulsion_shift.cpot, dispersion_shift);
914 if (ic->eeltype == eelCUT)
916 fprintf(fp, ", Coulomb %.e", -ic->c_rf);
918 else if (EEL_PME(ic->eeltype))
920 fprintf(fp, ", Ewald %.3e", -ic->sh_ewald);
922 fprintf(fp, "\n");
925 *interaction_const = ic;
928 void init_forcerec(FILE* fp,
929 const gmx::MDLogger& mdlog,
930 t_forcerec* fr,
931 t_fcdata* fcd,
932 const t_inputrec* ir,
933 const gmx_mtop_t* mtop,
934 const t_commrec* cr,
935 matrix box,
936 const char* tabfn,
937 const char* tabpfn,
938 gmx::ArrayRef<const std::string> tabbfnm,
939 const gmx_hw_info_t& hardwareInfo,
940 const gmx_device_info_t* deviceInfo,
941 const bool useGpuForBonded,
942 const bool pmeOnlyRankUsesGpu,
943 real print_force,
944 gmx_wallcycle* wcycle)
946 real rtab;
947 char* env;
948 double dbl;
949 gmx_bool bFEP_NonBonded;
951 /* By default we turn SIMD kernels on, but it might be turned off further down... */
952 fr->use_simd_kernels = TRUE;
954 if (check_box(ir->ePBC, box))
956 gmx_fatal(FARGS, "%s", check_box(ir->ePBC, box));
959 /* Test particle insertion ? */
960 if (EI_TPI(ir->eI))
962 /* Set to the size of the molecule to be inserted (the last one) */
963 gmx::RangePartitioning molecules = gmx_mtop_molecules(*mtop);
964 fr->n_tpi = molecules.block(molecules.numBlocks() - 1).size();
966 else
968 fr->n_tpi = 0;
971 if (ir->coulombtype == eelRF_NEC_UNSUPPORTED || ir->coulombtype == eelGRF_NOTUSED)
973 gmx_fatal(FARGS, "%s electrostatics is no longer supported", eel_names[ir->coulombtype]);
976 if (ir->bAdress)
978 gmx_fatal(FARGS, "AdResS simulations are no longer supported");
980 if (ir->useTwinRange)
982 gmx_fatal(FARGS, "Twin-range simulations are no longer supported");
984 /* Copy the user determined parameters */
985 fr->userint1 = ir->userint1;
986 fr->userint2 = ir->userint2;
987 fr->userint3 = ir->userint3;
988 fr->userint4 = ir->userint4;
989 fr->userreal1 = ir->userreal1;
990 fr->userreal2 = ir->userreal2;
991 fr->userreal3 = ir->userreal3;
992 fr->userreal4 = ir->userreal4;
994 /* Shell stuff */
995 fr->fc_stepsize = ir->fc_stepsize;
997 /* Free energy */
998 fr->efep = ir->efep;
999 fr->sc_alphavdw = ir->fepvals->sc_alpha;
1000 if (ir->fepvals->bScCoul)
1002 fr->sc_alphacoul = ir->fepvals->sc_alpha;
1003 fr->sc_sigma6_min = gmx::power6(ir->fepvals->sc_sigma_min);
1005 else
1007 fr->sc_alphacoul = 0;
1008 fr->sc_sigma6_min = 0; /* only needed when bScCoul is on */
1010 fr->sc_power = ir->fepvals->sc_power;
1011 fr->sc_r_power = ir->fepvals->sc_r_power;
1012 fr->sc_sigma6_def = gmx::power6(ir->fepvals->sc_sigma);
1014 env = getenv("GMX_SCSIGMA_MIN");
1015 if (env != nullptr)
1017 dbl = 0;
1018 sscanf(env, "%20lf", &dbl);
1019 fr->sc_sigma6_min = gmx::power6(dbl);
1020 if (fp)
1022 fprintf(fp, "Setting the minimum soft core sigma to %g nm\n", dbl);
1026 fr->bNonbonded = TRUE;
1027 if (getenv("GMX_NO_NONBONDED") != nullptr)
1029 /* turn off non-bonded calculations */
1030 fr->bNonbonded = FALSE;
1031 GMX_LOG(mdlog.warning)
1032 .asParagraph()
1033 .appendText(
1034 "Found environment variable GMX_NO_NONBONDED.\n"
1035 "Disabling nonbonded calculations.");
1038 if ((getenv("GMX_DISABLE_SIMD_KERNELS") != nullptr) || (getenv("GMX_NOOPTIMIZEDKERNELS") != nullptr))
1040 fr->use_simd_kernels = FALSE;
1041 if (fp != nullptr)
1043 fprintf(fp,
1044 "\nFound environment variable GMX_DISABLE_SIMD_KERNELS.\n"
1045 "Disabling the usage of any SIMD-specific non-bonded & bonded kernel routines\n"
1046 "(e.g. SSE2/SSE4.1/AVX).\n\n");
1050 fr->bBHAM = (mtop->ffparams.functype[0] == F_BHAM);
1052 /* Neighbour searching stuff */
1053 fr->cutoff_scheme = ir->cutoff_scheme;
1054 fr->ePBC = ir->ePBC;
1056 /* Determine if we will do PBC for distances in bonded interactions */
1057 if (fr->ePBC == epbcNONE)
1059 fr->bMolPBC = FALSE;
1061 else
1063 const bool useEwaldSurfaceCorrection =
1064 (EEL_PME_EWALD(ir->coulombtype) && ir->epsilon_surface != 0);
1065 if (!DOMAINDECOMP(cr))
1067 gmx_bool bSHAKE;
1069 bSHAKE = (ir->eConstrAlg == econtSHAKE
1070 && (gmx_mtop_ftype_count(mtop, F_CONSTR) > 0
1071 || gmx_mtop_ftype_count(mtop, F_CONSTRNC) > 0));
1073 /* The group cut-off scheme and SHAKE assume charge groups
1074 * are whole, but not using molpbc is faster in most cases.
1075 * With intermolecular interactions we need PBC for calculating
1076 * distances between atoms in different molecules.
1078 if (bSHAKE && !mtop->bIntermolecularInteractions)
1080 fr->bMolPBC = ir->bPeriodicMols;
1082 if (bSHAKE && fr->bMolPBC)
1084 gmx_fatal(FARGS, "SHAKE is not supported with periodic molecules");
1087 else
1089 /* Not making molecules whole is faster in most cases,
1090 * but with orientation restraints or non-tinfoil boundary
1091 * conditions we need whole molecules.
1093 fr->bMolPBC = (fcd->orires.nr == 0 && !useEwaldSurfaceCorrection);
1095 if (getenv("GMX_USE_GRAPH") != nullptr)
1097 fr->bMolPBC = FALSE;
1098 if (fp)
1100 GMX_LOG(mdlog.warning)
1101 .asParagraph()
1102 .appendText(
1103 "GMX_USE_GRAPH is set, using the graph for bonded "
1104 "interactions");
1107 if (mtop->bIntermolecularInteractions)
1109 GMX_LOG(mdlog.warning)
1110 .asParagraph()
1111 .appendText(
1112 "WARNING: Molecules linked by intermolecular interactions "
1113 "have to reside in the same periodic image, otherwise "
1114 "artifacts will occur!");
1118 GMX_RELEASE_ASSERT(
1119 fr->bMolPBC || !mtop->bIntermolecularInteractions,
1120 "We need to use PBC within molecules with inter-molecular interactions");
1122 if (bSHAKE && fr->bMolPBC)
1124 gmx_fatal(FARGS,
1125 "SHAKE is not properly supported with intermolecular interactions. "
1126 "For short simulations where linked molecules remain in the same "
1127 "periodic image, the environment variable GMX_USE_GRAPH can be used "
1128 "to override this check.\n");
1132 else
1134 fr->bMolPBC = dd_bonded_molpbc(cr->dd, fr->ePBC);
1136 if (useEwaldSurfaceCorrection && !dd_moleculesAreAlwaysWhole(*cr->dd))
1138 gmx_fatal(FARGS,
1139 "You requested dipole correction (epsilon_surface > 0), but molecules "
1140 "are broken "
1141 "over periodic boundary conditions by the domain decomposition. "
1142 "Run without domain decomposition instead.");
1146 if (useEwaldSurfaceCorrection)
1148 GMX_RELEASE_ASSERT((!DOMAINDECOMP(cr) && !fr->bMolPBC)
1149 || (DOMAINDECOMP(cr) && dd_moleculesAreAlwaysWhole(*cr->dd)),
1150 "Molecules can not be broken by PBC with epsilon_surface > 0");
1154 fr->rc_scaling = ir->refcoord_scaling;
1155 copy_rvec(ir->posres_com, fr->posres_com);
1156 copy_rvec(ir->posres_comB, fr->posres_comB);
1157 fr->rlist = cutoff_inf(ir->rlist);
1158 fr->ljpme_combination_rule = ir->ljpme_combination_rule;
1160 /* This now calculates sum for q and c6*/
1161 bool systemHasNetCharge = set_chargesum(fp, fr, mtop);
1163 /* fr->ic is used both by verlet and group kernels (to some extent) now */
1164 init_interaction_const(fp, &fr->ic, ir, mtop, systemHasNetCharge);
1165 init_interaction_const_tables(fp, fr->ic);
1167 const interaction_const_t* ic = fr->ic;
1169 /* TODO: Replace this Ewald table or move it into interaction_const_t */
1170 if (ir->coulombtype == eelEWALD)
1172 init_ewald_tab(&(fr->ewald_table), ir, fp);
1175 /* Electrostatics: Translate from interaction-setting-in-mdp-file to kernel interaction format */
1176 switch (ic->eeltype)
1178 case eelCUT: fr->nbkernel_elec_interaction = GMX_NBKERNEL_ELEC_COULOMB; break;
1180 case eelRF:
1181 case eelRF_ZERO: fr->nbkernel_elec_interaction = GMX_NBKERNEL_ELEC_REACTIONFIELD; break;
1183 case eelSWITCH:
1184 case eelSHIFT:
1185 case eelUSER:
1186 case eelENCADSHIFT:
1187 case eelPMESWITCH:
1188 case eelPMEUSER:
1189 case eelPMEUSERSWITCH:
1190 fr->nbkernel_elec_interaction = GMX_NBKERNEL_ELEC_CUBICSPLINETABLE;
1191 break;
1193 case eelPME:
1194 case eelP3M_AD:
1195 case eelEWALD: fr->nbkernel_elec_interaction = GMX_NBKERNEL_ELEC_EWALD; break;
1197 default:
1198 gmx_fatal(FARGS, "Unsupported electrostatic interaction: %s", eel_names[ic->eeltype]);
1200 fr->nbkernel_elec_modifier = ic->coulomb_modifier;
1202 /* Vdw: Translate from mdp settings to kernel format */
1203 switch (ic->vdwtype)
1205 case evdwCUT:
1206 if (fr->bBHAM)
1208 fr->nbkernel_vdw_interaction = GMX_NBKERNEL_VDW_BUCKINGHAM;
1210 else
1212 fr->nbkernel_vdw_interaction = GMX_NBKERNEL_VDW_LENNARDJONES;
1214 break;
1215 case evdwPME: fr->nbkernel_vdw_interaction = GMX_NBKERNEL_VDW_LJEWALD; break;
1217 case evdwSWITCH:
1218 case evdwSHIFT:
1219 case evdwUSER:
1220 case evdwENCADSHIFT:
1221 fr->nbkernel_vdw_interaction = GMX_NBKERNEL_VDW_CUBICSPLINETABLE;
1222 break;
1224 default: gmx_fatal(FARGS, "Unsupported vdw interaction: %s", evdw_names[ic->vdwtype]);
1226 fr->nbkernel_vdw_modifier = ic->vdw_modifier;
1228 if (ir->cutoff_scheme == ecutsVERLET)
1230 if (!gmx_within_tol(ic->reppow, 12.0, 10 * GMX_DOUBLE_EPS))
1232 gmx_fatal(FARGS, "Cut-off scheme %s only supports LJ repulsion power 12",
1233 ecutscheme_names[ir->cutoff_scheme]);
1235 /* Older tpr files can contain Coulomb user tables with the Verlet cutoff-scheme,
1236 * while mdrun does not (and never did) support this.
1238 if (EEL_USER(fr->ic->eeltype))
1240 gmx_fatal(FARGS, "Combination of %s and cutoff scheme %s is not supported",
1241 eel_names[ir->coulombtype], ecutscheme_names[ir->cutoff_scheme]);
1244 fr->bvdwtab = FALSE;
1245 fr->bcoultab = FALSE;
1248 /* 1-4 interaction electrostatics */
1249 fr->fudgeQQ = mtop->ffparams.fudgeQQ;
1251 fr->haveDirectVirialContributions =
1252 (EEL_FULL(ic->eeltype) || EVDW_PME(ic->vdwtype) || fr->forceProviders->hasForceProvider()
1253 || gmx_mtop_ftype_count(mtop, F_POSRES) > 0 || gmx_mtop_ftype_count(mtop, F_FBPOSRES) > 0
1254 || ir->nwall > 0 || ir->bPull || ir->bRot || ir->bIMD);
1256 if (fr->shift_vec == nullptr)
1258 snew(fr->shift_vec, SHIFTS);
1261 fr->shiftForces.resize(SHIFTS);
1263 if (fr->nbfp.empty())
1265 fr->ntype = mtop->ffparams.atnr;
1266 fr->nbfp = mk_nbfp(&mtop->ffparams, fr->bBHAM);
1267 if (EVDW_PME(ic->vdwtype))
1269 fr->ljpme_c6grid = make_ljpme_c6grid(&mtop->ffparams, fr);
1273 /* Copy the energy group exclusions */
1274 fr->egp_flags = ir->opts.egp_flags;
1276 /* Van der Waals stuff */
1277 if ((ic->vdwtype != evdwCUT) && (ic->vdwtype != evdwUSER) && !fr->bBHAM)
1279 if (ic->rvdw_switch >= ic->rvdw)
1281 gmx_fatal(FARGS, "rvdw_switch (%f) must be < rvdw (%f)", ic->rvdw_switch, ic->rvdw);
1283 if (fp)
1285 fprintf(fp, "Using %s Lennard-Jones, switch between %g and %g nm\n",
1286 (ic->eeltype == eelSWITCH) ? "switched" : "shifted", ic->rvdw_switch, ic->rvdw);
1290 if (fr->bBHAM && EVDW_PME(ic->vdwtype))
1292 gmx_fatal(FARGS, "LJ PME not supported with Buckingham");
1295 if (fr->bBHAM && (ic->vdwtype == evdwSHIFT || ic->vdwtype == evdwSWITCH))
1297 gmx_fatal(FARGS, "Switch/shift interaction not supported with Buckingham");
1300 if (fr->bBHAM && fr->cutoff_scheme == ecutsVERLET)
1302 gmx_fatal(FARGS, "Verlet cutoff-scheme is not supported with Buckingham");
1305 if (fp && fr->cutoff_scheme == ecutsGROUP)
1307 fprintf(fp, "Cut-off's: NS: %g Coulomb: %g %s: %g\n", fr->rlist, ic->rcoulomb,
1308 fr->bBHAM ? "BHAM" : "LJ", ic->rvdw);
1311 if (ir->implicit_solvent)
1313 gmx_fatal(FARGS, "Implict solvation is no longer supported.");
1317 /* This code automatically gives table length tabext without cut-off's,
1318 * in that case grompp should already have checked that we do not need
1319 * normal tables and we only generate tables for 1-4 interactions.
1321 rtab = ir->rlist + ir->tabext;
1323 /* We want to use unmodified tables for 1-4 coulombic
1324 * interactions, so we must in general have an extra set of
1325 * tables. */
1326 if (gmx_mtop_ftype_count(mtop, F_LJ14) > 0 || gmx_mtop_ftype_count(mtop, F_LJC14_Q) > 0
1327 || gmx_mtop_ftype_count(mtop, F_LJC_PAIRS_NB) > 0)
1329 fr->pairsTable = make_tables(fp, ic, tabpfn, rtab, GMX_MAKETABLES_14ONLY);
1332 /* Wall stuff */
1333 fr->nwall = ir->nwall;
1334 if (ir->nwall && ir->wall_type == ewtTABLE)
1336 make_wall_tables(fp, ir, tabfn, &mtop->groups, fr);
1339 if (fcd && !tabbfnm.empty())
1341 // Need to catch std::bad_alloc
1342 // TODO Don't need to catch this here, when merging with master branch
1345 fcd->bondtab = make_bonded_tables(fp, F_TABBONDS, F_TABBONDSNC, mtop, tabbfnm, "b");
1346 fcd->angletab = make_bonded_tables(fp, F_TABANGLES, -1, mtop, tabbfnm, "a");
1347 fcd->dihtab = make_bonded_tables(fp, F_TABDIHS, -1, mtop, tabbfnm, "d");
1349 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
1351 else
1353 if (debug)
1355 fprintf(debug,
1356 "No fcdata or table file name passed, can not read table, can not do bonded "
1357 "interactions\n");
1361 // QM/MM initialization if requested
1362 fr->bQMMM = ir->bQMMM;
1363 if (fr->bQMMM)
1365 // Initialize QM/MM if supported
1366 if (GMX_QMMM)
1368 GMX_LOG(mdlog.info)
1369 .asParagraph()
1370 .appendText(
1371 "Large parts of the QM/MM support is deprecated, and may be removed in "
1372 "a future "
1373 "version. Please get in touch with the developers if you find the "
1374 "support useful, "
1375 "as help is needed if the functionality is to continue to be "
1376 "available.");
1377 fr->qr = mk_QMMMrec();
1378 init_QMMMrec(cr, mtop, ir, fr);
1380 else
1382 gmx_incons(
1383 "QM/MM was requested, but is only available when GROMACS "
1384 "is configured with QM/MM support");
1388 /* Set all the static charge group info */
1389 fr->cginfo_mb = init_cginfo_mb(mtop, fr, &bFEP_NonBonded);
1390 if (!DOMAINDECOMP(cr))
1392 fr->cginfo = cginfo_expand(mtop->molblock.size(), fr->cginfo_mb);
1395 if (!DOMAINDECOMP(cr))
1397 forcerec_set_ranges(fr, mtop->natoms, mtop->natoms, mtop->natoms);
1400 fr->print_force = print_force;
1402 /* Initialize the thread working data for bonded interactions */
1403 fr->bondedThreading = init_bonded_threading(
1404 fp, mtop->groups.groups[SimulationAtomGroupType::EnergyOutput].size());
1406 fr->nthread_ewc = gmx_omp_nthreads_get(emntBonded);
1407 snew(fr->ewc_t, fr->nthread_ewc);
1409 if (fr->cutoff_scheme == ecutsVERLET)
1411 // We checked the cut-offs in grompp, but double-check here.
1412 // We have PME+LJcutoff kernels for rcoulomb>rvdw.
1413 if (EEL_PME_EWALD(ir->coulombtype) && ir->vdwtype == eelCUT)
1415 GMX_RELEASE_ASSERT(ir->rcoulomb >= ir->rvdw,
1416 "With Verlet lists and PME we should have rcoulomb>=rvdw");
1418 else
1420 GMX_RELEASE_ASSERT(
1421 ir->rcoulomb == ir->rvdw,
1422 "With Verlet lists and no PME rcoulomb and rvdw should be identical");
1425 fr->nbv = Nbnxm::init_nb_verlet(mdlog, bFEP_NonBonded, ir, fr, cr, hardwareInfo, deviceInfo,
1426 mtop, box, wcycle);
1428 if (useGpuForBonded)
1430 auto stream = DOMAINDECOMP(cr)
1431 ? Nbnxm::gpu_get_command_stream(
1432 fr->nbv->gpu_nbv, gmx::InteractionLocality::NonLocal)
1433 : Nbnxm::gpu_get_command_stream(fr->nbv->gpu_nbv,
1434 gmx::InteractionLocality::Local);
1435 // TODO the heap allocation is only needed while
1436 // t_forcerec lacks a constructor.
1437 fr->gpuBonded = new gmx::GpuBonded(mtop->ffparams, stream, wcycle);
1441 if (ir->eDispCorr != edispcNO)
1443 fr->dispersionCorrection = std::make_unique<DispersionCorrection>(
1444 *mtop, *ir, fr->bBHAM, fr->ntype, fr->nbfp, *fr->ic, tabfn);
1445 fr->dispersionCorrection->print(mdlog);
1448 if (fp != nullptr)
1450 /* Here we switch from using mdlog, which prints the newline before
1451 * the paragraph, to our old fprintf logging, which prints the newline
1452 * after the paragraph, so we should add a newline here.
1454 fprintf(fp, "\n");
1457 if (pmeOnlyRankUsesGpu && c_enableGpuPmePpComms)
1459 fr->pmePpCommGpu = std::make_unique<gmx::PmePpCommGpu>(cr->mpi_comm_mysim, cr->dd->pme_nodeid);
1463 t_forcerec::t_forcerec() = default;
1465 t_forcerec::~t_forcerec()
1467 /* Note: This code will disappear when types are converted to C++ */
1468 sfree(shift_vec);
1469 sfree(ewc_t);
1470 tear_down_bonded_threading(bondedThreading);