Remove group scheme search code
[gromacs.git] / src / gromacs / mdtypes / forcerec.h
blobb4bc09534fd624a166ec68685b3d4e94b08d0420
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
37 #ifndef GMX_MDTYPES_TYPES_FORCEREC_H
38 #define GMX_MDTYPES_TYPES_FORCEREC_H
40 #include <array>
41 #include <memory>
42 #include <vector>
44 #include "gromacs/math/vectypes.h"
45 #include "gromacs/mdtypes/interaction_const.h"
46 #include "gromacs/mdtypes/md_enums.h"
47 #include "gromacs/utility/basedefinitions.h"
48 #include "gromacs/utility/real.h"
50 struct ForceProviders;
52 /* Abstract type for PME that is defined only in the routine that use them. */
53 struct gmx_ns_t;
54 struct gmx_pme_t;
55 struct nonbonded_verlet_t;
56 struct bonded_threading_t;
57 struct t_forcetable;
58 struct t_QMMMrec;
60 namespace gmx
62 class GpuBonded;
65 /* macros for the cginfo data in forcerec
67 * Since the tpx format support max 256 energy groups, we do the same here.
68 * Note that we thus have bits 8-14 still unused.
70 * The maximum cg size in cginfo is 63
71 * because we only have space for 6 bits in cginfo,
72 * this cg size entry is actually only read with domain decomposition.
74 #define SET_CGINFO_GID(cgi, gid) (cgi) = (((cgi) & ~255) | (gid))
75 #define GET_CGINFO_GID(cgi) ( (cgi) & 255)
76 #define SET_CGINFO_FEP(cgi) (cgi) = ((cgi) | (1<<15))
77 #define GET_CGINFO_FEP(cgi) ( (cgi) & (1<<15))
78 #define SET_CGINFO_EXCL_INTRA(cgi) (cgi) = ((cgi) | (1<<16))
79 #define GET_CGINFO_EXCL_INTRA(cgi) ( (cgi) & (1<<16))
80 #define SET_CGINFO_EXCL_INTER(cgi) (cgi) = ((cgi) | (1<<17))
81 #define GET_CGINFO_EXCL_INTER(cgi) ( (cgi) & (1<<17))
82 #define SET_CGINFO_SOLOPT(cgi, opt) (cgi) = (((cgi) & ~(3<<18)) | ((opt)<<18))
83 #define GET_CGINFO_SOLOPT(cgi) (((cgi)>>18) & 3)
84 #define SET_CGINFO_CONSTR(cgi) (cgi) = ((cgi) | (1<<20))
85 #define GET_CGINFO_CONSTR(cgi) ( (cgi) & (1<<20))
86 #define SET_CGINFO_SETTLE(cgi) (cgi) = ((cgi) | (1<<21))
87 #define GET_CGINFO_SETTLE(cgi) ( (cgi) & (1<<21))
88 /* This bit is only used with bBondComm in the domain decomposition */
89 #define SET_CGINFO_BOND_INTER(cgi) (cgi) = ((cgi) | (1<<22))
90 #define GET_CGINFO_BOND_INTER(cgi) ( (cgi) & (1<<22))
91 #define SET_CGINFO_HAS_VDW(cgi) (cgi) = ((cgi) | (1<<23))
92 #define GET_CGINFO_HAS_VDW(cgi) ( (cgi) & (1<<23))
93 #define SET_CGINFO_HAS_Q(cgi) (cgi) = ((cgi) | (1<<24))
94 #define GET_CGINFO_HAS_Q(cgi) ( (cgi) & (1<<24))
95 #define SET_CGINFO_NATOMS(cgi, opt) (cgi) = (((cgi) & ~(63<<25)) | ((opt)<<25))
96 #define GET_CGINFO_NATOMS(cgi) (((cgi)>>25) & 63)
99 /* Value to be used in mdrun for an infinite cut-off.
100 * Since we need to compare with the cut-off squared,
101 * this value should be slighlty smaller than sqrt(GMX_FLOAT_MAX).
103 #define GMX_CUTOFF_INF 1E+18
105 /* enums for the neighborlist type */
106 enum {
107 enbvdwNONE, enbvdwLJ, enbvdwBHAM, enbvdwTAB, enbvdwNR
110 struct cginfo_mb_t
112 int cg_start;
113 int cg_end;
114 int cg_mod;
115 int *cginfo;
119 /* Forward declaration of type for managing Ewald tables */
120 struct gmx_ewald_tab_t;
122 struct ewald_corr_thread_t;
124 struct t_forcerec { // NOLINT (clang-analyzer-optin.performance.Padding)
125 struct interaction_const_t *ic = nullptr;
127 /* PBC stuff */
128 int ePBC = 0;
129 //! Tells whether atoms inside a molecule can be in different periodic images,
130 // i.e. whether we need to take into account PBC when computing distances inside molecules.
131 // This determines whether PBC must be considered for e.g. bonded interactions.
132 gmx_bool bMolPBC = FALSE;
133 int rc_scaling = 0;
134 rvec posres_com = { 0 };
135 rvec posres_comB = { 0 };
137 gmx_bool use_simd_kernels = FALSE;
139 /* Interaction for calculated in kernels. In many cases this is similar to
140 * the electrostatics settings in the inputrecord, but the difference is that
141 * these variables always specify the actual interaction in the kernel - if
142 * we are tabulating reaction-field the inputrec will say reaction-field, but
143 * the kernel interaction will say cubic-spline-table. To be safe we also
144 * have a kernel-specific setting for the modifiers - if the interaction is
145 * tabulated we already included the inputrec modification there, so the kernel
146 * modification setting will say 'none' in that case.
148 int nbkernel_elec_interaction = 0;
149 int nbkernel_vdw_interaction = 0;
150 int nbkernel_elec_modifier = 0;
151 int nbkernel_vdw_modifier = 0;
153 /* Cut-Off stuff.
154 * Infinite cut-off's will be GMX_CUTOFF_INF (unlike in t_inputrec: 0).
156 real rlist = 0;
158 /* Parameters for generalized reaction field */
159 real zsquare = 0;
160 real temp = 0;
162 /* Charge sum and dipole for topology A/B ([0]/[1]) for Ewald corrections */
163 double qsum[2] = { 0 };
164 double q2sum[2] = { 0 };
165 double c6sum[2] = { 0 };
166 rvec mu_tot[2] = { { 0 } };
168 /* Dispersion correction stuff */
169 int eDispCorr = 0;
170 int numAtomsForDispersionCorrection = 0;
171 struct t_forcetable *dispersionCorrectionTable = nullptr;
173 /* The shift of the shift or user potentials */
174 real enershiftsix = 0;
175 real enershifttwelve = 0;
176 /* Integrated differces for energy and virial with cut-off functions */
177 real enerdiffsix = 0;
178 real enerdifftwelve = 0;
179 real virdiffsix = 0;
180 real virdifftwelve = 0;
181 /* Constant for long range dispersion correction (average dispersion)
182 * for topology A/B ([0]/[1]) */
183 real avcsix[2] = { 0 };
184 /* Constant for long range repulsion term. Relative difference of about
185 * 0.1 percent with 0.8 nm cutoffs. But hey, it's cheap anyway...
187 real avctwelve[2] = { 0 };
189 /* Fudge factors */
190 real fudgeQQ = 0;
192 /* Table stuff */
193 gmx_bool bcoultab = FALSE;
194 gmx_bool bvdwtab = FALSE;
196 struct t_forcetable *pairsTable; /* for 1-4 interactions, [pairs] and [pairs_nb] */
198 /* Free energy */
199 int efep = 0;
200 real sc_alphavdw = 0;
201 real sc_alphacoul = 0;
202 int sc_power = 0;
203 real sc_r_power = 0;
204 real sc_sigma6_def = 0;
205 real sc_sigma6_min = 0;
207 /* NS Stuff */
208 int cg0 = 0;
209 int hcg = 0;
210 /* solvent_opt contains the enum for the most common solvent
211 * in the system, which will be optimized.
212 * It can be set to esolNO to disable all water optimization */
213 int solvent_opt = 0;
214 int nWatMol = 0;
215 gmx_bool bGrid = FALSE;
216 gmx_bool bExcl_IntraCGAll_InterCGNone = FALSE;
217 struct cginfo_mb_t *cginfo_mb = nullptr;
218 int *cginfo = nullptr;
219 rvec *cg_cm = nullptr;
220 int cg_nalloc = 0;
221 rvec *shift_vec = nullptr;
223 int cutoff_scheme = 0; /* group- or Verlet-style cutoff */
224 gmx_bool bNonbonded = FALSE; /* true if nonbonded calculations are *not* turned off */
226 /* The Nbnxm Verlet non-bonded machinery */
227 std::unique_ptr<nonbonded_verlet_t> nbv;
229 /* The wall tables (if used) */
230 int nwall = 0;
231 struct t_forcetable ***wall_tab = nullptr;
233 /* The number of charge groups participating in do_force_lowlevel */
234 int ncg_force = 0;
235 /* The number of atoms participating in do_force_lowlevel */
236 int natoms_force = 0;
237 /* The number of atoms participating in force and constraints */
238 int natoms_force_constr = 0;
239 /* The allocation size of vectors of size natoms_force */
240 int nalloc_force = 0;
242 /* Forces that should not enter into the coord x force virial summation:
243 * PPPM/PME/Ewald/posres/ForceProviders
245 /* True when we have contributions that are directly added to the virial */
246 gmx_bool haveDirectVirialContributions = FALSE;
247 /* TODO: Replace the pointer by an object once we got rid of C */
248 std::vector<gmx::RVec> *forceBufferForDirectVirialContributions = nullptr;
250 /* Data for PPPM/PME/Ewald */
251 struct gmx_pme_t *pmedata = nullptr;
252 int ljpme_combination_rule = 0;
254 /* PME/Ewald stuff */
255 struct gmx_ewald_tab_t *ewald_table = nullptr;
257 /* Shift force array for computing the virial */
258 rvec *fshift = nullptr;
260 /* Non bonded Parameter lists */
261 int ntype = 0; /* Number of atom types */
262 gmx_bool bBHAM = FALSE;
263 real *nbfp = nullptr;
264 real *ljpme_c6grid = nullptr; /* C6-values used on grid in LJPME */
266 /* Energy group pair flags */
267 int *egp_flags = nullptr;
269 /* Shell molecular dynamics flexible constraints */
270 real fc_stepsize = 0;
272 /* If > 0 signals Test Particle Insertion,
273 * the value is the number of atoms of the molecule to insert
274 * Only the energy difference due to the addition of the last molecule
275 * should be calculated.
277 int n_tpi = 0;
279 /* QMMM stuff */
280 gmx_bool bQMMM = FALSE;
281 struct t_QMMMrec *qr = nullptr;
283 /* QM-MM neighborlists */
284 struct t_nblist *QMMMlist = nullptr;
286 /* Limit for printing large forces, negative is don't print */
287 real print_force = 0;
289 /* User determined parameters, copied from the inputrec */
290 int userint1 = 0;
291 int userint2 = 0;
292 int userint3 = 0;
293 int userint4 = 0;
294 real userreal1 = 0;
295 real userreal2 = 0;
296 real userreal3 = 0;
297 real userreal4 = 0;
299 /* Pointer to struct for managing threading of bonded force calculation */
300 struct bonded_threading_t *bondedThreading = nullptr;
302 /* TODO: Replace the pointer by an object once we got rid of C */
303 gmx::GpuBonded *gpuBonded = nullptr;
305 /* Ewald correction thread local virial and energy data */
306 int nthread_ewc = 0;
307 struct ewald_corr_thread_t *ewc_t = nullptr;
309 struct ForceProviders *forceProviders = nullptr;
312 /* Important: Starting with Gromacs-4.6, the values of c6 and c12 in the nbfp array have
313 * been scaled by 6.0 or 12.0 to save flops in the kernels. We have corrected this everywhere
314 * in the code, but beware if you are using these macros externally.
316 #define C6(nbfp, ntp, ai, aj) (nbfp)[2*((ntp)*(ai)+(aj))]
317 #define C12(nbfp, ntp, ai, aj) (nbfp)[2*((ntp)*(ai)+(aj))+1]
318 #define BHAMC(nbfp, ntp, ai, aj) (nbfp)[3*((ntp)*(ai)+(aj))]
319 #define BHAMA(nbfp, ntp, ai, aj) (nbfp)[3*((ntp)*(ai)+(aj))+1]
320 #define BHAMB(nbfp, ntp, ai, aj) (nbfp)[3*((ntp)*(ai)+(aj))+2]
322 #endif