2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 2015,2016, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
37 * Tests for simple math functions.eval
39 * \author Erik Lindahl <erik.lindahl@gmail.com>
40 * \ingroup module_tables
50 #include <gtest/gtest.h>
52 #include "gromacs/math/utilities.h"
53 #include "gromacs/options/basicoptions.h"
54 #include "gromacs/options/ioptionscontainer.h"
55 #include "gromacs/simd/simd.h"
56 #include "gromacs/tables/cubicsplinetable.h"
57 #include "gromacs/tables/quadraticsplinetable.h"
59 #include "testutils/testasserts.h"
60 #include "testutils/testoptions.h"
72 class SplineTableTestBase
: public ::testing::Test
75 static int s_testPoints_
; //!< Number of points to use. Public so we can set it as option
79 SplineTableTestBase::s_testPoints_
= 100;
82 /*! \brief Command-line option to adjust the number of points used to test SIMD math functions. */
83 GMX_TEST_OPTIONS(SplineTableTestOptions
, options
)
85 options
->addOption(::gmx::IntegerOption("npoints")
86 .store(&SplineTableTestBase::s_testPoints_
)
87 .description("Number of points to test for spline table functions"));
94 /*! \brief Test fixture for table comparision with analytical/numerical functions */
96 class SplineTableTest
: public SplineTableTestBase
99 SplineTableTest() : tolerance_(T::defaultTolerance
) {}
101 /*! \brief Set a new tolerance to be used in table function comparison
103 * \param tol New tolerance to use
106 setTolerance(real tol
) { tolerance_
= tol
; }
110 * Assertion predicate formatter for comparing table with function/derivative
112 template<int numFuncInTable
= 1, int funcIndex
= 0>
114 testSplineTableAgainstFunctions(const std::string
&desc
,
115 const std::function
<double(double)> &refFunc
,
116 const std::function
<double(double)> &refDer
,
118 const std::pair
<real
, real
> &testRange
);
122 real tolerance_
; //!< Tolerance to use
126 template<int numFuncInTable
, int funcIndex
>
128 SplineTableTest
<T
>::testSplineTableAgainstFunctions(const std::string
&desc
,
129 const std::function
<double(double)> &refFunc
,
130 const std::function
<double(double)> &refDer
,
132 const std::pair
<real
, real
> &testRange
)
134 real dx
= (testRange
.second
- testRange
.first
) / s_testPoints_
;
136 FloatingPointTolerance
funcTolerance(relativeToleranceAsFloatingPoint(0.0, tolerance_
));
138 for (real x
= testRange
.first
; x
< testRange
.second
; x
+= dx
)
140 real h
= std::sqrt(GMX_REAL_EPS
);
141 real secondDerivative
= (refDer(x
+h
)-refDer(x
))/h
;
146 table
.template evaluateFunctionAndDerivative
<numFuncInTable
, funcIndex
>(x
, &testFuncValue
, &testDerValue
);
148 // Check that we get the same values from function/derivative-only methods
149 real tmpFunc
, tmpDer
;
151 table
.template evaluateFunction
<numFuncInTable
, funcIndex
>(x
, &tmpFunc
);
153 table
.template evaluateDerivative
<numFuncInTable
, funcIndex
>(x
, &tmpDer
);
155 if (testFuncValue
!= tmpFunc
)
158 << "Interpolation inconsistency for table " << desc
<< std::endl
159 << numFuncInTable
<< " function(s) in table, testing index " << funcIndex
<< std::endl
160 << "First failure at x = " << x
<< std::endl
161 << "Function value when evaluating function & derivative: " << testFuncValue
<< std::endl
162 << "Function value when evaluating only function: " << tmpFunc
<< std::endl
;
165 if (testDerValue
!= tmpDer
)
168 << "Interpolation inconsistency for table " << desc
<< std::endl
169 << numFuncInTable
<< " function(s) in table, testing index " << funcIndex
<< std::endl
170 << "First failure at x = " << x
<< std::endl
171 << "Derivative value when evaluating function & derivative: " << testDerValue
<< std::endl
172 << "Derivative value when evaluating only derivative: " << tmpDer
<< std::endl
;
176 // There are two sources of errors that we need to account for when checking the values,
177 // and we only fail the test if both of these tolerances are violated:
179 // 1) First, we have the normal relative error of the test vs. reference value. For this
180 // we use the normal testutils relative tolerance checking.
181 // However, there is an additional source of error: When we calculate the forces we
182 // use average higher derivatives over the interval to improve accuracy, but this
183 // also means we won't reproduce values at table points exactly. This is usually not
184 // an issue since the tolerances we have are much larger, but when the reference derivative
185 // value is exactly zero the relative error will be infinite. To account for this, we
186 // extract the spacing from the table and evaluate the reference derivative at a point
187 // this much larger too, and use the largest of the two values as the reference
188 // magnitude for the derivative when setting the relative tolerance.
189 // Note that according to the table function definitions, we should be allowed to evaluate
190 // it one table point beyond the range (this is done already for construction).
192 // 2) Second, due to the loss-of-accuracy when calculating the index through rtable
193 // there is an internal absolute tolerance that we can calculate.
194 // The source of this error is the subtraction eps=rtab-[rtab], which leaves an
195 // error proportional to eps_machine*rtab=eps_machine*x*tableScale.
196 // To lowest order, the term in the function and derivative values (respectively) that
197 // are proportional to eps will be the next-higher derivative multiplied by the spacing.
198 // This means the truncation error in the value is derivative*x*eps_machine, and in the
199 // derivative the error is 2nd_derivative*x*eps_machine.
201 real refFuncValue
= refFunc(x
);
202 real refDerValue
= refDer(x
);
203 real nextRefDerValue
= refDer(x
+ table
.tableSpacing());
205 real derMagnitude
= std::max( std::abs(refDerValue
), std::abs(nextRefDerValue
));
207 // Since the reference magnitude will change over each interval we need to re-evaluate
208 // the derivative tolerance inside the loop.
209 FloatingPointTolerance
derTolerance(relativeToleranceAsFloatingPoint(derMagnitude
, tolerance_
));
211 FloatingPointDifference
funcDiff(refFuncValue
, testFuncValue
);
212 FloatingPointDifference
derDiff(refDerValue
, testDerValue
);
214 real allowedAbsFuncErr
= std::abs(refDerValue
) * x
* GMX_REAL_EPS
;
215 real allowedAbsDerErr
= std::abs(secondDerivative
) * x
* GMX_REAL_EPS
;
217 if ((!funcTolerance
.isWithin(funcDiff
) && funcDiff
.asAbsolute() > allowedAbsFuncErr
) ||
218 (!derTolerance
.isWithin(derDiff
) && derDiff
.asAbsolute() > allowedAbsDerErr
))
221 << "Failing comparison with function for table " << desc
<< std::endl
222 << numFuncInTable
<< " function(s) in table, testing index " << funcIndex
<< std::endl
223 << "Test range is ( " << testRange
.first
<< " , " << testRange
.second
<< " ) " << std::endl
224 << "Tolerance = " << tolerance_
<< std::endl
225 << "First failure at x = " << x
<< std::endl
226 << "Reference function = " << refFuncValue
<< std::endl
227 << "Test table function = " << testFuncValue
<< std::endl
228 << "Reference derivative = " << refDerValue
<< std::endl
229 << "Test table derivative = " << testDerValue
<< std::endl
;
236 /*! \brief Function similar to coulomb electrostatics
242 coulombFunction(double r
)
247 /*! \brief Derivative (not force) of coulomb electrostatics
253 coulombDerivative(double r
)
258 /*! \brief Function similar to power-6 Lennard-Jones dispersion
264 lj6Function(double r
)
266 return std::pow(r
, -6.0);
269 /*! \brief Derivative (not force) of the power-6 Lennard-Jones dispersion
275 lj6Derivative(double r
)
277 return -6.0*std::pow(r
, -7.0);
280 /*! \brief Function similar to power-12 Lennard-Jones repulsion
286 lj12Function(double r
)
288 return std::pow(r
, -12.0);
291 /*! \brief Derivative (not force) of the power-12 Lennard-Jones repulsion
294 * \return -12.0*r^-13
297 lj12Derivative(double r
)
299 return -12.0*std::pow(r
, -13.0);
302 /*! \brief The sinc function, sin(r)/r
308 sincFunction(double r
)
310 return std::sin(r
)/r
;
313 /*! \brief Derivative of the sinc function
316 * \return derivative of sinc, (r*cos(r)-sin(r))/r^2
319 sincDerivative(double r
)
321 return (r
*std::cos(r
)-std::sin(r
))/(r
*r
);
324 /*! \brief Function for the direct-space PME correction to 1/r
327 * \return PME correction function, erf(r)/r
330 pmeCorrFunction(double r
)
334 return 2.0/std::sqrt(M_PI
);
338 return std::erf(r
)/r
;
342 /*! \brief Derivative of the direct-space PME correction to 1/r
345 * \return Derivative of the PME correction function.
348 pmeCorrDerivative(double r
)
356 return (2.0*std::exp(-r
*r
)/std::sqrt(3.14159265358979323846)*r
-erf(r
))/(r
*r
);
360 /*! \brief Typed-test list. We test QuadraticSplineTable and CubicSplineTable
362 typedef ::testing::Types
<QuadraticSplineTable
, CubicSplineTable
> SplineTableTypes
;
363 TYPED_TEST_CASE(SplineTableTest
, SplineTableTypes
);
366 TYPED_TEST(SplineTableTest
, HandlesIncorrectInput
)
369 EXPECT_THROW_GMX(TypeParam( {{"LJ12", lj12Function
, lj12Derivative
}}, {-1.0, 0.0}), gmx::InvalidInputError
);
372 EXPECT_THROW_GMX(TypeParam( {{"LJ12", lj12Function
, lj12Derivative
}}, {1.0, 1.00001}), gmx::InvalidInputError
);
375 EXPECT_THROW_GMX(TypeParam( {{"LJ12", lj12Function
, lj12Derivative
}}, {1.0, 2.0}, 1e-20), gmx::ToleranceError
);
377 // Range is so close to 0.0 that table would require >1e6 points
378 EXPECT_THROW_GMX(TypeParam( {{"LJ12", lj12Function
, lj12Derivative
}}, {1e-4, 2.0}), gmx::ToleranceError
);
380 // mismatching function/derivative
381 EXPECT_THROW_GMX(TypeParam( { {"BadLJ12", lj12Derivative
, lj12Function
}}, {1.0, 2.0}), gmx::InconsistentInputError
);
386 TYPED_TEST(SplineTableTest
, CatchesOutOfRangeValues
)
388 TypeParam
table( {{"LJ12", lj12Function
, lj12Derivative
}}, {0.2, 1.0});
392 EXPECT_THROW_GMX(table
.evaluateFunctionAndDerivative(x
, &func
, &der
), gmx::RangeError
);
395 EXPECT_THROW_GMX(table
.evaluateFunctionAndDerivative(x
, &func
, &der
), gmx::RangeError
);
400 TYPED_TEST(SplineTableTest
, Sinc
)
402 std::pair
<real
, real
> range(0.1, 10);
404 TypeParam
sincTable( {{"Sinc", sincFunction
, sincDerivative
}}, range
);
406 TestFixture::testSplineTableAgainstFunctions("Sinc", sincFunction
, sincDerivative
, sincTable
, range
);
410 TYPED_TEST(SplineTableTest
, LJ12
)
412 std::pair
<real
, real
> range(0.2, 2.0);
414 TypeParam
lj12Table( {{"LJ12", lj12Function
, lj12Derivative
}}, range
);
416 TestFixture::testSplineTableAgainstFunctions("LJ12", lj12Function
, lj12Derivative
, lj12Table
, range
);
420 TYPED_TEST(SplineTableTest
, PmeCorrection
)
422 std::pair
<real
, real
> range(0.0, 4.0);
423 real tolerance
= 1e-5;
425 TypeParam
pmeCorrTable( {{"PMECorr", pmeCorrFunction
, pmeCorrDerivative
}}, range
, tolerance
);
427 TestFixture::setTolerance(tolerance
);
428 TestFixture::testSplineTableAgainstFunctions("PMECorr", pmeCorrFunction
, pmeCorrDerivative
, pmeCorrTable
, range
);
433 TYPED_TEST(SplineTableTest
, HandlesIncorrectNumericalInput
)
435 // Lengths do not match
436 std::vector
<double> functionValues(10);
437 std::vector
<double> derivativeValues(20);
438 EXPECT_THROW_GMX(TypeParam( {{"EmptyVectors", functionValues
, derivativeValues
, 0.001}},
439 {1.0, 2.0}), gmx::InconsistentInputError
);
441 // Upper range is 2.0, spacing 0.1. This requires at least 21 points. Make sure we get an error for 20.
442 functionValues
.resize(20);
443 derivativeValues
.resize(20);
444 EXPECT_THROW_GMX(TypeParam( {{"EmptyVectors", functionValues
, derivativeValues
, 0.1}},
445 {1.0, 2.0}), gmx::InconsistentInputError
);
447 // Create some test data
448 functionValues
.clear();
449 derivativeValues
.clear();
451 std::vector
<double> badDerivativeValues
;
452 double spacing
= 1e-3;
454 for (std::size_t i
= 0; i
< 1001; i
++)
456 double x
= i
* spacing
;
457 double func
= (x
>= 0.1) ? lj12Function(x
) : 0.0;
458 double der
= (x
>= 0.1) ? lj12Derivative(x
) : 0.0;
460 functionValues
.push_back(func
);
461 derivativeValues
.push_back(der
);
462 badDerivativeValues
.push_back(-der
);
465 // Derivatives not consistent with function
466 EXPECT_THROW_GMX(TypeParam( {{"NumericalBadLJ12", functionValues
, badDerivativeValues
, spacing
}},
467 {0.2, 1.0}), gmx::InconsistentInputError
);
469 // Spacing 1e-3 is not sufficient for r^-12 in range [0.1,1.0]
470 // Make sure we get a tolerance error
471 EXPECT_THROW_GMX(TypeParam( {{"NumericalLJ12", functionValues
, derivativeValues
, spacing
}},
472 {0.2, 1.0}), gmx::ToleranceError
);
476 TYPED_TEST(SplineTableTest
, NumericalInputPmeCorr
)
478 std::pair
<real
, real
> range(0.0, 4.0);
479 std::vector
<double> functionValues
;
480 std::vector
<double> derivativeValues
;
482 double inputSpacing
= 1e-3;
483 real tolerance
= 1e-5;
485 // We only need data up to the argument 4.0, but add 1% margin
486 for (std::size_t i
= 0; i
< range
.second
*1.01/inputSpacing
; i
++)
488 double x
= i
* inputSpacing
;
490 functionValues
.push_back(pmeCorrFunction(x
));
491 derivativeValues
.push_back(pmeCorrDerivative(x
));
494 TypeParam
pmeCorrTable( {{"NumericalPMECorr", functionValues
, derivativeValues
, inputSpacing
}},
497 TestFixture::setTolerance(tolerance
);
498 TestFixture::testSplineTableAgainstFunctions("NumericalPMECorr", pmeCorrFunction
, pmeCorrDerivative
, pmeCorrTable
, range
);
501 TYPED_TEST(SplineTableTest
, TwoFunctions
)
503 std::pair
<real
, real
> range(0.2, 2.0);
505 TypeParam
table( {{"LJ6", lj6Function
, lj6Derivative
}, {"LJ12", lj12Function
, lj12Derivative
}}, range
);
507 // Test entire range for each function. This will use the method that interpolates a single function
508 TestFixture::template testSplineTableAgainstFunctions
<2, 0>("LJ6", lj6Function
, lj6Derivative
, table
, range
);
509 TestFixture::template testSplineTableAgainstFunctions
<2, 1>("LJ12", lj12Function
, lj12Derivative
, table
, range
);
511 // Test the methods that evaluated both functions for one value
512 real x
= 0.5 * (range
.first
+ range
.second
);
513 real refFunc0
= lj6Function(x
);
514 real refDer0
= lj6Derivative(x
);
515 real refFunc1
= lj12Function(x
);
516 real refDer1
= lj12Derivative(x
);
518 real tstFunc0
, tstDer0
, tstFunc1
, tstDer1
;
519 real tmpFunc0
, tmpFunc1
, tmpDer0
, tmpDer1
;
521 // test that we reproduce the reference functions
522 table
.evaluateFunctionAndDerivative(x
, &tstFunc0
, &tstDer0
, &tstFunc1
, &tstDer1
);
524 real funcErr0
= std::abs(tstFunc0
-refFunc0
) / std::abs(refFunc0
);
525 real funcErr1
= std::abs(tstFunc1
-refFunc1
) / std::abs(refFunc1
);
526 real derErr0
= std::abs(tstDer0
-refDer0
) / std::abs(refDer0
);
527 real derErr1
= std::abs(tstDer1
-refDer1
) / std::abs(refDer1
);
529 // Use asserts, since the following ones compare to these values.
530 ASSERT_LT(funcErr0
, TypeParam::defaultTolerance
);
531 ASSERT_LT(derErr0
, TypeParam::defaultTolerance
);
532 ASSERT_LT(funcErr1
, TypeParam::defaultTolerance
);
533 ASSERT_LT(derErr1
, TypeParam::defaultTolerance
);
535 // Test that function/derivative-only interpolation methods work
536 table
.evaluateFunction(x
, &tmpFunc0
, &tmpFunc1
);
537 table
.evaluateDerivative(x
, &tmpDer0
, &tmpDer1
);
538 EXPECT_EQ(tstFunc0
, tmpFunc0
);
539 EXPECT_EQ(tstFunc1
, tmpFunc1
);
540 EXPECT_EQ(tstDer0
, tmpDer0
);
542 // Test that scrambled order interpolation methods work
543 table
.template evaluateFunctionAndDerivative
<2, 1, 0>(x
, &tstFunc1
, &tstDer1
, &tstFunc0
, &tstDer0
);
544 EXPECT_EQ(tstFunc0
, tmpFunc0
);
545 EXPECT_EQ(tstFunc1
, tmpFunc1
);
546 EXPECT_EQ(tstDer0
, tmpDer0
);
547 EXPECT_EQ(tstDer1
, tmpDer1
);
549 // Test scrambled order for function/derivative-only methods
550 table
.template evaluateFunction
<2, 1, 0>(x
, &tmpFunc1
, &tmpFunc0
);
551 table
.template evaluateDerivative
<2, 1, 0>(x
, &tmpDer1
, &tmpDer0
);
552 EXPECT_EQ(tstFunc0
, tmpFunc0
);
553 EXPECT_EQ(tstFunc1
, tmpFunc1
);
554 EXPECT_EQ(tstDer0
, tmpDer0
);
555 EXPECT_EQ(tstDer1
, tmpDer1
);
558 TYPED_TEST(SplineTableTest
, ThreeFunctions
)
560 std::pair
<real
, real
> range(0.2, 2.0);
562 TypeParam
table( {{"Coulomb", coulombFunction
, coulombDerivative
}, {"LJ6", lj6Function
, lj6Derivative
}, {"LJ12", lj12Function
, lj12Derivative
}}, range
);
564 // Test entire range for each function
565 TestFixture::template testSplineTableAgainstFunctions
<3, 0>("Coulomb", coulombFunction
, coulombDerivative
, table
, range
);
566 TestFixture::template testSplineTableAgainstFunctions
<3, 1>("LJ6", lj6Function
, lj6Derivative
, table
, range
);
567 TestFixture::template testSplineTableAgainstFunctions
<3, 2>("LJ12", lj12Function
, lj12Derivative
, table
, range
);
569 // Test the methods that evaluated both functions for one value
570 real x
= 0.5 * (range
.first
+ range
.second
);
571 real refFunc0
= coulombFunction(x
);
572 real refDer0
= coulombDerivative(x
);
573 real refFunc1
= lj6Function(x
);
574 real refDer1
= lj6Derivative(x
);
575 real refFunc2
= lj12Function(x
);
576 real refDer2
= lj12Derivative(x
);
578 real tstFunc0
, tstDer0
, tstFunc1
, tstDer1
, tstFunc2
, tstDer2
;
579 real tmpFunc0
, tmpFunc1
, tmpFunc2
, tmpDer0
, tmpDer1
, tmpDer2
;
581 // test that we reproduce the reference functions
582 table
.evaluateFunctionAndDerivative(x
, &tstFunc0
, &tstDer0
, &tstFunc1
, &tstDer1
, &tstFunc2
, &tstDer2
);
584 real funcErr0
= std::abs(tstFunc0
-refFunc0
) / std::abs(refFunc0
);
585 real derErr0
= std::abs(tstDer0
-refDer0
) / std::abs(refDer0
);
586 real funcErr1
= std::abs(tstFunc1
-refFunc1
) / std::abs(refFunc1
);
587 real derErr1
= std::abs(tstDer1
-refDer1
) / std::abs(refDer1
);
588 real funcErr2
= std::abs(tstFunc2
-refFunc2
) / std::abs(refFunc2
);
589 real derErr2
= std::abs(tstDer2
-refDer2
) / std::abs(refDer2
);
591 // Use asserts, since the following ones compare to these values.
592 ASSERT_LT(funcErr0
, TypeParam::defaultTolerance
);
593 ASSERT_LT(derErr0
, TypeParam::defaultTolerance
);
594 ASSERT_LT(funcErr1
, TypeParam::defaultTolerance
);
595 ASSERT_LT(derErr1
, TypeParam::defaultTolerance
);
596 ASSERT_LT(funcErr2
, TypeParam::defaultTolerance
);
597 ASSERT_LT(derErr2
, TypeParam::defaultTolerance
);
599 // Test that function/derivative-only interpolation methods work
600 table
.evaluateFunction(x
, &tmpFunc0
, &tmpFunc1
, &tmpFunc2
);
601 table
.evaluateDerivative(x
, &tmpDer0
, &tmpDer1
, &tmpDer2
);
602 EXPECT_EQ(tstFunc0
, tmpFunc0
);
603 EXPECT_EQ(tstFunc1
, tmpFunc1
);
604 EXPECT_EQ(tstFunc2
, tmpFunc2
);
605 EXPECT_EQ(tstDer0
, tmpDer0
);
606 EXPECT_EQ(tstDer1
, tmpDer1
);
607 EXPECT_EQ(tstDer2
, tmpDer2
);
609 // Test two functions out of three
610 table
.template evaluateFunctionAndDerivative
<3, 0, 1>(x
, &tmpFunc0
, &tmpDer0
, &tmpFunc1
, &tmpDer1
);
611 EXPECT_EQ(tstFunc0
, tmpFunc0
);
612 EXPECT_EQ(tstFunc1
, tmpFunc1
);
613 EXPECT_EQ(tstDer0
, tmpDer0
);
614 EXPECT_EQ(tstDer1
, tmpDer1
);
616 // two out of three, function/derivative-only
617 table
.template evaluateFunction
<3, 0, 1>(x
, &tmpFunc0
, &tmpFunc1
);
618 table
.template evaluateDerivative
<3, 0, 1>(x
, &tmpDer0
, &tmpDer1
);
619 EXPECT_EQ(tstFunc0
, tmpFunc0
);
620 EXPECT_EQ(tstFunc1
, tmpFunc1
);
621 EXPECT_EQ(tstDer0
, tmpDer0
);
622 EXPECT_EQ(tstDer1
, tmpDer1
);
624 // Test that scrambled order interpolation methods work
625 table
.template evaluateFunctionAndDerivative
<3, 2, 1, 0>(x
, &tstFunc2
, &tstDer2
, &tstFunc1
, &tstDer1
, &tstFunc0
, &tstDer0
);
626 EXPECT_EQ(tstFunc0
, tmpFunc0
);
627 EXPECT_EQ(tstFunc1
, tmpFunc1
);
628 EXPECT_EQ(tstFunc2
, tmpFunc2
);
629 EXPECT_EQ(tstDer0
, tmpDer0
);
630 EXPECT_EQ(tstDer1
, tmpDer1
);
631 EXPECT_EQ(tstDer2
, tmpDer2
);
633 // Test scrambled order for function/derivative-only methods
634 table
.template evaluateFunction
<3, 2, 1, 0>(x
, &tmpFunc2
, &tmpFunc1
, &tmpFunc0
);
635 table
.template evaluateDerivative
<3, 2, 1, 0>(x
, &tmpDer2
, &tmpDer1
, &tmpDer0
);
636 EXPECT_EQ(tstFunc0
, tmpFunc0
);
637 EXPECT_EQ(tstFunc1
, tmpFunc1
);
638 EXPECT_EQ(tstFunc2
, tmpFunc2
);
639 EXPECT_EQ(tstDer0
, tmpDer0
);
640 EXPECT_EQ(tstDer1
, tmpDer1
);
641 EXPECT_EQ(tstDer2
, tmpDer2
);
644 #if GMX_SIMD_HAVE_REAL
645 TYPED_TEST(SplineTableTest
, Simd
)
647 std::pair
<real
, real
> range(0.2, 1.0);
648 TypeParam
table( {{"LJ12", lj12Function
, lj12Derivative
}}, range
);
650 // We already test that the SIMD operations handle the different elements
651 // correctly in the SIMD module, so here we only test that interpolation
652 // works for a single value in the middle of the interval
654 real x
= 0.5 * (range
.first
+ range
.second
);
655 real refFunc
= lj12Function(x
);
656 real refDer
= lj12Derivative(x
);
657 SimdReal tstFunc
, tstDer
;
658 real funcErr
, derErr
;
659 GMX_ALIGNED(real
, GMX_SIMD_REAL_WIDTH
) alignedMem
[GMX_SIMD_REAL_WIDTH
];
661 table
.evaluateFunctionAndDerivative(SimdReal(x
), &tstFunc
, &tstDer
);
663 store(alignedMem
, tstFunc
);
664 funcErr
= std::abs(alignedMem
[0]-refFunc
) / std::abs(refFunc
);
666 store(alignedMem
, tstDer
);
667 derErr
= std::abs(alignedMem
[0]-refDer
) / std::abs(refDer
);
669 EXPECT_LT(funcErr
, TypeParam::defaultTolerance
);
670 EXPECT_LT(derErr
, TypeParam::defaultTolerance
);
673 TYPED_TEST(SplineTableTest
, SimdTwoFunctions
)
675 std::pair
<real
, real
> range(0.2, 2.0);
677 TypeParam
table( {{"LJ6", lj6Function
, lj6Derivative
}, {"LJ12", lj12Function
, lj12Derivative
}}, range
);
679 // We already test that the SIMD operations handle the different elements
680 // correctly in the SIMD module, so here we only test that interpolation
681 // works for a single value in the middle of the interval
683 real x
= 0.5 * (range
.first
+ range
.second
);
684 real refFunc0
= lj6Function(x
);
685 real refDer0
= lj6Derivative(x
);
686 real refFunc1
= lj12Function(x
);
687 real refDer1
= lj12Derivative(x
);
688 SimdReal tstFunc0
, tstDer0
;
689 SimdReal tstFunc1
, tstDer1
;
690 real funcErr0
, derErr0
;
691 real funcErr1
, derErr1
;
692 GMX_ALIGNED(real
, GMX_SIMD_REAL_WIDTH
) alignedMem
[GMX_SIMD_REAL_WIDTH
];
694 table
.evaluateFunctionAndDerivative(SimdReal(x
), &tstFunc0
, &tstDer0
, &tstFunc1
, &tstDer1
);
696 store(alignedMem
, tstFunc0
);
697 funcErr0
= std::abs(alignedMem
[0]-refFunc0
) / std::abs(refFunc0
);
699 store(alignedMem
, tstDer0
);
700 derErr0
= std::abs(alignedMem
[0]-refDer0
) / std::abs(refDer0
);
702 store(alignedMem
, tstFunc1
);
703 funcErr1
= std::abs(alignedMem
[0]-refFunc1
) / std::abs(refFunc1
);
705 store(alignedMem
, tstDer1
);
706 derErr1
= std::abs(alignedMem
[0]-refDer1
) / std::abs(refDer1
);
708 EXPECT_LT(funcErr0
, TypeParam::defaultTolerance
);
709 EXPECT_LT(derErr0
, TypeParam::defaultTolerance
);
710 EXPECT_LT(funcErr1
, TypeParam::defaultTolerance
);
711 EXPECT_LT(derErr1
, TypeParam::defaultTolerance
);
715 #if GMX_SIMD_HAVE_REAL && !defined NDEBUG
716 TYPED_TEST(SplineTableTest
, CatchesOutOfRangeValuesSimd
)
718 std::pair
<real
, real
> range(0.2, 1.0);
719 TypeParam
table( {{"LJ12", lj12Function
, lj12Derivative
}}, range
);
720 SimdReal x
, func
, der
;
722 GMX_ALIGNED(real
, GMX_SIMD_REAL_WIDTH
) alignedMem
[GMX_SIMD_REAL_WIDTH
];
724 // Make position 1 incorrect if width>=2, otherwise position 0
725 alignedMem
[ (GMX_SIMD_REAL_WIDTH
>= 2) ? 1 : 0] = -GMX_REAL_EPS
;
726 x
= load(alignedMem
);
728 EXPECT_THROW_GMX(table
.evaluateFunctionAndDerivative(x
, &func
, &der
), gmx::RangeError
);
730 for (std::size_t i
= 0; i
< GMX_SIMD_REAL_WIDTH
; i
++)
732 alignedMem
[i
] = range
.second
*(1.0-GMX_REAL_EPS
);
734 // Make position 1 incorrect if width>=2, otherwise position 0
735 alignedMem
[ (GMX_SIMD_REAL_WIDTH
>= 2) ? 1 : 0] = range
.second
;
736 x
= load(alignedMem
);
738 EXPECT_THROW_GMX(table
.evaluateFunctionAndDerivative(x
, &func
, &der
), gmx::RangeError
);