Correct nrdf for 1D/2D systems
[gromacs/AngularHB.git] / src / contrib / random.c
blob6514ba8bf58bdd0fd5d882f89e722e98ec0476e9
1 /*
2 * Print a lookup table for Gaussian numbers with 4 entries on each
3 * line, formatted for inclusion in this file. Size is 2^bits.
4 */
6 void
7 print_gaussian_table(int bits)
9 int n,nh,i,j;
10 double invn,fac,x,invgauss,det,dx;
11 real *table;
13 n = 1 << bits;
14 table = (real *)malloc(n*sizeof(real));
16 /* Fill a table of size n such that random draws from it
17 * produce a Gaussian distribution.
18 * We integrate the Gaussian distribution G approximating:
19 * integral(x->x+dx) G(y) dy
20 * with:
21 * G(x) dx + G'(x) dx^2/2 = G(x) dx - G(x) x dx^2/2
22 * Then we need to find dx such that the integral is 1/n.
23 * The last step uses dx = 1/x as the approximation is not accurate enough.
25 invn = 1.0/n;
26 fac = sqrt(2*M_PI);
27 x = 0.5*fac*invn;
28 nh = n/2;
29 for(i=0; i<nh; i++) {
30 if (i > 0) {
31 if (i < nh-1) {
32 invgauss = fac*exp(0.5*x*x);
33 /* det is larger than 0 for all x, except for the last */
34 det = 1 - 2*invn*x*invgauss;
35 dx = (1 - sqrt(det))/x;
36 } else {
37 dx = 1/x;
39 x = x + dx;
41 table[nh-1-i] = -x;
42 table[nh+i] = x;
44 printf("static const real *\ngaussian_table[%d] = {\n",n);
45 for(i=0;i<n;i+=4) {
46 printf(" ");
47 for(j=0;j<4;j++) {
48 printf("%14.7e",table[i+j]);
49 if(i+j<(n-1))
50 printf(",");
52 printf("\n");
54 printf("};\n");
55 free(table);