Only issue FFT warning messages on changes
[gromacs/AngularHB.git] / src / programs / mdrun / repl_ex.cpp
blobc216526229bc66d88429507cd65f439eefc39ab6
1 /*
2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2011,2012,2013,2014,2015,2016,2017, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
38 #include "gmxpre.h"
40 #include "repl_ex.h"
42 #include "config.h"
44 #include <cmath>
46 #include <random>
48 #include "gromacs/domdec/domdec.h"
49 #include "gromacs/gmxlib/network.h"
50 #include "gromacs/math/units.h"
51 #include "gromacs/math/vec.h"
52 #include "gromacs/mdlib/main.h"
53 #include "gromacs/mdtypes/commrec.h"
54 #include "gromacs/mdtypes/inputrec.h"
55 #include "gromacs/mdtypes/md_enums.h"
56 #include "gromacs/mdtypes/state.h"
57 #include "gromacs/random/threefry.h"
58 #include "gromacs/random/uniformintdistribution.h"
59 #include "gromacs/random/uniformrealdistribution.h"
60 #include "gromacs/utility/fatalerror.h"
61 #include "gromacs/utility/pleasecite.h"
62 #include "gromacs/utility/smalloc.h"
65 #define PROBABILITYCUTOFF 100
66 /* we don't bother evaluating if events are more rare than exp(-100) = 3.7x10^-44 */
68 //! Rank in the multisimulaiton
69 #define MSRANK(ms, nodeid) (nodeid)
71 enum {
72 ereTEMP, ereLAMBDA, ereENDSINGLE, ereTL, ereNR
74 const char *erename[ereNR] = { "temperature", "lambda", "end_single_marker", "temperature and lambda"};
75 /* end_single_marker merely notes the end of single variable replica exchange. All types higher than
76 it are multiple replica exchange methods */
77 /* Eventually, should add 'pressure', 'temperature and pressure', 'lambda_and_pressure', 'temperature_lambda_pressure'?;
78 Let's wait until we feel better about the pressure control methods giving exact ensembles. Right now, we assume constant pressure */
80 typedef struct gmx_repl_ex
82 int repl; /* replica ID */
83 int nrepl; /* total number of replica */
84 real temp; /* temperature */
85 int type; /* replica exchange type from ere enum */
86 real **q; /* quantity, e.g. temperature or lambda; first index is ere, second index is replica ID */
87 gmx_bool bNPT; /* use constant pressure and temperature */
88 real *pres; /* replica pressures */
89 int *ind; /* replica indices */
90 int *allswaps; /* used for keeping track of all the replica swaps */
91 int nst; /* replica exchange interval (number of steps) */
92 int nex; /* number of exchanges per interval */
93 int seed; /* random seed */
94 int nattempt[2]; /* number of even and odd replica change attempts */
95 real *prob_sum; /* sum of probabilities */
96 int **nmoves; /* number of moves between replicas i and j */
97 int *nexchange; /* i-th element of the array is the number of exchanges between replica i-1 and i */
99 /* these are helper arrays for replica exchange; allocated here so they
100 don't have to be allocated each time */
101 int *destinations;
102 int **cyclic;
103 int **order;
104 int *tmpswap;
105 gmx_bool *incycle;
106 gmx_bool *bEx;
108 /* helper arrays to hold the quantities that are exchanged */
109 real *prob;
110 real *Epot;
111 real *beta;
112 real *Vol;
113 real **de;
115 } t_gmx_repl_ex;
117 static gmx_bool repl_quantity(const gmx_multisim_t *ms,
118 struct gmx_repl_ex *re, int ere, real q)
120 real *qall;
121 gmx_bool bDiff;
122 int s;
124 snew(qall, ms->nsim);
125 qall[re->repl] = q;
126 gmx_sum_sim(ms->nsim, qall, ms);
128 bDiff = FALSE;
129 for (s = 1; s < ms->nsim; s++)
131 if (qall[s] != qall[0])
133 bDiff = TRUE;
137 if (bDiff)
139 /* Set the replica exchange type and quantities */
140 re->type = ere;
142 snew(re->q[ere], re->nrepl);
143 for (s = 0; s < ms->nsim; s++)
145 re->q[ere][s] = qall[s];
148 sfree(qall);
149 return bDiff;
152 gmx_repl_ex_t
153 init_replica_exchange(FILE *fplog,
154 const gmx_multisim_t *ms,
155 int numAtomsInSystem,
156 const t_inputrec *ir,
157 const ReplicaExchangeParameters &replExParams)
159 real pres;
160 int i, j, k;
161 struct gmx_repl_ex *re;
162 gmx_bool bTemp;
163 gmx_bool bLambda = FALSE;
165 fprintf(fplog, "\nInitializing Replica Exchange\n");
167 if (ms == nullptr || ms->nsim == 1)
169 gmx_fatal(FARGS, "Nothing to exchange with only one replica, maybe you forgot to set the -multi option of mdrun?");
171 if (!EI_DYNAMICS(ir->eI))
173 gmx_fatal(FARGS, "Replica exchange is only supported by dynamical simulations");
174 /* Note that PAR(cr) is defined by cr->nnodes > 1, which is
175 * distinct from MULTISIM(cr). A multi-simulation only runs
176 * with real MPI parallelism, but this does not imply PAR(cr)
177 * is true!
179 * Since we are using a dynamical integrator, the only
180 * decomposition is DD, so PAR(cr) and DOMAINDECOMP(cr) are
181 * synonymous. The only way for cr->nnodes > 1 to be true is
182 * if we are using DD. */
185 snew(re, 1);
187 re->repl = ms->sim;
188 re->nrepl = ms->nsim;
189 snew(re->q, ereENDSINGLE);
191 fprintf(fplog, "Repl There are %d replicas:\n", re->nrepl);
193 /* We only check that the number of atoms in the systms match.
194 * This, of course, do not guarantee that the systems are the same,
195 * but it does guarantee that we can perform replica exchange.
197 check_multi_int(fplog, ms, numAtomsInSystem, "the number of atoms", FALSE);
198 check_multi_int(fplog, ms, ir->eI, "the integrator", FALSE);
199 check_multi_int64(fplog, ms, ir->init_step+ir->nsteps, "init_step+nsteps", FALSE);
200 const int nst = replExParams.exchangeInterval;
201 check_multi_int64(fplog, ms, (ir->init_step+nst-1)/nst,
202 "first exchange step: init_step/-replex", FALSE);
203 check_multi_int(fplog, ms, ir->etc, "the temperature coupling", FALSE);
204 check_multi_int(fplog, ms, ir->opts.ngtc,
205 "the number of temperature coupling groups", FALSE);
206 check_multi_int(fplog, ms, ir->epc, "the pressure coupling", FALSE);
207 check_multi_int(fplog, ms, ir->efep, "free energy", FALSE);
208 check_multi_int(fplog, ms, ir->fepvals->n_lambda, "number of lambda states", FALSE);
210 re->temp = ir->opts.ref_t[0];
211 for (i = 1; (i < ir->opts.ngtc); i++)
213 if (ir->opts.ref_t[i] != re->temp)
215 fprintf(fplog, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
216 fprintf(stderr, "\nWARNING: The temperatures of the different temperature coupling groups are not identical\n\n");
220 re->type = -1;
221 bTemp = repl_quantity(ms, re, ereTEMP, re->temp);
222 if (ir->efep != efepNO)
224 bLambda = repl_quantity(ms, re, ereLAMBDA, (real)ir->fepvals->init_fep_state);
226 if (re->type == -1) /* nothing was assigned */
228 gmx_fatal(FARGS, "The properties of the %d systems are all the same, there is nothing to exchange", re->nrepl);
230 if (bLambda && bTemp)
232 re->type = ereTL;
235 if (bTemp)
237 please_cite(fplog, "Sugita1999a");
238 if (ir->epc != epcNO)
240 re->bNPT = TRUE;
241 fprintf(fplog, "Repl Using Constant Pressure REMD.\n");
242 please_cite(fplog, "Okabe2001a");
244 if (ir->etc == etcBERENDSEN)
246 gmx_fatal(FARGS, "REMD with the %s thermostat does not produce correct potential energy distributions, consider using the %s thermostat instead",
247 ETCOUPLTYPE(ir->etc), ETCOUPLTYPE(etcVRESCALE));
250 if (bLambda)
252 if (ir->fepvals->delta_lambda != 0) /* check this? */
254 gmx_fatal(FARGS, "delta_lambda is not zero");
257 if (re->bNPT)
259 snew(re->pres, re->nrepl);
260 if (ir->epct == epctSURFACETENSION)
262 pres = ir->ref_p[ZZ][ZZ];
264 else
266 pres = 0;
267 j = 0;
268 for (i = 0; i < DIM; i++)
270 if (ir->compress[i][i] != 0)
272 pres += ir->ref_p[i][i];
273 j++;
276 pres /= j;
278 re->pres[re->repl] = pres;
279 gmx_sum_sim(re->nrepl, re->pres, ms);
282 /* Make an index for increasing replica order */
283 /* only makes sense if one or the other is varying, not both!
284 if both are varying, we trust the order the person gave. */
285 snew(re->ind, re->nrepl);
286 for (i = 0; i < re->nrepl; i++)
288 re->ind[i] = i;
291 if (re->type < ereENDSINGLE)
294 for (i = 0; i < re->nrepl; i++)
296 for (j = i+1; j < re->nrepl; j++)
298 if (re->q[re->type][re->ind[j]] < re->q[re->type][re->ind[i]])
300 /* Unordered replicas are supposed to work, but there
301 * is still an issues somewhere.
302 * Note that at this point still re->ind[i]=i.
304 gmx_fatal(FARGS, "Replicas with indices %d < %d have %ss %g > %g, please order your replicas on increasing %s",
305 i, j,
306 erename[re->type],
307 re->q[re->type][i], re->q[re->type][j],
308 erename[re->type]);
310 k = re->ind[i];
311 re->ind[i] = re->ind[j];
312 re->ind[j] = k;
314 else if (re->q[re->type][re->ind[j]] == re->q[re->type][re->ind[i]])
316 gmx_fatal(FARGS, "Two replicas have identical %ss", erename[re->type]);
322 /* keep track of all the swaps, starting with the initial placement. */
323 snew(re->allswaps, re->nrepl);
324 for (i = 0; i < re->nrepl; i++)
326 re->allswaps[i] = re->ind[i];
329 switch (re->type)
331 case ereTEMP:
332 fprintf(fplog, "\nReplica exchange in temperature\n");
333 for (i = 0; i < re->nrepl; i++)
335 fprintf(fplog, " %5.1f", re->q[re->type][re->ind[i]]);
337 fprintf(fplog, "\n");
338 break;
339 case ereLAMBDA:
340 fprintf(fplog, "\nReplica exchange in lambda\n");
341 for (i = 0; i < re->nrepl; i++)
343 fprintf(fplog, " %3d", (int)re->q[re->type][re->ind[i]]);
345 fprintf(fplog, "\n");
346 break;
347 case ereTL:
348 fprintf(fplog, "\nReplica exchange in temperature and lambda state\n");
349 for (i = 0; i < re->nrepl; i++)
351 fprintf(fplog, " %5.1f", re->q[ereTEMP][re->ind[i]]);
353 fprintf(fplog, "\n");
354 for (i = 0; i < re->nrepl; i++)
356 fprintf(fplog, " %5d", (int)re->q[ereLAMBDA][re->ind[i]]);
358 fprintf(fplog, "\n");
359 break;
360 default:
361 gmx_incons("Unknown replica exchange quantity");
363 if (re->bNPT)
365 fprintf(fplog, "\nRepl p");
366 for (i = 0; i < re->nrepl; i++)
368 fprintf(fplog, " %5.2f", re->pres[re->ind[i]]);
371 for (i = 0; i < re->nrepl; i++)
373 if ((i > 0) && (re->pres[re->ind[i]] < re->pres[re->ind[i-1]]))
375 fprintf(fplog, "\nWARNING: The reference pressures decrease with increasing temperatures\n\n");
376 fprintf(stderr, "\nWARNING: The reference pressures decrease with increasing temperatures\n\n");
380 re->nst = nst;
381 if (replExParams.randomSeed == -1)
383 if (MASTERSIM(ms))
385 re->seed = static_cast<int>(gmx::makeRandomSeed());
387 else
389 re->seed = 0;
391 gmx_sumi_sim(1, &(re->seed), ms);
393 else
395 re->seed = replExParams.randomSeed;
397 fprintf(fplog, "\nReplica exchange interval: %d\n", re->nst);
398 fprintf(fplog, "\nReplica random seed: %d\n", re->seed);
400 re->nattempt[0] = 0;
401 re->nattempt[1] = 0;
403 snew(re->prob_sum, re->nrepl);
404 snew(re->nexchange, re->nrepl);
405 snew(re->nmoves, re->nrepl);
406 for (i = 0; i < re->nrepl; i++)
408 snew(re->nmoves[i], re->nrepl);
410 fprintf(fplog, "Replica exchange information below: ex and x = exchange, pr = probability\n");
412 /* generate space for the helper functions so we don't have to snew each time */
414 snew(re->destinations, re->nrepl);
415 snew(re->incycle, re->nrepl);
416 snew(re->tmpswap, re->nrepl);
417 snew(re->cyclic, re->nrepl);
418 snew(re->order, re->nrepl);
419 for (i = 0; i < re->nrepl; i++)
421 snew(re->cyclic[i], re->nrepl+1);
422 snew(re->order[i], re->nrepl);
424 /* allocate space for the functions storing the data for the replicas */
425 /* not all of these arrays needed in all cases, but they don't take
426 up much space, since the max size is nrepl**2 */
427 snew(re->prob, re->nrepl);
428 snew(re->bEx, re->nrepl);
429 snew(re->beta, re->nrepl);
430 snew(re->Vol, re->nrepl);
431 snew(re->Epot, re->nrepl);
432 snew(re->de, re->nrepl);
433 for (i = 0; i < re->nrepl; i++)
435 snew(re->de[i], re->nrepl);
437 re->nex = replExParams.numExchanges;
438 return re;
441 static void exchange_reals(const gmx_multisim_t gmx_unused *ms, int gmx_unused b, real *v, int n)
443 real *buf;
444 int i;
446 if (v)
448 snew(buf, n);
449 #if GMX_MPI
451 MPI_Sendrecv(v, n*sizeof(real),MPI_BYTE,MSRANK(ms,b),0,
452 buf,n*sizeof(real),MPI_BYTE,MSRANK(ms,b),0,
453 ms->mpi_comm_masters,MPI_STATUS_IGNORE);
456 MPI_Request mpi_req;
458 MPI_Isend(v, n*sizeof(real), MPI_BYTE, MSRANK(ms, b), 0,
459 ms->mpi_comm_masters, &mpi_req);
460 MPI_Recv(buf, n*sizeof(real), MPI_BYTE, MSRANK(ms, b), 0,
461 ms->mpi_comm_masters, MPI_STATUS_IGNORE);
462 MPI_Wait(&mpi_req, MPI_STATUS_IGNORE);
464 #endif
465 for (i = 0; i < n; i++)
467 v[i] = buf[i];
469 sfree(buf);
474 static void exchange_doubles(const gmx_multisim_t gmx_unused *ms, int gmx_unused b, double *v, int n)
476 double *buf;
477 int i;
479 if (v)
481 snew(buf, n);
482 #if GMX_MPI
484 MPI_Sendrecv(v, n*sizeof(double),MPI_BYTE,MSRANK(ms,b),0,
485 buf,n*sizeof(double),MPI_BYTE,MSRANK(ms,b),0,
486 ms->mpi_comm_masters,MPI_STATUS_IGNORE);
489 MPI_Request mpi_req;
491 MPI_Isend(v, n*sizeof(double), MPI_BYTE, MSRANK(ms, b), 0,
492 ms->mpi_comm_masters, &mpi_req);
493 MPI_Recv(buf, n*sizeof(double), MPI_BYTE, MSRANK(ms, b), 0,
494 ms->mpi_comm_masters, MPI_STATUS_IGNORE);
495 MPI_Wait(&mpi_req, MPI_STATUS_IGNORE);
497 #endif
498 for (i = 0; i < n; i++)
500 v[i] = buf[i];
502 sfree(buf);
506 static void exchange_rvecs(const gmx_multisim_t gmx_unused *ms, int gmx_unused b, rvec *v, int n)
508 rvec *buf;
509 int i;
511 if (v)
513 snew(buf, n);
514 #if GMX_MPI
516 MPI_Sendrecv(v[0], n*sizeof(rvec),MPI_BYTE,MSRANK(ms,b),0,
517 buf[0],n*sizeof(rvec),MPI_BYTE,MSRANK(ms,b),0,
518 ms->mpi_comm_masters,MPI_STATUS_IGNORE);
521 MPI_Request mpi_req;
523 MPI_Isend(v[0], n*sizeof(rvec), MPI_BYTE, MSRANK(ms, b), 0,
524 ms->mpi_comm_masters, &mpi_req);
525 MPI_Recv(buf[0], n*sizeof(rvec), MPI_BYTE, MSRANK(ms, b), 0,
526 ms->mpi_comm_masters, MPI_STATUS_IGNORE);
527 MPI_Wait(&mpi_req, MPI_STATUS_IGNORE);
529 #endif
530 for (i = 0; i < n; i++)
532 copy_rvec(buf[i], v[i]);
534 sfree(buf);
538 static void exchange_state(const gmx_multisim_t *ms, int b, t_state *state)
540 /* When t_state changes, this code should be updated. */
541 int ngtc, nnhpres;
542 ngtc = state->ngtc * state->nhchainlength;
543 nnhpres = state->nnhpres* state->nhchainlength;
544 exchange_rvecs(ms, b, state->box, DIM);
545 exchange_rvecs(ms, b, state->box_rel, DIM);
546 exchange_rvecs(ms, b, state->boxv, DIM);
547 exchange_reals(ms, b, &(state->veta), 1);
548 exchange_reals(ms, b, &(state->vol0), 1);
549 exchange_rvecs(ms, b, state->svir_prev, DIM);
550 exchange_rvecs(ms, b, state->fvir_prev, DIM);
551 exchange_rvecs(ms, b, state->pres_prev, DIM);
552 exchange_doubles(ms, b, state->nosehoover_xi.data(), ngtc);
553 exchange_doubles(ms, b, state->nosehoover_vxi.data(), ngtc);
554 exchange_doubles(ms, b, state->nhpres_xi.data(), nnhpres);
555 exchange_doubles(ms, b, state->nhpres_vxi.data(), nnhpres);
556 exchange_doubles(ms, b, state->therm_integral.data(), state->ngtc);
557 exchange_doubles(ms, b, &state->baros_integral, 1);
558 exchange_rvecs(ms, b, as_rvec_array(state->x.data()), state->natoms);
559 exchange_rvecs(ms, b, as_rvec_array(state->v.data()), state->natoms);
562 static void copy_state_serial(const t_state *src, t_state *dest)
564 if (dest != src)
566 /* Currently the local state is always a pointer to the global
567 * in serial, so we should never end up here.
568 * TODO: Implement a (trivial) t_state copy once converted to C++.
570 GMX_RELEASE_ASSERT(false, "State copying is currently not implemented in replica exchange");
574 static void scale_velocities(t_state *state, real fac)
576 int i;
578 if (as_rvec_array(state->v.data()))
580 for (i = 0; i < state->natoms; i++)
582 svmul(fac, state->v[i], state->v[i]);
587 static void print_transition_matrix(FILE *fplog, int n, int **nmoves, int *nattempt)
589 int i, j, ntot;
590 float Tprint;
592 ntot = nattempt[0] + nattempt[1];
593 fprintf(fplog, "\n");
594 fprintf(fplog, "Repl");
595 for (i = 0; i < n; i++)
597 fprintf(fplog, " "); /* put the title closer to the center */
599 fprintf(fplog, "Empirical Transition Matrix\n");
601 fprintf(fplog, "Repl");
602 for (i = 0; i < n; i++)
604 fprintf(fplog, "%8d", (i+1));
606 fprintf(fplog, "\n");
608 for (i = 0; i < n; i++)
610 fprintf(fplog, "Repl");
611 for (j = 0; j < n; j++)
613 Tprint = 0.0;
614 if (nmoves[i][j] > 0)
616 Tprint = nmoves[i][j]/(2.0*ntot);
618 fprintf(fplog, "%8.4f", Tprint);
620 fprintf(fplog, "%3d\n", i);
624 static void print_ind(FILE *fplog, const char *leg, int n, int *ind, gmx_bool *bEx)
626 int i;
628 fprintf(fplog, "Repl %2s %2d", leg, ind[0]);
629 for (i = 1; i < n; i++)
631 fprintf(fplog, " %c %2d", (bEx != nullptr && bEx[i]) ? 'x' : ' ', ind[i]);
633 fprintf(fplog, "\n");
636 static void print_allswitchind(FILE *fplog, int n, int *pind, int *allswaps, int *tmpswap)
638 int i;
640 for (i = 0; i < n; i++)
642 tmpswap[i] = allswaps[i];
644 for (i = 0; i < n; i++)
646 allswaps[i] = tmpswap[pind[i]];
649 fprintf(fplog, "\nAccepted Exchanges: ");
650 for (i = 0; i < n; i++)
652 fprintf(fplog, "%d ", pind[i]);
654 fprintf(fplog, "\n");
656 /* the "Order After Exchange" is the state label corresponding to the configuration that
657 started in state listed in order, i.e.
659 3 0 1 2
661 means that the:
662 configuration starting in simulation 3 is now in simulation 0,
663 configuration starting in simulation 0 is now in simulation 1,
664 configuration starting in simulation 1 is now in simulation 2,
665 configuration starting in simulation 2 is now in simulation 3
667 fprintf(fplog, "Order After Exchange: ");
668 for (i = 0; i < n; i++)
670 fprintf(fplog, "%d ", allswaps[i]);
672 fprintf(fplog, "\n\n");
675 static void print_prob(FILE *fplog, const char *leg, int n, real *prob)
677 int i;
678 char buf[8];
680 fprintf(fplog, "Repl %2s ", leg);
681 for (i = 1; i < n; i++)
683 if (prob[i] >= 0)
685 sprintf(buf, "%4.2f", prob[i]);
686 fprintf(fplog, " %3s", buf[0] == '1' ? "1.0" : buf+1);
688 else
690 fprintf(fplog, " ");
693 fprintf(fplog, "\n");
696 static void print_count(FILE *fplog, const char *leg, int n, int *count)
698 int i;
700 fprintf(fplog, "Repl %2s ", leg);
701 for (i = 1; i < n; i++)
703 fprintf(fplog, " %4d", count[i]);
705 fprintf(fplog, "\n");
708 static real calc_delta(FILE *fplog, gmx_bool bPrint, struct gmx_repl_ex *re, int a, int b, int ap, int bp)
711 real ediff, dpV, delta = 0;
712 real *Epot = re->Epot;
713 real *Vol = re->Vol;
714 real **de = re->de;
715 real *beta = re->beta;
717 /* Two cases; we are permuted and not. In all cases, setting ap = a and bp = b will reduce
718 to the non permuted case */
720 switch (re->type)
722 case ereTEMP:
724 * Okabe et. al. Chem. Phys. Lett. 335 (2001) 435-439
726 ediff = Epot[b] - Epot[a];
727 delta = -(beta[bp] - beta[ap])*ediff;
728 break;
729 case ereLAMBDA:
730 /* two cases: when we are permuted, and not. */
731 /* non-permuted:
732 ediff = E_new - E_old
733 = [H_b(x_a) + H_a(x_b)] - [H_b(x_b) + H_a(x_a)]
734 = [H_b(x_a) - H_a(x_a)] + [H_a(x_b) - H_b(x_b)]
735 = de[b][a] + de[a][b] */
737 /* permuted:
738 ediff = E_new - E_old
739 = [H_bp(x_a) + H_ap(x_b)] - [H_bp(x_b) + H_ap(x_a)]
740 = [H_bp(x_a) - H_ap(x_a)] + [H_ap(x_b) - H_bp(x_b)]
741 = [H_bp(x_a) - H_a(x_a) + H_a(x_a) - H_ap(x_a)] + [H_ap(x_b) - H_b(x_b) + H_b(x_b) - H_bp(x_b)]
742 = [H_bp(x_a) - H_a(x_a)] - [H_ap(x_a) - H_a(x_a)] + [H_ap(x_b) - H_b(x_b)] - H_bp(x_b) - H_b(x_b)]
743 = (de[bp][a] - de[ap][a]) + (de[ap][b] - de[bp][b]) */
744 /* but, in the current code implementation, we flip configurations, not indices . . .
745 So let's examine that.
746 = [H_b(x_ap) - H_a(x_a)] - [H_a(x_ap) - H_a(x_a)] + [H_a(x_bp) - H_b(x_b)] - H_b(x_bp) - H_b(x_b)]
747 = [H_b(x_ap) - H_a(x_ap)] + [H_a(x_bp) - H_b(x_pb)]
748 = (de[b][ap] - de[a][ap]) + (de[a][bp] - de[b][bp]
749 So, if we exchange b<=> bp and a<=> ap, we return to the same result.
750 So the simple solution is to flip the
751 position of perturbed and original indices in the tests.
754 ediff = (de[bp][a] - de[ap][a]) + (de[ap][b] - de[bp][b]);
755 delta = ediff*beta[a]; /* assume all same temperature in this case */
756 break;
757 case ereTL:
758 /* not permuted: */
759 /* delta = reduced E_new - reduced E_old
760 = [beta_b H_b(x_a) + beta_a H_a(x_b)] - [beta_b H_b(x_b) + beta_a H_a(x_a)]
761 = [beta_b H_b(x_a) - beta_a H_a(x_a)] + [beta_a H_a(x_b) - beta_b H_b(x_b)]
762 = [beta_b dH_b(x_a) + beta_b H_a(x_a) - beta_a H_a(x_a)] +
763 [beta_a dH_a(x_b) + beta_a H_b(x_b) - beta_b H_b(x_b)]
764 = [beta_b dH_b(x_a) + [beta_a dH_a(x_b) +
765 beta_b (H_a(x_a) - H_b(x_b)]) - beta_a (H_a(x_a) - H_b(x_b))
766 = beta_b dH_b(x_a) + beta_a dH_a(x_b) - (beta_b - beta_a)(H_b(x_b) - H_a(x_a) */
767 /* delta = beta[b]*de[b][a] + beta[a]*de[a][b] - (beta[b] - beta[a])*(Epot[b] - Epot[a]; */
768 /* permuted (big breath!) */
769 /* delta = reduced E_new - reduced E_old
770 = [beta_bp H_bp(x_a) + beta_ap H_ap(x_b)] - [beta_bp H_bp(x_b) + beta_ap H_ap(x_a)]
771 = [beta_bp H_bp(x_a) - beta_ap H_ap(x_a)] + [beta_ap H_ap(x_b) - beta_bp H_bp(x_b)]
772 = [beta_bp H_bp(x_a) - beta_ap H_ap(x_a)] + [beta_ap H_ap(x_b) - beta_bp H_bp(x_b)]
773 - beta_pb H_a(x_a) + beta_ap H_a(x_a) + beta_pb H_a(x_a) - beta_ap H_a(x_a)
774 - beta_ap H_b(x_b) + beta_bp H_b(x_b) + beta_ap H_b(x_b) - beta_bp H_b(x_b)
775 = [(beta_bp H_bp(x_a) - beta_bp H_a(x_a)) - (beta_ap H_ap(x_a) - beta_ap H_a(x_a))] +
776 [(beta_ap H_ap(x_b) - beta_ap H_b(x_b)) - (beta_bp H_bp(x_b) - beta_bp H_b(x_b))]
777 + beta_pb H_a(x_a) - beta_ap H_a(x_a) + beta_ap H_b(x_b) - beta_bp H_b(x_b)
778 = [beta_bp (H_bp(x_a) - H_a(x_a)) - beta_ap (H_ap(x_a) - H_a(x_a))] +
779 [beta_ap (H_ap(x_b) - H_b(x_b)) - beta_bp (H_bp(x_b) - H_b(x_b))]
780 + beta_pb (H_a(x_a) - H_b(x_b)) - beta_ap (H_a(x_a) - H_b(x_b))
781 = ([beta_bp de[bp][a] - beta_ap de[ap][a]) + beta_ap de[ap][b] - beta_bp de[bp][b])
782 + (beta_pb-beta_ap)(H_a(x_a) - H_b(x_b)) */
783 delta = beta[bp]*(de[bp][a] - de[bp][b]) + beta[ap]*(de[ap][b] - de[ap][a]) - (beta[bp]-beta[ap])*(Epot[b]-Epot[a]);
784 break;
785 default:
786 gmx_incons("Unknown replica exchange quantity");
788 if (bPrint)
790 fprintf(fplog, "Repl %d <-> %d dE_term = %10.3e (kT)\n", a, b, delta);
792 if (re->bNPT)
794 /* revist the calculation for 5.0. Might be some improvements. */
795 dpV = (beta[ap]*re->pres[ap]-beta[bp]*re->pres[bp])*(Vol[b]-Vol[a])/PRESFAC;
796 if (bPrint)
798 fprintf(fplog, " dpV = %10.3e d = %10.3e\n", dpV, delta + dpV);
800 delta += dpV;
802 return delta;
805 static void
806 test_for_replica_exchange(FILE *fplog,
807 const gmx_multisim_t *ms,
808 struct gmx_repl_ex *re,
809 const gmx_enerdata_t *enerd,
810 real vol,
811 gmx_int64_t step,
812 real time)
814 int m, i, j, a, b, ap, bp, i0, i1, tmp;
815 real delta = 0;
816 gmx_bool bPrint, bMultiEx;
817 gmx_bool *bEx = re->bEx;
818 real *prob = re->prob;
819 int *pind = re->destinations; /* permuted index */
820 gmx_bool bEpot = FALSE;
821 gmx_bool bDLambda = FALSE;
822 gmx_bool bVol = FALSE;
823 gmx::ThreeFry2x64<64> rng(re->seed, gmx::RandomDomain::ReplicaExchange);
824 gmx::UniformRealDistribution<real> uniformRealDist;
825 gmx::UniformIntDistribution<int> uniformNreplDist(0, re->nrepl-1);
827 bMultiEx = (re->nex > 1); /* multiple exchanges at each state */
828 fprintf(fplog, "Replica exchange at step %" GMX_PRId64 " time %.5f\n", step, time);
830 if (re->bNPT)
832 for (i = 0; i < re->nrepl; i++)
834 re->Vol[i] = 0;
836 bVol = TRUE;
837 re->Vol[re->repl] = vol;
839 if ((re->type == ereTEMP || re->type == ereTL))
841 for (i = 0; i < re->nrepl; i++)
843 re->Epot[i] = 0;
845 bEpot = TRUE;
846 re->Epot[re->repl] = enerd->term[F_EPOT];
847 /* temperatures of different states*/
848 for (i = 0; i < re->nrepl; i++)
850 re->beta[i] = 1.0/(re->q[ereTEMP][i]*BOLTZ);
853 else
855 for (i = 0; i < re->nrepl; i++)
857 re->beta[i] = 1.0/(re->temp*BOLTZ); /* we have a single temperature */
860 if (re->type == ereLAMBDA || re->type == ereTL)
862 bDLambda = TRUE;
863 /* lambda differences. */
864 /* de[i][j] is the energy of the jth simulation in the ith Hamiltonian
865 minus the energy of the jth simulation in the jth Hamiltonian */
866 for (i = 0; i < re->nrepl; i++)
868 for (j = 0; j < re->nrepl; j++)
870 re->de[i][j] = 0;
873 for (i = 0; i < re->nrepl; i++)
875 re->de[i][re->repl] = (enerd->enerpart_lambda[(int)re->q[ereLAMBDA][i]+1]-enerd->enerpart_lambda[0]);
879 /* now actually do the communication */
880 if (bVol)
882 gmx_sum_sim(re->nrepl, re->Vol, ms);
884 if (bEpot)
886 gmx_sum_sim(re->nrepl, re->Epot, ms);
888 if (bDLambda)
890 for (i = 0; i < re->nrepl; i++)
892 gmx_sum_sim(re->nrepl, re->de[i], ms);
896 /* make a duplicate set of indices for shuffling */
897 for (i = 0; i < re->nrepl; i++)
899 pind[i] = re->ind[i];
902 rng.restart( step, 0 );
904 if (bMultiEx)
906 /* multiple random switch exchange */
907 int nself = 0;
910 for (i = 0; i < re->nex + nself; i++)
912 // For now this is superfluous, but just in case we ever add more
913 // calls in different branches it is safer to always reset the distribution.
914 uniformNreplDist.reset();
916 /* randomly select a pair */
917 /* in theory, could reduce this by identifying only which switches had a nonneglibible
918 probability of occurring (log p > -100) and only operate on those switches */
919 /* find out which state it is from, and what label that state currently has. Likely
920 more work that useful. */
921 i0 = uniformNreplDist(rng);
922 i1 = uniformNreplDist(rng);
923 if (i0 == i1)
925 nself++;
926 continue; /* self-exchange, back up and do it again */
929 a = re->ind[i0]; /* what are the indices of these states? */
930 b = re->ind[i1];
931 ap = pind[i0];
932 bp = pind[i1];
934 bPrint = FALSE; /* too noisy */
935 /* calculate the energy difference */
936 /* if the code changes to flip the STATES, rather than the configurations,
937 use the commented version of the code */
938 /* delta = calc_delta(fplog,bPrint,re,a,b,ap,bp); */
939 delta = calc_delta(fplog, bPrint, re, ap, bp, a, b);
941 /* we actually only use the first space in the prob and bEx array,
942 since there are actually many switches between pairs. */
944 if (delta <= 0)
946 /* accepted */
947 prob[0] = 1;
948 bEx[0] = TRUE;
950 else
952 if (delta > PROBABILITYCUTOFF)
954 prob[0] = 0;
956 else
958 prob[0] = exp(-delta);
960 // roll a number to determine if accepted. For now it is superfluous to
961 // reset, but just in case we ever add more calls in different branches
962 // it is safer to always reset the distribution.
963 uniformRealDist.reset();
964 bEx[0] = uniformRealDist(rng) < prob[0];
966 re->prob_sum[0] += prob[0];
968 if (bEx[0])
970 /* swap the states */
971 tmp = pind[i0];
972 pind[i0] = pind[i1];
973 pind[i1] = tmp;
976 re->nattempt[0]++; /* keep track of total permutation trials here */
977 print_allswitchind(fplog, re->nrepl, pind, re->allswaps, re->tmpswap);
979 else
981 /* standard nearest neighbor replica exchange */
983 m = (step / re->nst) % 2;
984 for (i = 1; i < re->nrepl; i++)
986 a = re->ind[i-1];
987 b = re->ind[i];
989 bPrint = (re->repl == a || re->repl == b);
990 if (i % 2 == m)
992 delta = calc_delta(fplog, bPrint, re, a, b, a, b);
993 if (delta <= 0)
995 /* accepted */
996 prob[i] = 1;
997 bEx[i] = TRUE;
999 else
1001 if (delta > PROBABILITYCUTOFF)
1003 prob[i] = 0;
1005 else
1007 prob[i] = exp(-delta);
1009 // roll a number to determine if accepted. For now it is superfluous to
1010 // reset, but just in case we ever add more calls in different branches
1011 // it is safer to always reset the distribution.
1012 uniformRealDist.reset();
1013 bEx[i] = uniformRealDist(rng) < prob[i];
1015 re->prob_sum[i] += prob[i];
1017 if (bEx[i])
1019 /* swap these two */
1020 tmp = pind[i-1];
1021 pind[i-1] = pind[i];
1022 pind[i] = tmp;
1023 re->nexchange[i]++; /* statistics for back compatibility */
1026 else
1028 prob[i] = -1;
1029 bEx[i] = FALSE;
1032 /* print some statistics */
1033 print_ind(fplog, "ex", re->nrepl, re->ind, bEx);
1034 print_prob(fplog, "pr", re->nrepl, prob);
1035 fprintf(fplog, "\n");
1036 re->nattempt[m]++;
1039 /* record which moves were made and accepted */
1040 for (i = 0; i < re->nrepl; i++)
1042 re->nmoves[re->ind[i]][pind[i]] += 1;
1043 re->nmoves[pind[i]][re->ind[i]] += 1;
1045 fflush(fplog); /* make sure we can see what the last exchange was */
1048 static void
1049 cyclic_decomposition(const int *destinations,
1050 int **cyclic,
1051 gmx_bool *incycle,
1052 const int nrepl,
1053 int *nswap)
1056 int i, j, c, p;
1057 int maxlen = 1;
1058 for (i = 0; i < nrepl; i++)
1060 incycle[i] = FALSE;
1062 for (i = 0; i < nrepl; i++) /* one cycle for each replica */
1064 if (incycle[i])
1066 cyclic[i][0] = -1;
1067 continue;
1069 cyclic[i][0] = i;
1070 incycle[i] = TRUE;
1071 c = 1;
1072 p = i;
1073 for (j = 0; j < nrepl; j++) /* potentially all cycles are part, but we will break first */
1075 p = destinations[p]; /* start permuting */
1076 if (p == i)
1078 cyclic[i][c] = -1;
1079 if (c > maxlen)
1081 maxlen = c;
1083 break; /* we've reached the original element, the cycle is complete, and we marked the end. */
1085 else
1087 cyclic[i][c] = p; /* each permutation gives a new member of the cycle */
1088 incycle[p] = TRUE;
1089 c++;
1093 *nswap = maxlen - 1;
1095 if (debug)
1097 for (i = 0; i < nrepl; i++)
1099 fprintf(debug, "Cycle %d:", i);
1100 for (j = 0; j < nrepl; j++)
1102 if (cyclic[i][j] < 0)
1104 break;
1106 fprintf(debug, "%2d", cyclic[i][j]);
1108 fprintf(debug, "\n");
1110 fflush(debug);
1114 static void
1115 compute_exchange_order(int **cyclic,
1116 int **order,
1117 const int nrepl,
1118 const int maxswap)
1120 int i, j;
1122 for (j = 0; j < maxswap; j++)
1124 for (i = 0; i < nrepl; i++)
1126 if (cyclic[i][j+1] >= 0)
1128 order[cyclic[i][j+1]][j] = cyclic[i][j];
1129 order[cyclic[i][j]][j] = cyclic[i][j+1];
1132 for (i = 0; i < nrepl; i++)
1134 if (order[i][j] < 0)
1136 order[i][j] = i; /* if it's not exchanging, it should stay this round*/
1141 if (debug)
1143 fprintf(debug, "Replica Exchange Order\n");
1144 for (i = 0; i < nrepl; i++)
1146 fprintf(debug, "Replica %d:", i);
1147 for (j = 0; j < maxswap; j++)
1149 if (order[i][j] < 0)
1151 break;
1153 fprintf(debug, "%2d", order[i][j]);
1155 fprintf(debug, "\n");
1157 fflush(debug);
1161 static void
1162 prepare_to_do_exchange(struct gmx_repl_ex *re,
1163 const int replica_id,
1164 int *maxswap,
1165 gmx_bool *bThisReplicaExchanged)
1167 int i, j;
1168 /* Hold the cyclic decomposition of the (multiple) replica
1169 * exchange. */
1170 gmx_bool bAnyReplicaExchanged = FALSE;
1171 *bThisReplicaExchanged = FALSE;
1173 for (i = 0; i < re->nrepl; i++)
1175 if (re->destinations[i] != re->ind[i])
1177 /* only mark as exchanged if the index has been shuffled */
1178 bAnyReplicaExchanged = TRUE;
1179 break;
1182 if (bAnyReplicaExchanged)
1184 /* reinitialize the placeholder arrays */
1185 for (i = 0; i < re->nrepl; i++)
1187 for (j = 0; j < re->nrepl; j++)
1189 re->cyclic[i][j] = -1;
1190 re->order[i][j] = -1;
1194 /* Identify the cyclic decomposition of the permutation (very
1195 * fast if neighbor replica exchange). */
1196 cyclic_decomposition(re->destinations, re->cyclic, re->incycle, re->nrepl, maxswap);
1198 /* Now translate the decomposition into a replica exchange
1199 * order at each step. */
1200 compute_exchange_order(re->cyclic, re->order, re->nrepl, *maxswap);
1202 /* Did this replica do any exchange at any point? */
1203 for (j = 0; j < *maxswap; j++)
1205 if (replica_id != re->order[replica_id][j])
1207 *bThisReplicaExchanged = TRUE;
1208 break;
1214 gmx_bool replica_exchange(FILE *fplog, const t_commrec *cr, struct gmx_repl_ex *re,
1215 t_state *state, const gmx_enerdata_t *enerd,
1216 t_state *state_local, gmx_int64_t step, real time)
1218 int j;
1219 int replica_id = 0;
1220 int exchange_partner;
1221 int maxswap = 0;
1222 /* Number of rounds of exchanges needed to deal with any multiple
1223 * exchanges. */
1224 /* Where each replica ends up after the exchange attempt(s). */
1225 /* The order in which multiple exchanges will occur. */
1226 gmx_bool bThisReplicaExchanged = FALSE;
1228 if (MASTER(cr))
1230 replica_id = re->repl;
1231 test_for_replica_exchange(fplog, cr->ms, re, enerd, det(state_local->box), step, time);
1232 prepare_to_do_exchange(re, replica_id, &maxswap, &bThisReplicaExchanged);
1234 /* Do intra-simulation broadcast so all processors belonging to
1235 * each simulation know whether they need to participate in
1236 * collecting the state. Otherwise, they might as well get on with
1237 * the next thing to do. */
1238 if (DOMAINDECOMP(cr))
1240 #if GMX_MPI
1241 MPI_Bcast(&bThisReplicaExchanged, sizeof(gmx_bool), MPI_BYTE, MASTERRANK(cr),
1242 cr->mpi_comm_mygroup);
1243 #endif
1246 if (bThisReplicaExchanged)
1248 /* Exchange the states */
1249 /* Collect the global state on the master node */
1250 if (DOMAINDECOMP(cr))
1252 dd_collect_state(cr->dd, state_local, state);
1254 else
1256 copy_state_serial(state_local, state);
1259 if (MASTER(cr))
1261 /* There will be only one swap cycle with standard replica
1262 * exchange, but there may be multiple swap cycles if we
1263 * allow multiple swaps. */
1265 for (j = 0; j < maxswap; j++)
1267 exchange_partner = re->order[replica_id][j];
1269 if (exchange_partner != replica_id)
1271 /* Exchange the global states between the master nodes */
1272 if (debug)
1274 fprintf(debug, "Exchanging %d with %d\n", replica_id, exchange_partner);
1276 exchange_state(cr->ms, exchange_partner, state);
1279 /* For temperature-type replica exchange, we need to scale
1280 * the velocities. */
1281 if (re->type == ereTEMP || re->type == ereTL)
1283 scale_velocities(state, sqrt(re->q[ereTEMP][replica_id]/re->q[ereTEMP][re->destinations[replica_id]]));
1288 /* With domain decomposition the global state is distributed later */
1289 if (!DOMAINDECOMP(cr))
1291 /* Copy the global state to the local state data structure */
1292 copy_state_serial(state, state_local);
1296 return bThisReplicaExchanged;
1299 void print_replica_exchange_statistics(FILE *fplog, struct gmx_repl_ex *re)
1301 int i;
1303 fprintf(fplog, "\nReplica exchange statistics\n");
1305 if (re->nex == 0)
1307 fprintf(fplog, "Repl %d attempts, %d odd, %d even\n",
1308 re->nattempt[0]+re->nattempt[1], re->nattempt[1], re->nattempt[0]);
1310 fprintf(fplog, "Repl average probabilities:\n");
1311 for (i = 1; i < re->nrepl; i++)
1313 if (re->nattempt[i%2] == 0)
1315 re->prob[i] = 0;
1317 else
1319 re->prob[i] = re->prob_sum[i]/re->nattempt[i%2];
1322 print_ind(fplog, "", re->nrepl, re->ind, nullptr);
1323 print_prob(fplog, "", re->nrepl, re->prob);
1325 fprintf(fplog, "Repl number of exchanges:\n");
1326 print_ind(fplog, "", re->nrepl, re->ind, nullptr);
1327 print_count(fplog, "", re->nrepl, re->nexchange);
1329 fprintf(fplog, "Repl average number of exchanges:\n");
1330 for (i = 1; i < re->nrepl; i++)
1332 if (re->nattempt[i%2] == 0)
1334 re->prob[i] = 0;
1336 else
1338 re->prob[i] = ((real)re->nexchange[i])/re->nattempt[i%2];
1341 print_ind(fplog, "", re->nrepl, re->ind, nullptr);
1342 print_prob(fplog, "", re->nrepl, re->prob);
1344 fprintf(fplog, "\n");
1346 /* print the transition matrix */
1347 print_transition_matrix(fplog, re->nrepl, re->nmoves, re->nattempt);