1 <title>mdp file format
</title>
2 <P> Follow
<a href=
"mdp_opt.html">this link
</a> for a detailed description of the options
</a>.
</P>
4 <P> Below is a sample mdp file.
5 The ordering of the items is not important, but if you enter the same
6 thing twice, the
<b>last
</b> is used (grompp gives you a note when
7 overriding values). Dashes and underscores on the
8 left hand side are ignored.
</P>
10 <P> The values of the options are reasonable values for a
1 nanosecond
11 MD run of a protein in a box of water.
</P>
26 nstxout-compressed =
250
27 compressed-x-grps = Protein
28 energygrps = Protein SOL
41 compressibility =
4.5e-5
46 constraints = all-bonds
51 With this input
<a href=
"../programs/gmx-grompp.html"><tt>grompp
</tt></a> will produce
52 an
<tt>mdout.mdp
</tt> with all the options and descriptions:
57 ; VARIOUS PREPROCESSING OPTIONS =
63 ; RUN CONTROL PARAMETERS =
65 ; start time and timestep in ps =
69 ; number of steps for center of mass motion removal =
73 ; LANGEVIN DYNAMICS OPTIONS =
74 ; Temperature, friction coefficient (amu/ps) and random seed =
79 ; ENERGY MINIMIZATION OPTIONS =
80 ; Force tolerance and initial step-size =
83 ; Max number of iterations in relax-shells =
85 ; Frequency of steepest descents steps when doing CG =
88 ; OUTPUT CONTROL OPTIONS =
89 ; Output frequency for coords (x), velocities (v) and forces (f) =
93 ; Output frequency for energies to log file and energy file =
96 ; Output frequency and precision for xtc file =
97 nstxout-compressed =
250
98 compressed-x-precision =
1000
99 ; This selects the subset of atoms for the xtc file. You can =
100 ; select multiple groups. By default all atoms will be written. =
101 compressed-x-grps = Protein
102 ; Selection of energy groups =
103 energygrps = Protein SOL
105 ; NEIGHBORSEARCHING PARAMETERS =
106 ; nblist update frequency =
108 ; ns algorithm (simple or grid) =
110 ; Periodic boundary conditions: xyz or none =
115 ; OPTIONS FOR ELECTROSTATICS AND VDW =
116 ; Method for doing electrostatics =
117 coulombtype = cut-off
120 ; Dielectric constant (DC) for cut-off or DC of reaction field =
122 ; Method for doing Van der Waals =
127 ; Apply long range dispersion corrections for Energy and Pressure =
129 ; Spacing for the PME/PPPM FFT grid =
130 fourierspacing =
0.12
131 ; FFT grid size, when a value is
0 fourierspacing will be used =
135 ; EWALD/PME/PPPM parameters =
140 ; OPTIONS FOR WEAK COUPLING ALGORITHMS =
141 ; Temperature coupling =
143 ; Groups to couple separately =
144 tc-grps = Protein SOL
145 ; Time constant (ps) and reference temperature (K) =
148 ; Pressure coupling =
150 Pcoupltype = Isotropic
151 ; Time constant (ps), compressibility (
1/bar) and reference P (bar) =
153 compressibility =
4.5e-5
156 ; SIMULATED ANNEALING CONTROL =
158 ; Time at which temperature should be zero (ps) =
161 ; GENERATE VELOCITIES FOR STARTUP RUN =
166 ; OPTIONS FOR BONDS =
167 constraints = all-bonds
168 ; Type of constraint algorithm =
169 constraint-algorithm = Lincs
170 ; Do not constrain the start configuration =
171 unconstrained-start = no
172 ; Relative tolerance of shake =
174 ; Highest order in the expansion of the constraint coupling matrix =
176 ; Lincs will write a warning to the stderr if in one step a bond =
177 ; rotates over more degrees than =
179 ; Convert harmonic bonds to morse potentials =
182 ; NMR refinement stuff =
183 ; Distance restraints type: No, Simple or Ensemble =
185 ; Force weighting of pairs in one distance restraint: Equal or Conservative =
186 disre-weighting = Equal
187 ; Use sqrt of the time averaged times the instantaneous violation =
191 ; Output frequency for pair distances to energy file =
194 ; Free energy control stuff =
201 ; Non-equilibrium MD stuff =
210 ; Format is number of terms (int) and for all terms an amplitude (real) =
211 ; and a phase angle (real) =
219 ; User defined thingies =