Merge branch 'master' of git://git.gromacs.org/gromacs
[gromacs/adressmacs.git] / include / types / forcerec.h
blobded7e64c26659f6cb41f4da5040a0612e079b4ab
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * VERSION 3.2.0
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
32 * And Hey:
33 * GRoups of Organic Molecules in ACtion for Science
36 #include "ns.h"
37 #include "genborn.h"
38 #include "qmmmrec.h"
39 #include "idef.h"
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
45 /* Abstract type for PME that is defined only in the routine that use them. */
46 typedef struct gmx_pme *gmx_pme_t;
48 typedef struct {
49 real r; /* range of the table */
50 int n; /* n+1 is the number of points */
51 real scale; /* distance between two points */
52 real scale_exp; /* distance for exponential Buckingham table */
53 real *tab; /* the actual tables, per point there are 4 numbers for
54 * Coulomb, dispersion and repulsion (in total 12 numbers)
56 } t_forcetable;
58 typedef struct {
59 t_forcetable tab;
60 /* We duplicate tables for cache optimization purposes */
61 real *coultab; /* Coul only */
62 real *vdwtab; /* Vdw only */
63 /* The actual neighbor lists, short and long range, see enum above
64 * for definition of neighborlist indices.
66 t_nblist nlist_sr[eNL_NR];
67 t_nblist nlist_lr[eNL_NR];
68 } t_nblists;
70 /* macros for the cginfo data in forcerec */
71 /* The maximum cg size in cginfo is 255,
72 * because we only have space for 8 bits in cginfo,
73 * this cg size entry is actually only read with domain decomposition.
74 * But there is a smaller limit due to the t_excl data structure
75 * which is defined in nblist.h.
77 #define SET_CGINFO_GID(cgi,gid) (cgi) = (((cgi) & ~65535) | (gid) )
78 #define GET_CGINFO_GID(cgi) ( (cgi) & 65535)
79 #define SET_CGINFO_EXCL_INTRA(cgi) (cgi) = ((cgi) | (1<<16))
80 #define GET_CGINFO_EXCL_INTRA(cgi) ( (cgi) & (1<<16))
81 #define SET_CGINFO_EXCL_INTER(cgi) (cgi) = ((cgi) | (1<<17))
82 #define GET_CGINFO_EXCL_INTER(cgi) ( (cgi) & (1<<17))
83 #define SET_CGINFO_SOLOPT(cgi,opt) (cgi) = (((cgi) & ~(15<<18)) | ((opt)<<18))
84 #define GET_CGINFO_SOLOPT(cgi) (((cgi)>>18) & 15)
85 /* This bit is only used with bBondComm in the domain decomposition */
86 #define SET_CGINFO_BOND_INTER(cgi) (cgi) = ((cgi) | (1<<22))
87 #define GET_CGINFO_BOND_INTER(cgi) ( (cgi) & (1<<22))
88 #define SET_CGINFO_NATOMS(cgi,opt) (cgi) = (((cgi) & ~(255<<23)) | ((opt)<<23))
89 #define GET_CGINFO_NATOMS(cgi) (((cgi)>>23) & 255)
92 /* Value to be used in mdrun for an infinite cut-off.
93 * Since we need to compare with the cut-off squared,
94 * this value should be slighlty smaller than sqrt(GMX_FLOAT_MAX).
96 #define GMX_CUTOFF_INF 1E+18
99 enum { egCOULSR, egLJSR, egBHAMSR, egCOULLR, egLJLR, egBHAMLR,
100 egCOUL14, egLJ14, egGB, egNR };
102 typedef struct {
103 int nener; /* The number of energy group pairs */
104 real *ener[egNR]; /* Energy terms for each pair of groups */
105 } gmx_grppairener_t;
107 typedef struct {
108 real term[F_NRE]; /* The energies for all different interaction types */
109 gmx_grppairener_t grpp;
110 double dvdl_lin; /* Contributions to dvdl with linear lam-dependence */
111 double dvdl_nonlin; /* Idem, but non-linear dependence */
112 int n_lambda;
113 double *enerpart_lambda; /* Partial energy for lambda and flambda[] */
114 } gmx_enerdata_t;
115 /* The idea is that dvdl terms with linear lambda dependence will be added
116 * automatically to enerpart_lambda. Terms with non-linear lambda dependence
117 * should explicitly determine the energies at foreign lambda points
118 * when n_lambda > 0.
121 typedef struct {
122 int cg_start;
123 int cg_end;
124 int cg_mod;
125 int *cginfo;
126 } cginfo_mb_t;
129 /* ewald table type */
130 typedef struct ewald_tab *ewald_tab_t;
132 typedef struct {
133 /* Domain Decomposition */
134 gmx_bool bDomDec;
136 /* PBC stuff */
137 int ePBC;
138 gmx_bool bMolPBC;
139 int rc_scaling;
140 rvec posres_com;
141 rvec posres_comB;
143 gmx_bool UseOptimizedKernels;
145 /* Use special N*N kernels? */
146 gmx_bool bAllvsAll;
147 /* Private work data */
148 void *AllvsAll_work;
149 void *AllvsAll_workgb;
151 /* Cut-Off stuff.
152 * Infinite cut-off's will be GMX_CUTOFF_INF (unlike in t_inputrec: 0).
154 real rlist,rlistlong;
156 /* Dielectric constant resp. multiplication factor for charges */
157 real zsquare,temp;
158 real epsilon_r,epsilon_rf,epsfac;
160 /* Constants for reaction fields */
161 real kappa,k_rf,c_rf;
163 /* Charge sum and dipole for topology A/B ([0]/[1]) for Ewald corrections */
164 double qsum[2];
165 rvec mu_tot[2];
167 /* Dispersion correction stuff */
168 int eDispCorr;
169 /* The shift of the shift or user potentials */
170 real enershiftsix;
171 real enershifttwelve;
172 /* Integrated differces for energy and virial with cut-off functions */
173 real enerdiffsix;
174 real enerdifftwelve;
175 real virdiffsix;
176 real virdifftwelve;
177 /* Constant for long range dispersion correction (average dispersion)
178 * for topology A/B ([0]/[1]) */
179 real avcsix[2];
180 /* Constant for long range repulsion term. Relative difference of about
181 * 0.1 percent with 0.8 nm cutoffs. But hey, it's cheap anyway...
183 real avctwelve[2];
185 /* Fudge factors */
186 real fudgeQQ;
188 /* Table stuff */
189 gmx_bool bcoultab;
190 gmx_bool bvdwtab;
191 /* The normal tables are in the nblists struct(s) below */
192 t_forcetable tab14; /* for 1-4 interactions only */
194 /* PPPM & Shifting stuff */
195 real rcoulomb_switch,rcoulomb;
196 real *phi;
198 /* VdW stuff */
199 double reppow;
200 real rvdw_switch,rvdw;
201 real bham_b_max;
203 /* Free energy ? */
204 int efep;
205 real sc_alpha;
206 int sc_power;
207 real sc_sigma6_def;
208 real sc_sigma6_min;
209 gmx_bool bSepDVDL;
211 /* NS Stuff */
212 int eeltype;
213 int vdwtype;
214 int cg0,hcg;
215 /* solvent_opt contains the enum for the most common solvent
216 * in the system, which will be optimized.
217 * It can be set to esolNO to disable all water optimization */
218 int solvent_opt;
219 int nWatMol;
220 gmx_bool bGrid;
221 gmx_bool bExcl_IntraCGAll_InterCGNone;
222 cginfo_mb_t *cginfo_mb;
223 int *cginfo;
224 rvec *cg_cm;
225 int cg_nalloc;
226 rvec *shift_vec;
228 /* The neighborlists including tables */
229 int nnblists;
230 int *gid2nblists;
231 t_nblists *nblists;
233 /* The wall tables (if used) */
234 int nwall;
235 t_forcetable **wall_tab;
237 /* This mask array of length nn determines whether or not this bit of the
238 * neighbourlists should be computed. Usually all these are true of course,
239 * but not when shells are used. During minimisation all the forces that
240 * include shells are done, then after minimsation is converged the remaining
241 * forces are computed.
243 /* gmx_bool *bMask; */
245 /* The number of charge groups participating in do_force_lowlevel */
246 int ncg_force;
247 /* The number of atoms participating in do_force_lowlevel */
248 int natoms_force;
249 /* The number of atoms participating in force and constraints */
250 int natoms_force_constr;
251 /* The allocation size of vectors of size natoms_force */
252 int nalloc_force;
254 /* Twin Range stuff, f_twin has size natoms_force */
255 gmx_bool bTwinRange;
256 int nlr;
257 rvec *f_twin;
259 /* Forces that should not enter into the virial summation:
260 * PPPM/PME/Ewald/posres
262 gmx_bool bF_NoVirSum;
263 int f_novirsum_n;
264 int f_novirsum_nalloc;
265 rvec *f_novirsum_alloc;
266 /* Pointer that points to f_novirsum_alloc when pressure is calcaluted,
267 * points to the normal force vectors wen pressure is not requested.
269 rvec *f_novirsum;
271 /* Long-range forces and virial for PPPM/PME/Ewald */
272 gmx_pme_t pmedata;
273 tensor vir_el_recip;
275 /* PME/Ewald stuff */
276 gmx_bool bEwald;
277 real ewaldcoeff;
278 ewald_tab_t ewald_table;
280 /* Virial Stuff */
281 rvec *fshift;
282 rvec vir_diag_posres;
283 dvec vir_wall_z;
285 /* Non bonded Parameter lists */
286 int ntype; /* Number of atom types */
287 gmx_bool bBHAM;
288 real *nbfp;
290 /* Energy group pair flags */
291 int *egp_flags;
293 /* xmdrun flexible constraints */
294 real fc_stepsize;
296 /* Generalized born implicit solvent */
297 gmx_bool bGB;
298 /* Generalized born stuff */
299 real gb_epsilon_solvent;
300 /* Table data for GB */
301 t_forcetable gbtab;
302 /* VdW radius for each atomtype (dim is thus ntype) */
303 real *atype_radius;
304 /* Effective radius (derived from effective volume) for each type */
305 real *atype_vol;
306 /* Implicit solvent - surface tension for each atomtype */
307 real *atype_surftens;
308 /* Implicit solvent - radius for GB calculation */
309 real *atype_gb_radius;
310 /* Implicit solvent - overlap for HCT model */
311 real *atype_S_hct;
312 /* Generalized born interaction data */
313 gmx_genborn_t *born;
315 /* Table scale for GB */
316 real gbtabscale;
317 /* Table range for GB */
318 real gbtabr;
319 /* GB neighborlists (the sr list will contain for each atom all other atoms
320 * (for use in the SA calculation) and the lr list will contain
321 * for each atom all atoms 1-4 or greater (for use in the GB calculation)
323 t_nblist gblist_sr;
324 t_nblist gblist_lr;
325 t_nblist gblist;
327 /* Inverse square root of the Born radii for implicit solvent */
328 real *invsqrta;
329 /* Derivatives of the potential with respect to the Born radii */
330 real *dvda;
331 /* Derivatives of the Born radii with respect to coordinates */
332 real *dadx;
333 real *dadx_rawptr;
334 int nalloc_dadx; /* Allocated size of dadx */
336 /* If > 0 signals Test Particle Insertion,
337 * the value is the number of atoms of the molecule to insert
338 * Only the energy difference due to the addition of the last molecule
339 * should be calculated.
341 gmx_bool n_tpi;
343 /* Neighbor searching stuff */
344 gmx_ns_t ns;
346 /* QMMM stuff */
347 gmx_bool bQMMM;
348 t_QMMMrec *qr;
350 /* QM-MM neighborlists */
351 t_nblist QMMMlist;
353 /* Limit for printing large forces, negative is don't print */
354 real print_force;
356 /* coarse load balancing time measurement */
357 double t_fnbf;
358 double t_wait;
359 int timesteps;
361 /* parameter needed for AdResS simulation */
362 int adress_type;
363 gmx_bool badress_tf_full_box;
364 real adress_const_wf;
365 real adress_ex_width;
366 real adress_hy_width;
367 int adress_icor;
368 int adress_site;
369 rvec adress_refs;
370 int n_adress_tf_grps;
371 int * adress_tf_table_index;
372 int *adress_group_explicit;
373 t_forcetable * atf_tabs;
374 real adress_ex_forcecap;
375 gmx_bool adress_do_hybridpairs;
377 /* User determined parameters, copied from the inputrec */
378 int userint1;
379 int userint2;
380 int userint3;
381 int userint4;
382 real userreal1;
383 real userreal2;
384 real userreal3;
385 real userreal4;
386 } t_forcerec;
388 #define C6(nbfp,ntp,ai,aj) (nbfp)[2*((ntp)*(ai)+(aj))]
389 #define C12(nbfp,ntp,ai,aj) (nbfp)[2*((ntp)*(ai)+(aj))+1]
390 #define BHAMC(nbfp,ntp,ai,aj) (nbfp)[3*((ntp)*(ai)+(aj))]
391 #define BHAMA(nbfp,ntp,ai,aj) (nbfp)[3*((ntp)*(ai)+(aj))+1]
392 #define BHAMB(nbfp,ntp,ai,aj) (nbfp)[3*((ntp)*(ai)+(aj))+2]
394 #ifdef __cplusplus
396 #endif