3 * This source code is part of
7 * GROningen MAchine for Chemical Simulations
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
33 * GRoups of Organic Molecules in ACtion for Science
45 /* Abstract type for PME that is defined only in the routine that use them. */
46 typedef struct gmx_pme
*gmx_pme_t
;
49 real r
; /* range of the table */
50 int n
; /* n+1 is the number of points */
51 real scale
; /* distance between two points */
52 real scale_exp
; /* distance for exponential Buckingham table */
53 real
*tab
; /* the actual tables, per point there are 4 numbers for
54 * Coulomb, dispersion and repulsion (in total 12 numbers)
60 /* We duplicate tables for cache optimization purposes */
61 real
*coultab
; /* Coul only */
62 real
*vdwtab
; /* Vdw only */
63 /* The actual neighbor lists, short and long range, see enum above
64 * for definition of neighborlist indices.
66 t_nblist nlist_sr
[eNL_NR
];
67 t_nblist nlist_lr
[eNL_NR
];
70 /* macros for the cginfo data in forcerec */
71 /* The maximum cg size in cginfo is 255,
72 * because we only have space for 8 bits in cginfo,
73 * this cg size entry is actually only read with domain decomposition.
74 * But there is a smaller limit due to the t_excl data structure
75 * which is defined in nblist.h.
77 #define SET_CGINFO_GID(cgi,gid) (cgi) = (((cgi) & ~65535) | (gid) )
78 #define GET_CGINFO_GID(cgi) ( (cgi) & 65535)
79 #define SET_CGINFO_EXCL_INTRA(cgi) (cgi) = ((cgi) | (1<<16))
80 #define GET_CGINFO_EXCL_INTRA(cgi) ( (cgi) & (1<<16))
81 #define SET_CGINFO_EXCL_INTER(cgi) (cgi) = ((cgi) | (1<<17))
82 #define GET_CGINFO_EXCL_INTER(cgi) ( (cgi) & (1<<17))
83 #define SET_CGINFO_SOLOPT(cgi,opt) (cgi) = (((cgi) & ~(15<<18)) | ((opt)<<18))
84 #define GET_CGINFO_SOLOPT(cgi) (((cgi)>>18) & 15)
85 /* This bit is only used with bBondComm in the domain decomposition */
86 #define SET_CGINFO_BOND_INTER(cgi) (cgi) = ((cgi) | (1<<22))
87 #define GET_CGINFO_BOND_INTER(cgi) ( (cgi) & (1<<22))
88 #define SET_CGINFO_NATOMS(cgi,opt) (cgi) = (((cgi) & ~(255<<23)) | ((opt)<<23))
89 #define GET_CGINFO_NATOMS(cgi) (((cgi)>>23) & 255)
92 /* Value to be used in mdrun for an infinite cut-off.
93 * Since we need to compare with the cut-off squared,
94 * this value should be slighlty smaller than sqrt(GMX_FLOAT_MAX).
96 #define GMX_CUTOFF_INF 1E+18
99 enum { egCOULSR
, egLJSR
, egBHAMSR
, egCOULLR
, egLJLR
, egBHAMLR
,
100 egCOUL14
, egLJ14
, egGB
, egNR
};
103 int nener
; /* The number of energy group pairs */
104 real
*ener
[egNR
]; /* Energy terms for each pair of groups */
108 real term
[F_NRE
]; /* The energies for all different interaction types */
109 gmx_grppairener_t grpp
;
110 double dvdl_lin
; /* Contributions to dvdl with linear lam-dependence */
111 double dvdl_nonlin
; /* Idem, but non-linear dependence */
113 double *enerpart_lambda
; /* Partial energy for lambda and flambda[] */
115 /* The idea is that dvdl terms with linear lambda dependence will be added
116 * automatically to enerpart_lambda. Terms with non-linear lambda dependence
117 * should explicitly determine the energies at foreign lambda points
129 /* ewald table type */
130 typedef struct ewald_tab
*ewald_tab_t
;
133 /* Domain Decomposition */
143 gmx_bool UseOptimizedKernels
;
145 /* Use special N*N kernels? */
147 /* Private work data */
149 void *AllvsAll_workgb
;
152 * Infinite cut-off's will be GMX_CUTOFF_INF (unlike in t_inputrec: 0).
154 real rlist
,rlistlong
;
156 /* Dielectric constant resp. multiplication factor for charges */
158 real epsilon_r
,epsilon_rf
,epsfac
;
160 /* Constants for reaction fields */
161 real kappa
,k_rf
,c_rf
;
163 /* Charge sum and dipole for topology A/B ([0]/[1]) for Ewald corrections */
167 /* Dispersion correction stuff */
169 /* The shift of the shift or user potentials */
171 real enershifttwelve
;
172 /* Integrated differces for energy and virial with cut-off functions */
177 /* Constant for long range dispersion correction (average dispersion)
178 * for topology A/B ([0]/[1]) */
180 /* Constant for long range repulsion term. Relative difference of about
181 * 0.1 percent with 0.8 nm cutoffs. But hey, it's cheap anyway...
191 /* The normal tables are in the nblists struct(s) below */
192 t_forcetable tab14
; /* for 1-4 interactions only */
194 /* PPPM & Shifting stuff */
195 real rcoulomb_switch
,rcoulomb
;
200 real rvdw_switch
,rvdw
;
215 /* solvent_opt contains the enum for the most common solvent
216 * in the system, which will be optimized.
217 * It can be set to esolNO to disable all water optimization */
221 gmx_bool bExcl_IntraCGAll_InterCGNone
;
222 cginfo_mb_t
*cginfo_mb
;
228 /* The neighborlists including tables */
233 /* The wall tables (if used) */
235 t_forcetable
**wall_tab
;
237 /* This mask array of length nn determines whether or not this bit of the
238 * neighbourlists should be computed. Usually all these are true of course,
239 * but not when shells are used. During minimisation all the forces that
240 * include shells are done, then after minimsation is converged the remaining
241 * forces are computed.
243 /* gmx_bool *bMask; */
245 /* The number of charge groups participating in do_force_lowlevel */
247 /* The number of atoms participating in do_force_lowlevel */
249 /* The number of atoms participating in force and constraints */
250 int natoms_force_constr
;
251 /* The allocation size of vectors of size natoms_force */
254 /* Twin Range stuff, f_twin has size natoms_force */
259 /* Forces that should not enter into the virial summation:
260 * PPPM/PME/Ewald/posres
262 gmx_bool bF_NoVirSum
;
264 int f_novirsum_nalloc
;
265 rvec
*f_novirsum_alloc
;
266 /* Pointer that points to f_novirsum_alloc when pressure is calcaluted,
267 * points to the normal force vectors wen pressure is not requested.
271 /* Long-range forces and virial for PPPM/PME/Ewald */
275 /* PME/Ewald stuff */
278 ewald_tab_t ewald_table
;
282 rvec vir_diag_posres
;
285 /* Non bonded Parameter lists */
286 int ntype
; /* Number of atom types */
290 /* Energy group pair flags */
293 /* xmdrun flexible constraints */
296 /* Generalized born implicit solvent */
298 /* Generalized born stuff */
299 real gb_epsilon_solvent
;
300 /* Table data for GB */
302 /* VdW radius for each atomtype (dim is thus ntype) */
304 /* Effective radius (derived from effective volume) for each type */
306 /* Implicit solvent - surface tension for each atomtype */
307 real
*atype_surftens
;
308 /* Implicit solvent - radius for GB calculation */
309 real
*atype_gb_radius
;
310 /* Implicit solvent - overlap for HCT model */
312 /* Generalized born interaction data */
315 /* Table scale for GB */
317 /* Table range for GB */
319 /* GB neighborlists (the sr list will contain for each atom all other atoms
320 * (for use in the SA calculation) and the lr list will contain
321 * for each atom all atoms 1-4 or greater (for use in the GB calculation)
327 /* Inverse square root of the Born radii for implicit solvent */
329 /* Derivatives of the potential with respect to the Born radii */
331 /* Derivatives of the Born radii with respect to coordinates */
334 int nalloc_dadx
; /* Allocated size of dadx */
336 /* If > 0 signals Test Particle Insertion,
337 * the value is the number of atoms of the molecule to insert
338 * Only the energy difference due to the addition of the last molecule
339 * should be calculated.
343 /* Neighbor searching stuff */
350 /* QM-MM neighborlists */
353 /* Limit for printing large forces, negative is don't print */
356 /* coarse load balancing time measurement */
361 /* parameter needed for AdResS simulation */
363 gmx_bool badress_tf_full_box
;
364 real adress_const_wf
;
365 real adress_ex_width
;
366 real adress_hy_width
;
370 int n_adress_tf_grps
;
371 int * adress_tf_table_index
;
372 int *adress_group_explicit
;
373 t_forcetable
* atf_tabs
;
374 real adress_ex_forcecap
;
375 gmx_bool adress_do_hybridpairs
;
377 /* User determined parameters, copied from the inputrec */
388 #define C6(nbfp,ntp,ai,aj) (nbfp)[2*((ntp)*(ai)+(aj))]
389 #define C12(nbfp,ntp,ai,aj) (nbfp)[2*((ntp)*(ai)+(aj))+1]
390 #define BHAMC(nbfp,ntp,ai,aj) (nbfp)[3*((ntp)*(ai)+(aj))]
391 #define BHAMA(nbfp,ntp,ai,aj) (nbfp)[3*((ntp)*(ai)+(aj))+1]
392 #define BHAMB(nbfp,ntp,ai,aj) (nbfp)[3*((ntp)*(ai)+(aj))+2]