Merge branch 'master' of git://git.gromacs.org/gromacs
[gromacs/adressmacs.git] / share / html / online / make_edi.html
blob824115c28fb2a698146662251bfb9dbfda3d0b06
1 <HTML>
2 <HEAD>
3 <TITLE>make_edi</TITLE>
4 <LINK rel=stylesheet href="style.css" type="text/css">
5 <BODY text="#000000" bgcolor="#FFFFFF" link="#0000FF" vlink="#990000" alink="#FF0000">
6 <TABLE WIDTH="98%" NOBORDER >
7 <TR><TD WIDTH=400>
8 <TABLE WIDTH=400 NOBORDER>
9 <TD WIDTH=116>
10 <a href="http://www.gromacs.org/"><img SRC="../images/gmxlogo_small.png"BORDER=0 </a></td>
11 <td ALIGN=LEFT VALIGN=TOP WIDTH=280><br><h2>make_edi</h2><font size=-1><A HREF="../online.html">Main Table of Contents</A></font><br><br></td>
12 </TABLE></TD><TD WIDTH="*" ALIGN=RIGHT VALIGN=BOTTOM><p><B>VERSION 4.5<br>
13 Thu 26 Aug 2010</B></td></tr></TABLE>
14 <HR>
15 <H3>Description</H3>
16 <p>
17 <tt>make_<a href="edi.html">edi</a></tt> generates an essential dynamics (ED) sampling input file to be used with <a href="mdrun.html">mdrun</a>
18 based on eigenvectors of a covariance matrix (<tt><a href="g_covar.html">g_covar</a></tt>) or from a
19 normal modes anaysis (<tt><a href="g_nmeig.html">g_nmeig</a></tt>).
20 ED sampling can be used to manipulate the position along collective coordinates
21 (eigenvectors) of (biological) macromolecules during a simulation. Particularly,
22 it may be used to enhance the sampling efficiency of MD simulations by stimulating
23 the system to explore new regions along these collective coordinates. A number
24 of different algorithms are implemented to drive the system along the eigenvectors
25 (<tt>-linfix</tt>, <tt>-linacc</tt>, <tt>-radfix</tt>, <tt>-radacc</tt>, <tt>-radcon</tt>),
26 to keep the position along a certain (set of) coordinate(s) fixed (<tt>-linfix</tt>),
27 or to only monitor the projections of the positions onto
28 these coordinates (<tt>-mon</tt>).<p>
29 References:<br>
30 A. Amadei, A.B.M. Linssen, B.L. de Groot, D.M.F. van Aalten and
31 H.J.C. Berendsen; An efficient method for sampling the essential subspace
32 of proteins., J. Biomol. Struct. Dyn. 13:615-626 (1996)<br>
33 B.L. de Groot, A. Amadei, D.M.F. van Aalten and H.J.C. Berendsen;
34 Towards an exhaustive sampling of the configurational spaces of the
35 two forms of the peptide hormone guanylin,
36 J. Biomol. Struct. Dyn. 13 : 741-751 (1996)<br>
37 B.L. de Groot, A.Amadei, R.M. Scheek, N.A.J. van Nuland and H.J.C. Berendsen;
38 An extended sampling of the configurational space of HPr from E. coli
39 PROTEINS: Struct. Funct. Gen. 26: 314-322 (1996)
40 <p>You will be prompted for one or more index groups that correspond to the eigenvectors,
41 reference structure, target positions, etc.<p>
42 <tt>-mon</tt>: monitor projections of the coordinates onto selected eigenvectors.<p>
43 <tt>-linfix</tt>: perform fixed-step linear expansion along selected eigenvectors.<p>
44 <tt>-linacc</tt>: perform acceptance linear expansion along selected eigenvectors.
45 (steps in the desired directions will be accepted, others will be rejected).<p>
46 <tt>-radfix</tt>: perform fixed-step radius expansion along selected eigenvectors.<p>
47 <tt>-radacc</tt>: perform acceptance radius expansion along selected eigenvectors.
48 (steps in the desired direction will be accepted, others will be rejected).
49 Note: by default the starting MD structure will be taken as origin of the first
50 expansion cycle for radius expansion. If <tt>-ori</tt> is specified, you will be able
51 to read in a structure file that defines an external origin.<p>
52 <tt>-radcon</tt>: perform acceptance radius contraction along selected eigenvectors
53 towards a target structure specified with <tt>-tar</tt>.<p>
54 NOTE: each eigenvector can be selected only once. <p>
55 <tt>-outfrq</tt>: frequency (in steps) of writing out projections etc. to .<a href="edo.html">edo</a> file<p>
56 <tt>-slope</tt>: minimal slope in acceptance radius expansion. A new expansion
57 cycle will be started if the spontaneous increase of the radius (in nm/step)
58 is less than the value specified.<p>
59 <tt>-maxedsteps</tt>: maximum number of steps per cycle in radius expansion
60 before a new cycle is started.<p>
61 Note on the parallel implementation: since ED sampling is a 'global' thing
62 (collective coordinates etc.), at least on the 'protein' side, ED sampling
63 is not very parallel-friendly from an implentation point of view. Because
64 parallel ED requires much extra communication, expect the performance to be
65 lower as in a free MD simulation, especially on a large number of nodes. <p>
66 All output of <a href="mdrun.html">mdrun</a> (specify with -eo) is written to a .<a href="edo.html">edo</a> file. In the output
67 file, per OUTFRQ step the following information is present: <p>
68 * the step number<br>
69 * the number of the ED dataset. (Note that you can impose multiple ED constraints in
70 a single simulation - on different molecules e.g. - if several .<a href="edi.html">edi</a> files were concatenated
71 first. The constraints are applied in the order they appear in the .<a href="edi.html">edi</a> file.) <br>
72 * RMSD (for atoms involved in fitting prior to calculating the ED constraints)<br>
73 * projections of the positions onto selected eigenvectors<br>
74 <p><p>
75 FLOODING:<p>
76 with -flood you can specify which eigenvectors are used to compute a flooding potential,
77 which will lead to extra forces expelling the structure out of the region described
78 by the covariance matrix. If you switch -restrain the potential is inverted and the structure
79 is kept in that region.
80 <p>
81 The origin is normally the average structure stored in the eigvec.<a href="trr.html">trr</a> file.
82 It can be changed with -ori to an arbitrary position in configurational space.
83 With -tau, -deltaF0 and -Eflnull you control the flooding behaviour.
84 Efl is the flooding strength, it is updated according to the rule of adaptive flooding.
85 Tau is the time constant of adaptive flooding, high tau means slow adaption (i.e. growth).
86 DeltaF0 is the flooding strength you want to reach after tau ps of simulation.
87 To use constant Efl set -tau to zero.
88 <p>
89 -alpha is a fudge parameter to control the width of the flooding potential. A value of 2 has been found
90 to give good results for most standard cases in flooding of proteins.
91 Alpha basically accounts for incomplete sampling, if you sampled further the width of the ensemble would
92 increase, this is mimicked by alpha&gt;1.
93 For restraining alpha&lt;1 can give you smaller width in the restraining potential.
94 <p>
95 RESTART and FLOODING:
96 If you want to restart a crashed flooding simulation please find the values deltaF and Efl in
97 the output file and manually put them into the .<a href="edi.html">edi</a> file under DELTA_F0 and EFL_NULL.
98 <P>
99 <H3>Files</H3>
100 <TABLE BORDER=1 CELLSPACING=0 CELLPADDING=2>
101 <TR><TH>option</TH><TH>filename</TH><TH>type</TH><TH>description</TH></TR>
102 <TR><TD ALIGN=RIGHT> <b><tt>-f</tt></b> </TD><TD ALIGN=RIGHT> <tt><a href="files.html">eigenvec.trr</a></tt> </TD><TD> Input </TD><TD> Full precision trajectory: <a href="trr.html">trr</a> <a href="trj.html">trj</a> cpt </TD></TR>
103 <TR><TD ALIGN=RIGHT> <b><tt>-eig</tt></b> </TD><TD ALIGN=RIGHT> <tt><a href="xvg.html">eigenval.xvg</a></tt> </TD><TD> Input, Opt. </TD><TD> xvgr/xmgr file </TD></TR>
104 <TR><TD ALIGN=RIGHT> <b><tt>-s</tt></b> </TD><TD ALIGN=RIGHT> <tt><a href="files.html"> topol.tpr</a></tt> </TD><TD> Input </TD><TD> Structure+mass(db): <a href="tpr.html">tpr</a> <a href="tpb.html">tpb</a> <a href="tpa.html">tpa</a> <a href="gro.html">gro</a> <a href="g96.html">g96</a> <a href="pdb.html">pdb</a> </TD></TR>
105 <TR><TD ALIGN=RIGHT> <b><tt>-n</tt></b> </TD><TD ALIGN=RIGHT> <tt><a href="ndx.html"> index.ndx</a></tt> </TD><TD> Input, Opt. </TD><TD> Index file </TD></TR>
106 <TR><TD ALIGN=RIGHT> <b><tt>-tar</tt></b> </TD><TD ALIGN=RIGHT> <tt><a href="files.html"> target.gro</a></tt> </TD><TD> Input, Opt. </TD><TD> Structure file: <a href="gro.html">gro</a> <a href="g96.html">g96</a> <a href="pdb.html">pdb</a> <a href="tpr.html">tpr</a> etc. </TD></TR>
107 <TR><TD ALIGN=RIGHT> <b><tt>-ori</tt></b> </TD><TD ALIGN=RIGHT> <tt><a href="files.html"> origin.gro</a></tt> </TD><TD> Input, Opt. </TD><TD> Structure file: <a href="gro.html">gro</a> <a href="g96.html">g96</a> <a href="pdb.html">pdb</a> <a href="tpr.html">tpr</a> etc. </TD></TR>
108 <TR><TD ALIGN=RIGHT> <b><tt>-o</tt></b> </TD><TD ALIGN=RIGHT> <tt><a href="edi.html"> sam.edi</a></tt> </TD><TD> Output </TD><TD> ED sampling input </TD></TR>
109 </TABLE>
111 <H3>Other options</H3>
112 <TABLE BORDER=1 CELLSPACING=0 CELLPADDING=2>
113 <TR><TH>option</TH><TH>type</TH><TH>default</TH><TH>description</TH></TR>
114 <TR><TD ALIGN=RIGHT> <b><tt>-[no]h</tt></b> </TD><TD ALIGN=RIGHT> gmx_bool </TD><TD ALIGN=RIGHT> <tt>no </tt> </TD><TD> Print help info and quit </TD></TD>
115 <TR><TD ALIGN=RIGHT> <b><tt>-[no]version</tt></b> </TD><TD ALIGN=RIGHT> gmx_bool </TD><TD ALIGN=RIGHT> <tt>no </tt> </TD><TD> Print version info and quit </TD></TD>
116 <TR><TD ALIGN=RIGHT> <b><tt>-nice</tt></b> </TD><TD ALIGN=RIGHT> int </TD><TD ALIGN=RIGHT> <tt>0</tt> </TD><TD> Set the nicelevel </TD></TD>
117 <TR><TD ALIGN=RIGHT> <b><tt>-xvg</tt></b> </TD><TD ALIGN=RIGHT> enum </TD><TD ALIGN=RIGHT> <tt>xmgrace</tt> </TD><TD> <a href="xvg.html">xvg</a> plot formatting: <tt>xmgrace</tt>, <tt>xmgr</tt> or <tt>none</tt> </TD></TD>
118 <TR><TD ALIGN=RIGHT> <b><tt>-mon</tt></b> </TD><TD ALIGN=RIGHT> string </TD><TD ALIGN=RIGHT> <tt></tt> </TD><TD> Indices of eigenvectors for projections of x (e.g. 1,2-5,9) or 1-100:10 means 1 11 21 31 ... 91 </TD></TD>
119 <TR><TD ALIGN=RIGHT> <b><tt>-linfix</tt></b> </TD><TD ALIGN=RIGHT> string </TD><TD ALIGN=RIGHT> <tt></tt> </TD><TD> Indices of eigenvectors for fixed increment linear sampling </TD></TD>
120 <TR><TD ALIGN=RIGHT> <b><tt>-linacc</tt></b> </TD><TD ALIGN=RIGHT> string </TD><TD ALIGN=RIGHT> <tt></tt> </TD><TD> Indices of eigenvectors for acceptance linear sampling </TD></TD>
121 <TR><TD ALIGN=RIGHT> <b><tt>-flood</tt></b> </TD><TD ALIGN=RIGHT> string </TD><TD ALIGN=RIGHT> <tt></tt> </TD><TD> Indices of eigenvectors for flooding </TD></TD>
122 <TR><TD ALIGN=RIGHT> <b><tt>-radfix</tt></b> </TD><TD ALIGN=RIGHT> string </TD><TD ALIGN=RIGHT> <tt></tt> </TD><TD> Indices of eigenvectors for fixed increment radius expansion </TD></TD>
123 <TR><TD ALIGN=RIGHT> <b><tt>-radacc</tt></b> </TD><TD ALIGN=RIGHT> string </TD><TD ALIGN=RIGHT> <tt></tt> </TD><TD> Indices of eigenvectors for acceptance radius expansion </TD></TD>
124 <TR><TD ALIGN=RIGHT> <b><tt>-radcon</tt></b> </TD><TD ALIGN=RIGHT> string </TD><TD ALIGN=RIGHT> <tt></tt> </TD><TD> Indices of eigenvectors for acceptance radius contraction </TD></TD>
125 <TR><TD ALIGN=RIGHT> <b><tt>-outfrq</tt></b> </TD><TD ALIGN=RIGHT> int </TD><TD ALIGN=RIGHT> <tt>100</tt> </TD><TD> Freqency (in steps) of writing output in .<a href="edo.html">edo</a> file </TD></TD>
126 <TR><TD ALIGN=RIGHT> <b><tt>-slope</tt></b> </TD><TD ALIGN=RIGHT> real </TD><TD ALIGN=RIGHT> <tt>0 </tt> </TD><TD> Minimal slope in acceptance radius expansion </TD></TD>
127 <TR><TD ALIGN=RIGHT> <b><tt>-maxedsteps</tt></b> </TD><TD ALIGN=RIGHT> int </TD><TD ALIGN=RIGHT> <tt>0</tt> </TD><TD> Max nr of steps per cycle </TD></TD>
128 <TR><TD ALIGN=RIGHT> <b><tt>-deltaF0</tt></b> </TD><TD ALIGN=RIGHT> real </TD><TD ALIGN=RIGHT> <tt>150 </tt> </TD><TD> Target destabilization energy - used for flooding </TD></TD>
129 <TR><TD ALIGN=RIGHT> <b><tt>-deltaF</tt></b> </TD><TD ALIGN=RIGHT> real </TD><TD ALIGN=RIGHT> <tt>0 </tt> </TD><TD> Start deltaF with this parameter - default 0, i.e. nonzero values only needed for restart </TD></TD>
130 <TR><TD ALIGN=RIGHT> <b><tt>-tau</tt></b> </TD><TD ALIGN=RIGHT> real </TD><TD ALIGN=RIGHT> <tt>0.1 </tt> </TD><TD> Coupling constant for adaption of flooding strength according to deltaF0, 0 = infinity i.e. constant flooding strength </TD></TD>
131 <TR><TD ALIGN=RIGHT> <b><tt>-eqsteps</tt></b> </TD><TD ALIGN=RIGHT> int </TD><TD ALIGN=RIGHT> <tt>0</tt> </TD><TD> Number of steps to run without any perturbations </TD></TD>
132 <TR><TD ALIGN=RIGHT> <b><tt>-Eflnull</tt></b> </TD><TD ALIGN=RIGHT> real </TD><TD ALIGN=RIGHT> <tt>0 </tt> </TD><TD> This is the starting value of the flooding strength. The flooding strength is updated according to the adaptive flooding scheme. To use a constant flooding strength use -tau 0. </TD></TD>
133 <TR><TD ALIGN=RIGHT> <b><tt>-T</tt></b> </TD><TD ALIGN=RIGHT> real </TD><TD ALIGN=RIGHT> <tt>300 </tt> </TD><TD> T is temperature, the value is needed if you want to do flooding </TD></TD>
134 <TR><TD ALIGN=RIGHT> <b><tt>-alpha</tt></b> </TD><TD ALIGN=RIGHT> real </TD><TD ALIGN=RIGHT> <tt>1 </tt> </TD><TD> Scale width of gaussian flooding potential with alpha^2 </TD></TD>
135 <TR><TD ALIGN=RIGHT> <b><tt>-linstep</tt></b> </TD><TD ALIGN=RIGHT> string </TD><TD ALIGN=RIGHT> <tt></tt> </TD><TD> Stepsizes (nm/step) for fixed increment linear sampling (put in quotes! "1.0 2.3 5.1 -3.1") </TD></TD>
136 <TR><TD ALIGN=RIGHT> <b><tt>-accdir</tt></b> </TD><TD ALIGN=RIGHT> string </TD><TD ALIGN=RIGHT> <tt></tt> </TD><TD> Directions for acceptance linear sampling - only sign counts! (put in quotes! "-1 +1 -1.1") </TD></TD>
137 <TR><TD ALIGN=RIGHT> <b><tt>-radstep</tt></b> </TD><TD ALIGN=RIGHT> real </TD><TD ALIGN=RIGHT> <tt>0 </tt> </TD><TD> Stepsize (nm/step) for fixed increment radius expansion </TD></TD>
138 <TR><TD ALIGN=RIGHT> <b><tt>-[no]restrain</tt></b> </TD><TD ALIGN=RIGHT> gmx_bool </TD><TD ALIGN=RIGHT> <tt>no </tt> </TD><TD> Use the flooding potential with inverted sign -&gt; effects as quasiharmonic restraining potential </TD></TD>
139 <TR><TD ALIGN=RIGHT> <b><tt>-[no]hessian</tt></b> </TD><TD ALIGN=RIGHT> gmx_bool </TD><TD ALIGN=RIGHT> <tt>no </tt> </TD><TD> The eigenvectors and eigenvalues are from a Hessian matrix </TD></TD>
140 <TR><TD ALIGN=RIGHT> <b><tt>-[no]harmonic</tt></b> </TD><TD ALIGN=RIGHT> gmx_bool </TD><TD ALIGN=RIGHT> <tt>no </tt> </TD><TD> The eigenvalues are interpreted as spring constant </TD></TD>
141 </TABLE>
143 <hr>
144 <div ALIGN=RIGHT>
145 <font size="-1"><a href="http://www.gromacs.org">http://www.gromacs.org</a></font><br>
146 <font size="-1"><a href="mailto:gromacs@gromacs.org">gromacs@gromacs.org</a></font><br>
147 </div>
148 </BODY>