Fix for MSVC linking and release-build OpenMM plugin dir.
[gromacs/qmmm-gamess-us.git] / src / tools / gmx_cluster.c
blob08900f7ea4f2587fc4fb066eef151b75f6022bc8
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * VERSION 3.2.0
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
32 * And Hey:
33 * Green Red Orange Magenta Azure Cyan Skyblue
35 #ifdef HAVE_CONFIG_H
36 #include <config.h>
37 #endif
38 #include <math.h>
39 #include <string.h>
40 #include <ctype.h>
41 #include "macros.h"
42 #include "smalloc.h"
43 #include "typedefs.h"
44 #include "copyrite.h"
45 #include "statutil.h"
46 #include "tpxio.h"
47 #include "string2.h"
48 #include "vec.h"
49 #include "macros.h"
50 #include "index.h"
51 #include "random.h"
52 #include "pbc.h"
53 #include "xvgr.h"
54 #include "futil.h"
55 #include "matio.h"
56 #include "eigensolver.h"
57 #include "cmat.h"
58 #include "do_fit.h"
59 #include "trnio.h"
60 #include "viewit.h"
61 #include "gmx_ana.h"
63 /* macro's to print to two file pointers at once (i.e. stderr and log) */
64 #define lo_ffprintf(fp1,fp2,buf) \
65 fprintf(fp1,"%s",buf);\
66 fprintf(fp2,"%s",buf);
67 /* just print a prepared buffer to fp1 and fp2 */
68 #define ffprintf(fp1,fp2,buf) { lo_ffprintf(fp1,fp2,buf) }
69 /* prepare buffer with one argument, then print to fp1 and fp2 */
70 #define ffprintf1(fp1,fp2,buf,fmt,arg) {\
71 sprintf(buf,fmt,arg);\
72 lo_ffprintf(fp1,fp2,buf)\
74 /* prepare buffer with two arguments, then print to fp1 and fp2 */
75 #define ffprintf2(fp1,fp2,buf,fmt,arg1,arg2) {\
76 sprintf(buf,fmt,arg1,arg2);\
77 lo_ffprintf(fp1,fp2,buf)\
80 typedef struct {
81 int ncl;
82 int *cl;
83 } t_clusters;
85 typedef struct {
86 int nr;
87 int *nb;
88 } t_nnb;
90 void pr_energy(FILE *fp,real e)
92 fprintf(fp,"Energy: %8.4f\n",e);
95 void cp_index(int nn,int from[],int to[])
97 int i;
99 for(i=0; (i<nn); i++)
100 to[i]=from[i];
103 void mc_optimize(FILE *log,t_mat *m,int maxiter,int *seed,real kT)
105 real e[2],ei,ej,efac;
106 int *low_index;
107 int cur=0;
108 #define next (1-cur)
109 int i,isw,jsw,iisw,jjsw,nn;
111 fprintf(stderr,"\nDoing Monte Carlo clustering\n");
112 nn = m->nn;
113 snew(low_index,nn);
114 cp_index(nn,m->m_ind,low_index);
115 if (getenv("TESTMC")) {
116 e[cur] = mat_energy(m);
117 pr_energy(log,e[cur]);
118 fprintf(log,"Doing 1000 random swaps\n");
119 for(i=0; (i<1000); i++) {
120 do {
121 isw = nn*rando(seed);
122 jsw = nn*rando(seed);
123 } while ((isw == jsw) || (isw >= nn) || (jsw >= nn));
124 iisw = m->m_ind[isw];
125 jjsw = m->m_ind[jsw];
126 m->m_ind[isw] = jjsw;
127 m->m_ind[jsw] = iisw;
130 e[cur] = mat_energy(m);
131 pr_energy(log,e[cur]);
132 for(i=0; (i<maxiter); i++) {
133 do {
134 isw = nn*rando(seed);
135 jsw = nn*rando(seed);
136 } while ((isw == jsw) || (isw >= nn) || (jsw >= nn));
138 iisw = m->m_ind[isw];
139 jjsw = m->m_ind[jsw];
140 ei = row_energy(nn,iisw,m->mat[jsw]);
141 ej = row_energy(nn,jjsw,m->mat[isw]);
143 e[next] = e[cur] + (ei+ej-EROW(m,isw)-EROW(m,jsw))/nn;
145 efac = kT ? exp((e[next]-e[cur])/kT) : -1;
146 if ((e[next] > e[cur]) || (efac > rando(seed))) {
148 if (e[next] > e[cur])
149 cp_index(nn,m->m_ind,low_index);
150 else
151 fprintf(log,"Taking uphill step\n");
153 /* Now swapping rows */
154 m->m_ind[isw] = jjsw;
155 m->m_ind[jsw] = iisw;
156 EROW(m,isw) = ei;
157 EROW(m,jsw) = ej;
158 cur = next;
159 fprintf(log,"Iter: %d Swapped %4d and %4d (now %g)",
160 i,isw,jsw,mat_energy(m));
161 pr_energy(log,e[cur]);
164 /* Now restore the highest energy index */
165 cp_index(nn,low_index,m->m_ind);
168 static void calc_dist(int nind,rvec x[],real **d)
170 int i,j;
171 real *xi;
172 rvec dx;
174 for(i=0; (i<nind-1); i++) {
175 xi=x[i];
176 for(j=i+1; (j<nind); j++) {
177 /* Should use pbc_dx when analysing multiple molecueles,
178 * but the box is not stored for every frame.
180 rvec_sub(xi,x[j],dx);
181 d[i][j]=norm(dx);
186 static real rms_dist(int isize,real **d,real **d_r)
188 int i,j;
189 real r,r2;
191 r2=0.0;
192 for(i=0; (i<isize-1); i++)
193 for(j=i+1; (j<isize); j++) {
194 r=d[i][j]-d_r[i][j];
195 r2+=r*r;
197 r2/=(isize*(isize-1))/2;
199 return sqrt(r2);
202 static int rms_dist_comp(const void *a,const void *b)
204 t_dist *da,*db;
206 da = (t_dist *)a;
207 db = (t_dist *)b;
209 if (da->dist - db->dist < 0)
210 return -1;
211 else if (da->dist - db->dist > 0)
212 return 1;
213 return 0;
216 static int clust_id_comp(const void *a,const void *b)
218 t_clustid *da,*db;
220 da = (t_clustid *)a;
221 db = (t_clustid *)b;
223 return da->clust - db->clust;
226 static int nrnb_comp(const void *a, const void *b)
228 t_nnb *da, *db;
230 da = (t_nnb *)a;
231 db = (t_nnb *)b;
233 /* return the b-a, we want highest first */
234 return db->nr - da->nr;
237 void gather(t_mat *m,real cutoff,t_clusters *clust)
239 t_clustid *c;
240 t_dist *d;
241 int i,j,k,nn,cid,n1,diff;
242 bool bChange;
244 /* First we sort the entries in the RMSD matrix */
245 n1 = m->nn;
246 nn = ((n1-1)*n1)/2;
247 snew(d,nn);
248 for(i=k=0; (i<n1); i++)
249 for(j=i+1; (j<n1); j++,k++) {
250 d[k].i = i;
251 d[k].j = j;
252 d[k].dist = m->mat[i][j];
254 if (k != nn)
255 gmx_incons("gather algortihm");
256 qsort(d,nn,sizeof(d[0]),rms_dist_comp);
258 /* Now we make a cluster index for all of the conformations */
259 c = new_clustid(n1);
261 /* Now we check the closest structures, and equalize their cluster numbers */
262 fprintf(stderr,"Linking structures ");
263 do {
264 fprintf(stderr,"*");
265 bChange=FALSE;
266 for(k=0; (k<nn) && (d[k].dist < cutoff); k++) {
267 diff = c[d[k].j].clust - c[d[k].i].clust;
268 if (diff) {
269 bChange = TRUE;
270 if (diff > 0)
271 c[d[k].j].clust = c[d[k].i].clust;
272 else
273 c[d[k].i].clust = c[d[k].j].clust;
276 } while (bChange);
277 fprintf(stderr,"\nSorting and renumbering clusters\n");
278 /* Sort on cluster number */
279 qsort(c,n1,sizeof(c[0]),clust_id_comp);
281 /* Renumber clusters */
282 cid = 1;
283 for(k=1; k<n1; k++) {
284 if (c[k].clust != c[k-1].clust) {
285 c[k-1].clust = cid;
286 cid ++;
287 } else
288 c[k-1].clust = cid;
290 c[k-1].clust = cid;
291 if (debug)
292 for(k=0; (k<n1); k++)
293 fprintf(debug,"Cluster index for conformation %d: %d\n",
294 c[k].conf,c[k].clust);
295 clust->ncl = cid;
296 for(k=0; k<n1; k++)
297 clust->cl[c[k].conf] = c[k].clust;
299 sfree(c);
300 sfree(d);
303 bool jp_same(int **nnb,int i,int j,int P)
305 bool bIn;
306 int k,ii,jj,pp;
308 bIn = FALSE;
309 for(k=0; nnb[i][k]>=0; k++)
310 bIn = bIn || (nnb[i][k] == j);
311 if (!bIn)
312 return FALSE;
314 bIn = FALSE;
315 for(k=0; nnb[j][k]>=0; k++)
316 bIn = bIn || (nnb[j][k] == i);
317 if (!bIn)
318 return FALSE;
320 pp=0;
321 for(ii=0; nnb[i][ii]>=0; ii++)
322 for(jj=0; nnb[j][jj]>=0; jj++)
323 if ((nnb[i][ii] == nnb[j][jj]) && (nnb[i][ii] != -1))
324 pp++;
326 return (pp >= P);
329 static void jarvis_patrick(int n1,real **mat,int M,int P,
330 real rmsdcut,t_clusters *clust)
332 t_dist *row;
333 t_clustid *c;
334 int **nnb;
335 int i,j,k,cid,diff,max;
336 bool bChange;
337 real **mcpy=NULL;
339 if (rmsdcut < 0)
340 rmsdcut = 10000;
342 /* First we sort the entries in the RMSD matrix row by row.
343 * This gives us the nearest neighbor list.
345 snew(nnb,n1);
346 snew(row,n1);
347 for(i=0; (i<n1); i++) {
348 for(j=0; (j<n1); j++) {
349 row[j].j = j;
350 row[j].dist = mat[i][j];
352 qsort(row,n1,sizeof(row[0]),rms_dist_comp);
353 if (M>0) {
354 /* Put the M nearest neighbors in the list */
355 snew(nnb[i],M+1);
356 for(j=k=0; (k<M) && (j<n1) && (mat[i][row[j].j] < rmsdcut); j++)
357 if (row[j].j != i) {
358 nnb[i][k] = row[j].j;
359 k++;
361 nnb[i][k] = -1;
362 } else {
363 /* Put all neighbors nearer than rmsdcut in the list */
364 max=0;
365 k=0;
366 for(j=0; (j<n1) && (mat[i][row[j].j] < rmsdcut); j++)
367 if (row[j].j != i) {
368 if (k >= max) {
369 max += 10;
370 srenew(nnb[i],max);
372 nnb[i][k] = row[j].j;
373 k++;
375 if (k == max)
376 srenew(nnb[i],max+1);
377 nnb[i][k] = -1;
380 sfree(row);
381 if (debug) {
382 fprintf(debug,"Nearest neighborlist. M = %d, P = %d\n",M,P);
383 for(i=0; (i<n1); i++) {
384 fprintf(debug,"i:%5d nbs:",i);
385 for(j=0; nnb[i][j]>=0; j++)
386 fprintf(debug,"%5d[%5.3f]",nnb[i][j],mat[i][nnb[i][j]]);
387 fprintf(debug,"\n");
391 c = new_clustid(n1);
392 fprintf(stderr,"Linking structures ");
393 /* Use mcpy for temporary storage of booleans */
394 mcpy = mk_matrix(n1,n1,FALSE);
395 for(i=0; i<n1; i++)
396 for(j=i+1; j<n1; j++)
397 mcpy[i][j] = jp_same(nnb,i,j,P);
398 do {
399 fprintf(stderr,"*");
400 bChange=FALSE;
401 for(i=0; i<n1; i++) {
402 for(j=i+1; j<n1; j++)
403 if (mcpy[i][j]) {
404 diff = c[j].clust - c[i].clust;
405 if (diff) {
406 bChange = TRUE;
407 if (diff > 0)
408 c[j].clust = c[i].clust;
409 else
410 c[i].clust = c[j].clust;
414 } while (bChange);
416 fprintf(stderr,"\nSorting and renumbering clusters\n");
417 /* Sort on cluster number */
418 qsort(c,n1,sizeof(c[0]),clust_id_comp);
420 /* Renumber clusters */
421 cid = 1;
422 for(k=1; k<n1; k++) {
423 if (c[k].clust != c[k-1].clust) {
424 c[k-1].clust = cid;
425 cid ++;
426 } else
427 c[k-1].clust = cid;
429 c[k-1].clust = cid;
430 clust->ncl = cid;
431 for(k=0; k<n1; k++)
432 clust->cl[c[k].conf] = c[k].clust;
433 if (debug)
434 for(k=0; (k<n1); k++)
435 fprintf(debug,"Cluster index for conformation %d: %d\n",
436 c[k].conf,c[k].clust);
438 /* Again, I don't see the point in this... (AF) */
439 /* for(i=0; (i<n1); i++) { */
440 /* for(j=0; (j<n1); j++) */
441 /* mcpy[c[i].conf][c[j].conf] = mat[i][j]; */
442 /* } */
443 /* for(i=0; (i<n1); i++) { */
444 /* for(j=0; (j<n1); j++) */
445 /* mat[i][j] = mcpy[i][j]; */
446 /* } */
447 done_matrix(n1,&mcpy);
449 sfree(c);
450 for(i=0; (i<n1); i++)
451 sfree(nnb[i]);
452 sfree(nnb);
455 static void dump_nnb (FILE *fp, const char *title, int n1, t_nnb *nnb)
457 int i,j;
459 /* dump neighbor list */
460 fprintf(fp,"%s",title);
461 for(i=0; (i<n1); i++) {
462 fprintf(fp,"i:%5d #:%5d nbs:",i,nnb[i].nr);
463 for(j=0; j<nnb[i].nr; j++)
464 fprintf(fp,"%5d",nnb[i].nb[j]);
465 fprintf(fp,"\n");
469 static void gromos(int n1, real **mat, real rmsdcut, t_clusters *clust)
471 t_dist *row;
472 t_nnb *nnb;
473 int i,j,k,j1,max;
475 /* Put all neighbors nearer than rmsdcut in the list */
476 fprintf(stderr,"Making list of neighbors within cutoff ");
477 snew(nnb,n1);
478 snew(row,n1);
479 for(i=0; (i<n1); i++) {
480 max=0;
481 k=0;
482 /* put all neighbors within cut-off in list */
483 for(j=0; j<n1; j++)
484 if (mat[i][j] < rmsdcut) {
485 if (k >= max) {
486 max += 10;
487 srenew(nnb[i].nb,max);
489 nnb[i].nb[k] = j;
490 k++;
492 /* store nr of neighbors, we'll need that */
493 nnb[i].nr = k;
494 if (i%(1+n1/100)==0) fprintf(stderr,"%3d%%\b\b\b\b",(i*100+1)/n1);
496 fprintf(stderr,"%3d%%\n",100);
497 sfree(row);
499 /* sort neighbor list on number of neighbors, largest first */
500 qsort(nnb,n1,sizeof(nnb[0]),nrnb_comp);
502 if (debug) dump_nnb(debug, "Nearest neighborlist after sort.\n", n1, nnb);
504 /* turn first structure with all its neighbors (largest) into cluster
505 remove them from pool of structures and repeat for all remaining */
506 fprintf(stderr,"Finding clusters %4d", 0);
507 /* cluster id's start at 1: */
508 k=1;
509 while(nnb[0].nr) {
510 /* set cluster id (k) for first item in neighborlist */
511 for (j=0; j<nnb[0].nr; j++)
512 clust->cl[nnb[0].nb[j]] = k;
513 /* mark as done */
514 nnb[0].nr=0;
515 sfree(nnb[0].nb);
517 /* adjust number of neighbors for others, taking removals into account: */
518 for(i=1; i<n1 && nnb[i].nr; i++) {
519 j1=0;
520 for(j=0; j<nnb[i].nr; j++)
521 /* if this neighbor wasn't removed */
522 if ( clust->cl[nnb[i].nb[j]] == 0 ) {
523 /* shift the rest (j1<=j) */
524 nnb[i].nb[j1]=nnb[i].nb[j];
525 /* next */
526 j1++;
528 /* now j1 is the new number of neighbors */
529 nnb[i].nr=j1;
531 /* sort again on nnb[].nr, because we have new # neighbors: */
532 /* but we only need to sort upto i, i.e. when nnb[].nr>0 */
533 qsort(nnb,i,sizeof(nnb[0]),nrnb_comp);
535 fprintf(stderr,"\b\b\b\b%4d",k);
536 /* new cluster id */
537 k++;
539 fprintf(stderr,"\n");
540 sfree(nnb);
541 if (debug) {
542 fprintf(debug,"Clusters (%d):\n", k);
543 for(i=0; i<n1; i++)
544 fprintf(debug," %3d", clust->cl[i]);
545 fprintf(debug,"\n");
548 clust->ncl=k-1;
551 rvec **read_whole_trj(const char *fn,int isize,atom_id index[],int skip,
552 int *nframe, real **time,const output_env_t oenv)
554 rvec **xx,*x;
555 matrix box;
556 real t;
557 int i,i0,j,max_nf;
558 int status,natom;
560 max_nf = 0;
561 xx = NULL;
562 *time = NULL;
563 natom = read_first_x(oenv,&status,fn,&t,&x,box);
564 i = 0;
565 i0 = 0;
566 do {
567 if (i0 >= max_nf) {
568 max_nf += 10;
569 srenew(xx,max_nf);
570 srenew(*time,max_nf);
572 if ((i % skip) == 0) {
573 snew(xx[i0],isize);
574 /* Store only the interesting atoms */
575 for(j=0; (j<isize); j++)
576 copy_rvec(x[index[j]],xx[i0][j]);
577 (*time)[i0] = t;
578 i0 ++;
580 i++;
581 } while (read_next_x(oenv,status,&t,natom,x,box));
582 fprintf(stderr,"Allocated %lu bytes for frames\n",
583 (unsigned long) (max_nf*isize*sizeof(**xx)));
584 fprintf(stderr,"Read %d frames from trajectory %s\n",i0,fn);
585 *nframe = i0;
586 sfree(x);
588 return xx;
591 static int plot_clusters(int nf, real **mat, t_clusters *clust,
592 int nlevels, int minstruct)
594 int i,j,ncluster,ci;
595 int *cl_id,*nstruct,*strind;
597 snew(cl_id,nf);
598 snew(nstruct,nf);
599 snew(strind,nf);
600 for(i=0; i<nf; i++) {
601 strind[i] = 0;
602 cl_id[i] = clust->cl[i];
603 nstruct[cl_id[i]]++;
605 ncluster = 0;
606 for(i=0; i<nf; i++) {
607 if (nstruct[i] >= minstruct) {
608 ncluster++;
609 for(j=0; (j<nf); j++)
610 if (cl_id[j] == i)
611 strind[j] = ncluster;
614 ncluster++;
615 fprintf(stderr,"There are %d clusters with at least %d conformations\n",
616 ncluster,minstruct);
618 for(i=0; (i<nf); i++) {
619 ci = cl_id[i];
620 for(j=0; j<i; j++)
621 if ((ci == cl_id[j]) && (nstruct[ci] >= minstruct)) {
622 /* color different clusters with different colors, as long as
623 we don't run out of colors */
624 mat[i][j] = strind[i];
626 else
627 mat[i][j] = 0;
629 sfree(strind);
630 sfree(nstruct);
631 sfree(cl_id);
633 return ncluster;
636 static void mark_clusters(int nf, real **mat, real val, t_clusters *clust)
638 int i,j,v;
640 for(i=0; i<nf; i++)
641 for(j=0; j<i; j++)
642 if (clust->cl[i] == clust->cl[j])
643 mat[i][j] = val;
644 else
645 mat[i][j] = 0;
648 static char *parse_filename(const char *fn, int maxnr)
650 int i;
651 char *fnout;
652 const char *ext;
653 char buf[STRLEN];
655 if (strchr(fn,'%'))
656 gmx_fatal(FARGS,"will not number filename %s containing '%c'",fn,'%');
657 /* number of digits needed in numbering */
658 i = (int)(log(maxnr)/log(10)) + 1;
659 /* split fn and ext */
660 ext = strrchr(fn, '.');
661 if (!ext)
662 gmx_fatal(FARGS,"cannot separate extension in filename %s",fn);
663 ext++;
664 /* insert e.g. '%03d' between fn and ext */
665 sprintf(buf,"%s%%0%dd.%s",fn,i,ext);
666 snew(fnout,strlen(buf)+1);
667 strcpy(fnout, buf);
669 return fnout;
672 static void ana_trans(t_clusters *clust, int nf,
673 const char *transfn, const char *ntransfn, FILE *log,
674 t_rgb rlo,t_rgb rhi,const output_env_t oenv)
676 FILE *fp;
677 real **trans,*axis;
678 int *ntrans;
679 int i,ntranst,maxtrans;
680 char buf[STRLEN];
682 snew(ntrans,clust->ncl);
683 snew(trans,clust->ncl);
684 snew(axis,clust->ncl);
685 for(i=0; i<clust->ncl; i++) {
686 axis[i]=i+1;
687 snew(trans[i],clust->ncl);
689 ntranst=0;
690 maxtrans=0;
691 for(i=1; i<nf; i++)
692 if(clust->cl[i] != clust->cl[i-1]) {
693 ntranst++;
694 ntrans[clust->cl[i-1]-1]++;
695 ntrans[clust->cl[i]-1]++;
696 trans[clust->cl[i-1]-1][clust->cl[i]-1]++;
697 maxtrans = max(maxtrans, trans[clust->cl[i]-1][clust->cl[i-1]-1]);
699 ffprintf2(stderr,log,buf,"Counted %d transitions in total, "
700 "max %d between two specific clusters\n",ntranst,maxtrans);
701 if (transfn) {
702 fp=ffopen(transfn,"w");
703 i = min(maxtrans+1, 80);
704 write_xpm(fp,0,"Cluster Transitions","# transitions",
705 "from cluster","to cluster",
706 clust->ncl, clust->ncl, axis, axis, trans,
707 0, maxtrans, rlo, rhi, &i);
708 ffclose(fp);
710 if (ntransfn) {
711 fp=xvgropen(ntransfn,"Cluster Transitions","Cluster #","# transitions",
712 oenv);
713 for(i=0; i<clust->ncl; i++)
714 fprintf(fp,"%5d %5d\n",i+1,ntrans[i]);
715 ffclose(fp);
717 sfree(ntrans);
718 for(i=0; i<clust->ncl; i++)
719 sfree(trans[i]);
720 sfree(trans);
721 sfree(axis);
724 static void analyze_clusters(int nf, t_clusters *clust, real **rmsd,
725 int natom, t_atoms *atoms, rvec *xtps,
726 real *mass, rvec **xx, real *time,
727 int ifsize, atom_id *fitidx,
728 int iosize, atom_id *outidx,
729 const char *trxfn, const char *sizefn,
730 const char *transfn, const char *ntransfn,
731 const char *clustidfn, bool bAverage,
732 int write_ncl, int write_nst, real rmsmin,
733 bool bFit, FILE *log,t_rgb rlo,t_rgb rhi,
734 const output_env_t oenv)
736 FILE *fp=NULL;
737 char buf[STRLEN],buf1[40],buf2[40],buf3[40],*trxsfn;
738 int trxout=0,trxsout=0;
739 int i,i1,cl,nstr,*structure,first=0,midstr;
740 bool *bWrite=NULL;
741 real r,clrmsd,midrmsd;
742 rvec *xav=NULL;
743 matrix zerobox;
745 clear_mat(zerobox);
747 ffprintf1(stderr,log,buf,"\nFound %d clusters\n\n",clust->ncl);
748 trxsfn=NULL;
749 if (trxfn) {
750 /* do we write all structures? */
751 if (write_ncl) {
752 trxsfn = parse_filename(trxfn, max(write_ncl,clust->ncl));
753 snew(bWrite,nf);
755 ffprintf2(stderr,log,buf,"Writing %s structure for each cluster to %s\n",
756 bAverage ? "average" : "middle", trxfn);
757 if (write_ncl) {
758 /* find out what we want to tell the user:
759 Writing [all structures|structures with rmsd > %g] for
760 {all|first %d} clusters {with more than %d structures} to %s */
761 if (rmsmin>0.0)
762 sprintf(buf1,"structures with rmsd > %g",rmsmin);
763 else
764 sprintf(buf1,"all structures");
765 buf2[0]=buf3[0]='\0';
766 if (write_ncl>=clust->ncl) {
767 if (write_nst==0)
768 sprintf(buf2,"all ");
769 } else
770 sprintf(buf2,"the first %d ",write_ncl);
771 if (write_nst)
772 sprintf(buf3," with more than %d structures",write_nst);
773 sprintf(buf,"Writing %s for %sclusters%s to %s\n",buf1,buf2,buf3,trxsfn);
774 ffprintf(stderr,log,buf);
777 /* Prepare a reference structure for the orientation of the clusters */
778 if (bFit)
779 reset_x(ifsize,fitidx,natom,NULL,xtps,mass);
780 trxout = open_trx(trxfn,"w");
781 /* Calculate the average structure in each cluster, *
782 * all structures are fitted to the first struture of the cluster */
783 snew(xav,natom);
786 if (transfn || ntransfn)
787 ana_trans(clust, nf, transfn, ntransfn, log,rlo,rhi,oenv);
789 if (clustidfn) {
790 fp=xvgropen(clustidfn,"Clusters",output_env_get_xvgr_tlabel(oenv),"Cluster #",oenv);
791 fprintf(fp,"@ s0 symbol 2\n");
792 fprintf(fp,"@ s0 symbol size 0.2\n");
793 fprintf(fp,"@ s0 linestyle 0\n");
794 for(i=0; i<nf; i++)
795 fprintf(fp,"%8g %8d\n",time[i],clust->cl[i]);
796 ffclose(fp);
798 if (sizefn) {
799 fp=xvgropen(sizefn,"Cluster Sizes","Cluster #","# Structures",oenv);
800 fprintf(fp,"@g%d type %s\n",0,"bar");
802 snew(structure,nf);
803 fprintf(log,"\n%3s | %3s %4s | %6s %4s | cluster members\n",
804 "cl.","#st","rmsd","middle","rmsd");
805 for(cl=1; cl<=clust->ncl; cl++) {
806 /* prepare structures (fit, middle, average) */
807 if (xav)
808 for(i=0; i<natom;i++)
809 clear_rvec(xav[i]);
810 nstr=0;
811 for(i1=0; i1<nf; i1++)
812 if (clust->cl[i1] == cl) {
813 structure[nstr] = i1;
814 nstr++;
815 if (trxfn && (bAverage || write_ncl) ) {
816 if (bFit)
817 reset_x(ifsize,fitidx,natom,NULL,xx[i1],mass);
818 if (nstr == 1)
819 first = i1;
820 else if (bFit)
821 do_fit(natom,mass,xx[first],xx[i1]);
822 if (xav)
823 for(i=0; i<natom; i++)
824 rvec_inc(xav[i],xx[i1][i]);
827 if (sizefn)
828 fprintf(fp,"%8d %8d\n",cl,nstr);
829 clrmsd = 0;
830 midstr = 0;
831 midrmsd = 10000;
832 for(i1=0; i1<nstr; i1++) {
833 r = 0;
834 if (nstr > 1) {
835 for(i=0; i<nstr; i++)
836 if (i < i1)
837 r += rmsd[structure[i]][structure[i1]];
838 else
839 r += rmsd[structure[i1]][structure[i]];
840 r /= (nstr - 1);
842 if ( r < midrmsd ) {
843 midstr = structure[i1];
844 midrmsd = r;
846 clrmsd += r;
848 clrmsd /= nstr;
850 /* dump cluster info to logfile */
851 if (nstr > 1) {
852 sprintf(buf1,"%6.3f",clrmsd);
853 if (buf1[0] == '0')
854 buf1[0] = ' ';
855 sprintf(buf2,"%5.3f",midrmsd);
856 if (buf2[0] == '0')
857 buf2[0] = ' ';
858 } else {
859 sprintf(buf1,"%5s","");
860 sprintf(buf2,"%5s","");
862 fprintf(log,"%3d | %3d %s | %6g%s |",cl,nstr,buf1,time[midstr],buf2);
863 for(i=0; i<nstr; i++) {
864 if ((i % 7 == 0) && i)
865 sprintf(buf,"\n%3s | %3s %4s | %6s %4s |","","","","","");
866 else
867 buf[0] = '\0';
868 i1 = structure[i];
869 fprintf(log,"%s %6g",buf,time[i1]);
871 fprintf(log,"\n");
873 /* write structures to trajectory file(s) */
874 if (trxfn) {
875 if (write_ncl)
876 for(i=0; i<nstr; i++)
877 bWrite[i]=FALSE;
878 if ( cl < write_ncl+1 && nstr > write_nst ) {
879 /* Dump all structures for this cluster */
880 /* generate numbered filename (there is a %d in trxfn!) */
881 sprintf(buf,trxsfn,cl);
882 trxsout = open_trx(buf,"w");
883 for(i=0; i<nstr; i++) {
884 bWrite[i] = TRUE;
885 if (rmsmin>0.0)
886 for(i1=0; i1<i && bWrite[i]; i1++)
887 if (bWrite[i1])
888 bWrite[i] = rmsd[structure[i1]][structure[i]] > rmsmin;
889 if (bWrite[i])
890 write_trx(trxsout,iosize,outidx,atoms,i,time[structure[i]],zerobox,
891 xx[structure[i]],NULL,NULL);
893 close_trx(trxsout);
895 /* Dump the average structure for this cluster */
896 if (bAverage) {
897 for(i=0; i<natom; i++)
898 svmul(1.0/nstr,xav[i],xav[i]);
899 } else {
900 for(i=0; i<natom; i++)
901 copy_rvec(xx[midstr][i],xav[i]);
902 if (bFit)
903 reset_x(ifsize,fitidx,natom,NULL,xav,mass);
905 if (bFit)
906 do_fit(natom,mass,xtps,xav);
907 r = cl;
908 write_trx(trxout,iosize,outidx,atoms,cl,time[midstr],zerobox,xav,NULL,NULL);
911 /* clean up */
912 if (trxfn) {
913 close_trx(trxout);
914 sfree(xav);
915 if (write_ncl)
916 sfree(bWrite);
918 sfree(structure);
919 if (trxsfn)
920 sfree(trxsfn);
923 static void convert_mat(t_matrix *mat,t_mat *rms)
925 int i,j;
927 rms->n1 = mat->nx;
928 matrix2real(mat,rms->mat);
929 /* free input xpm matrix data */
930 for(i=0; i<mat->nx; i++)
931 sfree(mat->matrix[i]);
932 sfree(mat->matrix);
934 for(i=0; i<mat->nx; i++)
935 for(j=i; j<mat->nx; j++) {
936 rms->sumrms += rms->mat[i][j];
937 rms->maxrms = max(rms->maxrms, rms->mat[i][j]);
938 if (j!=i)
939 rms->minrms = min(rms->minrms, rms->mat[i][j]);
941 rms->nn = mat->nx;
944 int gmx_cluster(int argc,char *argv[])
946 const char *desc[] = {
947 "g_cluster can cluster structures with several different methods.",
948 "Distances between structures can be determined from a trajectory",
949 "or read from an XPM matrix file with the [TT]-dm[tt] option.",
950 "RMS deviation after fitting or RMS deviation of atom-pair distances",
951 "can be used to define the distance between structures.[PAR]",
953 "single linkage: add a structure to a cluster when its distance to any",
954 "element of the cluster is less than [TT]cutoff[tt].[PAR]",
956 "Jarvis Patrick: add a structure to a cluster when this structure",
957 "and a structure in the cluster have each other as neighbors and",
958 "they have a least [TT]P[tt] neighbors in common. The neighbors",
959 "of a structure are the M closest structures or all structures within",
960 "[TT]cutoff[tt].[PAR]",
962 "Monte Carlo: reorder the RMSD matrix using Monte Carlo.[PAR]",
964 "diagonalization: diagonalize the RMSD matrix.[PAR]"
966 "gromos: use algorithm as described in Daura [IT]et al.[it]",
967 "([IT]Angew. Chem. Int. Ed.[it] [BB]1999[bb], [IT]38[it], pp 236-240).",
968 "Count number of neighbors using cut-off, take structure with",
969 "largest number of neighbors with all its neighbors as cluster",
970 "and eleminate it from the pool of clusters. Repeat for remaining",
971 "structures in pool.[PAR]",
973 "When the clustering algorithm assigns each structure to exactly one",
974 "cluster (single linkage, Jarvis Patrick and gromos) and a trajectory",
975 "file is supplied, the structure with",
976 "the smallest average distance to the others or the average structure",
977 "or all structures for each cluster will be written to a trajectory",
978 "file. When writing all structures, separate numbered files are made",
979 "for each cluster.[PAR]"
981 "Two output files are always written:[BR]",
982 "[TT]-o[tt] writes the RMSD values in the upper left half of the matrix",
983 "and a graphical depiction of the clusters in the lower right half",
984 "When [TT]-minstruct[tt] = 1 the graphical depiction is black",
985 "when two structures are in the same cluster.",
986 "When [TT]-minstruct[tt] > 1 different colors will be used for each",
987 "cluster.[BR]",
988 "[TT]-g[tt] writes information on the options used and a detailed list",
989 "of all clusters and their members.[PAR]",
991 "Additionally, a number of optional output files can be written:[BR]",
992 "[TT]-dist[tt] writes the RMSD distribution.[BR]",
993 "[TT]-ev[tt] writes the eigenvectors of the RMSD matrix",
994 "diagonalization.[BR]",
995 "[TT]-sz[tt] writes the cluster sizes.[BR]",
996 "[TT]-tr[tt] writes a matrix of the number transitions between",
997 "cluster pairs.[BR]",
998 "[TT]-ntr[tt] writes the total number of transitions to or from",
999 "each cluster.[BR]",
1000 "[TT]-clid[tt] writes the cluster number as a function of time.[BR]",
1001 "[TT]-cl[tt] writes average (with option [TT]-av[tt]) or central",
1002 "structure of each cluster or writes numbered files with cluster members",
1003 "for a selected set of clusters (with option [TT]-wcl[tt], depends on",
1004 "[TT]-nst[tt] and [TT]-rmsmin[tt]).[BR]",
1007 FILE *fp,*log;
1008 int i,i1,i2,j,nf,nrms;
1010 matrix box;
1011 rvec *xtps,*usextps,*x1,**xx=NULL;
1012 const char *fn,*trx_out_fn;
1013 t_clusters clust;
1014 t_mat *rms;
1015 real *eigval;
1016 t_topology top;
1017 int ePBC;
1018 t_atoms useatoms;
1019 t_matrix *readmat=NULL;
1020 real *tmp;
1022 int isize=0,ifsize=0,iosize=0;
1023 atom_id *index=NULL, *fitidx, *outidx;
1024 char *grpname;
1025 real rmsd,**d1,**d2,*time=NULL,time_invfac,*mass=NULL;
1026 char buf[STRLEN],buf1[80],title[STRLEN];
1027 bool bAnalyze,bUseRmsdCut,bJP_RMSD=FALSE,bReadMat,bReadTraj;
1029 int method,ncluster=0;
1030 static const char *methodname[] = {
1031 NULL, "linkage", "jarvis-patrick","monte-carlo",
1032 "diagonalization", "gromos", NULL
1034 enum { m_null, m_linkage, m_jarvis_patrick,
1035 m_monte_carlo, m_diagonalize, m_gromos, m_nr };
1036 /* Set colors for plotting: white = zero RMS, black = maximum */
1037 static t_rgb rlo_top = { 1.0, 1.0, 1.0 };
1038 static t_rgb rhi_top = { 0.0, 0.0, 0.0 };
1039 static t_rgb rlo_bot = { 1.0, 1.0, 1.0 };
1040 static t_rgb rhi_bot = { 0.0, 0.0, 1.0 };
1041 static int nlevels=40,skip=1;
1042 static real scalemax=-1.0,rmsdcut=0.1,rmsmin=0.0;
1043 static bool bRMSdist=FALSE,bBinary=FALSE,bAverage=FALSE,bFit=TRUE;
1044 static int niter=10000,seed=1993,write_ncl=0,write_nst=1,minstruct=1;
1045 static real kT=1e-3;
1046 static int M=10,P=3;
1047 output_env_t oenv;
1048 t_pargs pa[] = {
1049 { "-dista", FALSE, etBOOL, {&bRMSdist},
1050 "Use RMSD of distances instead of RMS deviation" },
1051 { "-nlevels",FALSE,etINT, {&nlevels},
1052 "Discretize RMSD matrix in # levels" },
1053 { "-cutoff",FALSE, etREAL, {&rmsdcut},
1054 "RMSD cut-off (nm) for two structures to be neighbor" },
1055 { "-fit", FALSE, etBOOL, {&bFit},
1056 "Use least squares fitting before RMSD calculation" },
1057 { "-max", FALSE, etREAL, {&scalemax},
1058 "Maximum level in RMSD matrix" },
1059 { "-skip", FALSE, etINT, {&skip},
1060 "Only analyze every nr-th frame" },
1061 { "-av", FALSE, etBOOL, {&bAverage},
1062 "Write average iso middle structure for each cluster" },
1063 { "-wcl", FALSE, etINT, {&write_ncl},
1064 "Write all structures for first # clusters to numbered files" },
1065 { "-nst", FALSE, etINT, {&write_nst},
1066 "Only write all structures if more than # per cluster" },
1067 { "-rmsmin",FALSE, etREAL, {&rmsmin},
1068 "minimum rms difference with rest of cluster for writing structures" },
1069 { "-method",FALSE, etENUM, {methodname},
1070 "Method for cluster determination" },
1071 { "-minstruct", FALSE, etINT, {&minstruct},
1072 "Minimum number of structures in cluster for coloring in the xpm file" },
1073 { "-binary",FALSE, etBOOL, {&bBinary},
1074 "Treat the RMSD matrix as consisting of 0 and 1, where the cut-off "
1075 "is given by -cutoff" },
1076 { "-M", FALSE, etINT, {&M},
1077 "Number of nearest neighbors considered for Jarvis-Patrick algorithm, "
1078 "0 is use cutoff" },
1079 { "-P", FALSE, etINT, {&P},
1080 "Number of identical nearest neighbors required to form a cluster" },
1081 { "-seed", FALSE, etINT, {&seed},
1082 "Random number seed for Monte Carlo clustering algorithm" },
1083 { "-niter", FALSE, etINT, {&niter},
1084 "Number of iterations for MC" },
1085 { "-kT", FALSE, etREAL, {&kT},
1086 "Boltzmann weighting factor for Monte Carlo optimization "
1087 "(zero turns off uphill steps)" }
1089 t_filenm fnm[] = {
1090 { efTRX, "-f", NULL, ffOPTRD },
1091 { efTPS, "-s", NULL, ffOPTRD },
1092 { efNDX, NULL, NULL, ffOPTRD },
1093 { efXPM, "-dm", "rmsd", ffOPTRD },
1094 { efXPM, "-o", "rmsd-clust", ffWRITE },
1095 { efLOG, "-g", "cluster", ffWRITE },
1096 { efXVG, "-dist", "rmsd-dist", ffOPTWR },
1097 { efXVG, "-ev", "rmsd-eig", ffOPTWR },
1098 { efXVG, "-sz", "clust-size", ffOPTWR},
1099 { efXPM, "-tr", "clust-trans",ffOPTWR},
1100 { efXVG, "-ntr", "clust-trans",ffOPTWR},
1101 { efXVG, "-clid", "clust-id.xvg",ffOPTWR},
1102 { efTRX, "-cl", "clusters.pdb", ffOPTWR }
1104 #define NFILE asize(fnm)
1106 CopyRight(stderr,argv[0]);
1107 parse_common_args(&argc,argv,
1108 PCA_CAN_VIEW | PCA_CAN_TIME | PCA_TIME_UNIT | PCA_BE_NICE,
1109 NFILE,fnm,asize(pa),pa,asize(desc),desc,0,NULL,
1110 &oenv);
1112 /* parse options */
1113 bReadMat = opt2bSet("-dm",NFILE,fnm);
1114 bReadTraj = opt2bSet("-f",NFILE,fnm) || !bReadMat;
1115 if ( opt2parg_bSet("-av",asize(pa),pa) ||
1116 opt2parg_bSet("-wcl",asize(pa),pa) ||
1117 opt2parg_bSet("-nst",asize(pa),pa) ||
1118 opt2parg_bSet("-rmsmin",asize(pa),pa) ||
1119 opt2bSet("-cl",NFILE,fnm) )
1120 trx_out_fn = opt2fn("-cl",NFILE,fnm);
1121 else
1122 trx_out_fn = NULL;
1123 if (bReadMat && output_env_get_time_factor(oenv)!=1) {
1124 fprintf(stderr,
1125 "\nWarning: assuming the time unit in %s is %s\n",
1126 opt2fn("-dm",NFILE,fnm),output_env_get_time_unit(oenv));
1128 if (trx_out_fn && !bReadTraj)
1129 fprintf(stderr,"\nWarning: "
1130 "cannot write cluster structures without reading trajectory\n"
1131 " ignoring option -cl %s\n", trx_out_fn);
1133 method=1;
1134 while ( method < m_nr && strcasecmp(methodname[0], methodname[method])!=0 )
1135 method++;
1136 if (method == m_nr)
1137 gmx_fatal(FARGS,"Invalid method");
1139 bAnalyze = (method == m_linkage || method == m_jarvis_patrick ||
1140 method == m_gromos );
1142 /* Open log file */
1143 log = ftp2FILE(efLOG,NFILE,fnm,"w");
1145 fprintf(stderr,"Using %s method for clustering\n",methodname[0]);
1146 fprintf(log,"Using %s method for clustering\n",methodname[0]);
1148 /* check input and write parameters to log file */
1149 bUseRmsdCut = FALSE;
1150 if (method == m_jarvis_patrick) {
1151 bJP_RMSD = (M == 0) || opt2parg_bSet("-cutoff",asize(pa),pa);
1152 if ((M<0) || (M == 1))
1153 gmx_fatal(FARGS,"M (%d) must be 0 or larger than 1",M);
1154 if (M < 2) {
1155 sprintf(buf1,"Will use P=%d and RMSD cutoff (%g)",P,rmsdcut);
1156 bUseRmsdCut = TRUE;
1157 } else {
1158 if (P >= M)
1159 gmx_fatal(FARGS,"Number of neighbors required (P) must be less than M");
1160 if (bJP_RMSD) {
1161 sprintf(buf1,"Will use P=%d, M=%d and RMSD cutoff (%g)",P,M,rmsdcut);
1162 bUseRmsdCut = TRUE;
1163 } else
1164 sprintf(buf1,"Will use P=%d, M=%d",P,M);
1166 ffprintf1(stderr,log,buf,"%s for determining the neighbors\n\n",buf1);
1167 } else /* method != m_jarvis */
1168 bUseRmsdCut = ( bBinary || method == m_linkage || method == m_gromos );
1169 if (bUseRmsdCut && method != m_jarvis_patrick)
1170 fprintf(log,"Using RMSD cutoff %g nm\n",rmsdcut);
1171 if ( method==m_monte_carlo )
1172 fprintf(log,"Using %d iterations\n",niter);
1174 if (skip < 1)
1175 gmx_fatal(FARGS,"skip (%d) should be >= 1",skip);
1177 /* get input */
1178 if (bReadTraj) {
1179 /* don't read mass-database as masses (and top) are not used */
1180 read_tps_conf(ftp2fn(efTPS,NFILE,fnm),buf,&top,&ePBC,&xtps,NULL,box,
1181 bAnalyze);
1183 fprintf(stderr,"\nSelect group for least squares fit%s:\n",
1184 bReadMat?"":" and RMSD calculation");
1185 get_index(&(top.atoms),ftp2fn_null(efNDX,NFILE,fnm),
1186 1,&ifsize,&fitidx,&grpname);
1187 if (trx_out_fn) {
1188 fprintf(stderr,"\nSelect group for output:\n");
1189 get_index(&(top.atoms),ftp2fn_null(efNDX,NFILE,fnm),
1190 1,&iosize,&outidx,&grpname);
1191 /* merge and convert both index groups: */
1192 /* first copy outidx to index. let outidx refer to elements in index */
1193 snew(index,iosize);
1194 isize = iosize;
1195 for(i=0; i<iosize; i++) {
1196 index[i]=outidx[i];
1197 outidx[i]=i;
1199 /* now lookup elements from fitidx in index, add them if necessary
1200 and also let fitidx refer to elements in index */
1201 for(i=0; i<ifsize; i++) {
1202 j=0;
1203 while (j<isize && index[j]!=fitidx[i])
1204 j++;
1205 if (j>=isize) {
1206 /* slow this way, but doesn't matter much */
1207 isize++;
1208 srenew(index,isize);
1210 index[j]=fitidx[i];
1211 fitidx[i]=j;
1213 } else { /* !trx_out_fn */
1214 isize = ifsize;
1215 snew(index, isize);
1216 for(i=0; i<ifsize; i++) {
1217 index[i]=fitidx[i];
1218 fitidx[i]=i;
1222 /* Initiate arrays */
1223 snew(d1,isize);
1224 snew(d2,isize);
1225 for(i=0; (i<isize); i++) {
1226 snew(d1[i],isize);
1227 snew(d2[i],isize);
1230 if (bReadTraj) {
1231 /* Loop over first coordinate file */
1232 fn = opt2fn("-f",NFILE,fnm);
1234 xx = read_whole_trj(fn,isize,index,skip,&nf,&time,oenv);
1235 output_env_conv_times(oenv, nf, time);
1236 if (!bRMSdist || bAnalyze) {
1237 /* Center all frames on zero */
1238 snew(mass,isize);
1239 for(i=0; i<ifsize; i++)
1240 mass[fitidx[i]] = top.atoms.atom[index[fitidx[i]]].m;
1241 if (bFit)
1242 for(i=0; i<nf; i++)
1243 reset_x(ifsize,fitidx,isize,NULL,xx[i],mass);
1246 if (bReadMat) {
1247 fprintf(stderr,"Reading rms distance matrix ");
1248 read_xpm_matrix(opt2fn("-dm",NFILE,fnm),&readmat);
1249 fprintf(stderr,"\n");
1250 if (readmat[0].nx != readmat[0].ny)
1251 gmx_fatal(FARGS,"Matrix (%dx%d) is not square",
1252 readmat[0].nx,readmat[0].ny);
1253 if (bReadTraj && bAnalyze && (readmat[0].nx != nf))
1254 gmx_fatal(FARGS,"Matrix size (%dx%d) does not match the number of "
1255 "frames (%d)",readmat[0].nx,readmat[0].ny,nf);
1257 nf = readmat[0].nx;
1258 sfree(time);
1259 time = readmat[0].axis_x;
1260 time_invfac = output_env_get_time_invfactor(oenv);
1261 for(i=0; i<nf; i++)
1262 time[i] *= time_invfac;
1264 rms = init_mat(readmat[0].nx,method == m_diagonalize);
1265 convert_mat(&(readmat[0]),rms);
1267 nlevels = readmat[0].nmap;
1268 } else { /* !bReadMat */
1269 rms = init_mat(nf,method == m_diagonalize);
1270 nrms = (nf*(nf-1))/2;
1271 if (!bRMSdist) {
1272 fprintf(stderr,"Computing %dx%d RMS deviation matrix\n",nf,nf);
1273 snew(x1,isize);
1274 for(i1=0; (i1<nf); i1++) {
1275 for(i2=i1+1; (i2<nf); i2++) {
1276 for(i=0; i<isize; i++)
1277 copy_rvec(xx[i1][i],x1[i]);
1278 if (bFit)
1279 do_fit(isize,mass,xx[i2],x1);
1280 rmsd = rmsdev(isize,mass,xx[i2],x1);
1281 set_mat_entry(rms,i1,i2,rmsd);
1283 nrms -= (nf-i1-1);
1284 fprintf(stderr,"\r# RMSD calculations left: %d ",nrms);
1286 } else { /* bRMSdist */
1287 fprintf(stderr,"Computing %dx%d RMS distance deviation matrix\n",nf,nf);
1288 for(i1=0; (i1<nf); i1++) {
1289 calc_dist(isize,xx[i1],d1);
1290 for(i2=i1+1; (i2<nf); i2++) {
1291 calc_dist(isize,xx[i2],d2);
1292 set_mat_entry(rms,i1,i2,rms_dist(isize,d1,d2));
1294 nrms -= (nf-i1-1);
1295 fprintf(stderr,"\r# RMSD calculations left: %d ",nrms);
1298 fprintf(stderr,"\n\n");
1300 ffprintf2(stderr,log,buf,"The RMSD ranges from %g to %g nm\n",
1301 rms->minrms,rms->maxrms);
1302 ffprintf1(stderr,log,buf,"Average RMSD is %g\n",2*rms->sumrms/(nf*(nf-1)));
1303 ffprintf1(stderr,log,buf,"Number of structures for matrix %d\n",nf);
1304 ffprintf1(stderr,log,buf,"Energy of the matrix is %g nm\n",mat_energy(rms));
1305 if (bUseRmsdCut && (rmsdcut < rms->minrms || rmsdcut > rms->maxrms) )
1306 fprintf(stderr,"WARNING: rmsd cutoff %g is outside range of rmsd values "
1307 "%g to %g\n",rmsdcut,rms->minrms,rms->maxrms);
1308 if (bAnalyze && (rmsmin < rms->minrms) )
1309 fprintf(stderr,"WARNING: rmsd minimum %g is below lowest rmsd value %g\n",
1310 rmsmin,rms->minrms);
1311 if (bAnalyze && (rmsmin > rmsdcut) )
1312 fprintf(stderr,"WARNING: rmsd minimum %g is above rmsd cutoff %g\n",
1313 rmsmin,rmsdcut);
1315 /* Plot the rmsd distribution */
1316 rmsd_distribution(opt2fn("-dist",NFILE,fnm),rms,oenv);
1318 if (bBinary) {
1319 for(i1=0; (i1 < nf); i1++)
1320 for(i2=0; (i2 < nf); i2++)
1321 if (rms->mat[i1][i2] < rmsdcut)
1322 rms->mat[i1][i2] = 0;
1323 else
1324 rms->mat[i1][i2] = 1;
1327 snew(clust.cl,nf);
1328 switch (method) {
1329 case m_linkage:
1330 /* Now sort the matrix and write it out again */
1331 gather(rms,rmsdcut,&clust);
1332 break;
1333 case m_diagonalize:
1334 /* Do a diagonalization */
1335 snew(eigval,nf);
1336 snew(tmp,nf*nf);
1337 memcpy(tmp,rms->mat[0],nf*nf*sizeof(real));
1338 eigensolver(tmp,nf,0,nf,eigval,rms->mat[0]);
1339 sfree(tmp);
1341 fp = xvgropen(opt2fn("-ev",NFILE,fnm),"RMSD matrix Eigenvalues",
1342 "Eigenvector index","Eigenvalues (nm\\S2\\N)",oenv);
1343 for(i=0; (i<nf); i++)
1344 fprintf(fp,"%10d %10g\n",i,eigval[i]);
1345 ffclose(fp);
1346 break;
1347 case m_monte_carlo:
1348 mc_optimize(log,rms,niter,&seed,kT);
1349 swap_mat(rms);
1350 reset_index(rms);
1351 break;
1352 case m_jarvis_patrick:
1353 jarvis_patrick(rms->nn,rms->mat,M,P,bJP_RMSD ? rmsdcut : -1,&clust);
1354 break;
1355 case m_gromos:
1356 gromos(rms->nn,rms->mat,rmsdcut,&clust);
1357 break;
1358 default:
1359 gmx_fatal(FARGS,"DEATH HORROR unknown method \"%s\"",methodname[0]);
1362 if (method == m_monte_carlo || method == m_diagonalize)
1363 fprintf(stderr,"Energy of the matrix after clustering is %g nm\n",
1364 mat_energy(rms));
1366 if (bAnalyze) {
1367 if (minstruct > 1) {
1368 ncluster = plot_clusters(nf,rms->mat,&clust,nlevels,minstruct);
1369 } else {
1370 mark_clusters(nf,rms->mat,rms->maxrms,&clust);
1372 init_t_atoms(&useatoms,isize,FALSE);
1373 snew(usextps, isize);
1374 useatoms.resinfo = top.atoms.resinfo;
1375 for(i=0; i<isize; i++) {
1376 useatoms.atomname[i]=top.atoms.atomname[index[i]];
1377 useatoms.atom[i].resind = top.atoms.atom[index[i]].resind;
1378 useatoms.nres = max(useatoms.nres,useatoms.atom[i].resind+1);
1379 copy_rvec(xtps[index[i]],usextps[i]);
1381 useatoms.nr=isize;
1382 analyze_clusters(nf,&clust,rms->mat,isize,&useatoms,usextps,mass,xx,time,
1383 ifsize,fitidx,iosize,outidx,
1384 bReadTraj?trx_out_fn:NULL,
1385 opt2fn_null("-sz",NFILE,fnm),
1386 opt2fn_null("-tr",NFILE,fnm),
1387 opt2fn_null("-ntr",NFILE,fnm),
1388 opt2fn_null("-clid",NFILE,fnm),
1389 bAverage, write_ncl, write_nst, rmsmin, bFit, log,
1390 rlo_bot,rhi_bot,oenv);
1392 ffclose(log);
1394 if (bBinary && !bAnalyze)
1395 /* Make the clustering visible */
1396 for(i2=0; (i2 < nf); i2++)
1397 for(i1=i2+1; (i1 < nf); i1++)
1398 if (rms->mat[i1][i2])
1399 rms->mat[i1][i2] = rms->maxrms;
1401 fp = opt2FILE("-o",NFILE,fnm,"w");
1402 fprintf(stderr,"Writing rms distance/clustering matrix ");
1403 if (bReadMat) {
1404 write_xpm(fp,0,readmat[0].title,readmat[0].legend,readmat[0].label_x,
1405 readmat[0].label_y,nf,nf,readmat[0].axis_x,readmat[0].axis_y,
1406 rms->mat,0.0,rms->maxrms,rlo_top,rhi_top,&nlevels);
1408 else {
1409 sprintf(buf,"Time (%s)",output_env_get_time_unit(oenv));
1410 sprintf(title,"RMS%sDeviation / Cluster Index",
1411 bRMSdist ? " Distance " : " ");
1412 if (minstruct > 1) {
1413 write_xpm_split(fp,0,title,"RMSD (nm)",buf,buf,
1414 nf,nf,time,time,rms->mat,0.0,rms->maxrms,&nlevels,
1415 rlo_top,rhi_top,0.0,(real) ncluster,
1416 &ncluster,TRUE,rlo_bot,rhi_bot);
1417 } else {
1418 write_xpm(fp,0,title,"RMSD (nm)",buf,buf,
1419 nf,nf,time,time,rms->mat,0.0,rms->maxrms,
1420 rlo_top,rhi_top,&nlevels);
1423 fprintf(stderr,"\n");
1424 ffclose(fp);
1426 /* now show what we've done */
1427 do_view(oenv,opt2fn("-o",NFILE,fnm),"-nxy");
1428 do_view(oenv,opt2fn_null("-sz",NFILE,fnm),"-nxy");
1429 if (method == m_diagonalize)
1430 do_view(oenv,opt2fn_null("-ev",NFILE,fnm),"-nxy");
1431 do_view(oenv,opt2fn("-dist",NFILE,fnm),"-nxy");
1432 if (bAnalyze) {
1433 do_view(oenv,opt2fn_null("-tr",NFILE,fnm),"-nxy");
1434 do_view(oenv,opt2fn_null("-ntr",NFILE,fnm),"-nxy");
1435 do_view(oenv,opt2fn_null("-clid",NFILE,fnm),"-nxy");
1438 /* Thank the user for her patience */
1439 thanx(stderr);
1441 return 0;