Added selection examples.
[gromacs/qmmm-gamess-us.git] / include / types / forcerec.h
bloba649db30344e3098b53c4c75ab1677a54b73869e
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * VERSION 3.2.0
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
32 * And Hey:
33 * GRoups of Organic Molecules in ACtion for Science
35 #ifdef HAVE_CONFIG_H
36 #include <config.h>
37 #endif
39 #include "ns.h"
40 #include "genborn.h"
41 #include "qmmmrec.h"
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
47 /* Abstract type for PME that is defined only in the routine that use them. */
48 typedef struct gmx_pme *gmx_pme_t;
50 typedef struct {
51 real r; /* range of the table */
52 int n; /* n+1 is the number of points */
53 real scale; /* distance between two points */
54 real scale_exp; /* distance for exponential Buckingham table */
55 real *tab; /* the actual tables, per point there are 4 numbers for
56 * Coulomb, dispersion and repulsion (in total 12 numbers)
58 } t_forcetable;
60 typedef struct {
61 t_forcetable tab;
62 /* We duplicate tables for cache optimization purposes */
63 real *coultab; /* Coul only */
64 real *vdwtab; /* Vdw only */
65 /* The actual neighbor lists, short and long range, see enum above
66 * for definition of neighborlist indices.
68 t_nblist nlist_sr[eNL_NR];
69 t_nblist nlist_lr[eNL_NR];
70 } t_nblists;
72 /* macros for the cginfo data in forcerec */
73 /* The maximum cg size is 255, because we only have space for 8 bits in cginfo,
74 * this cg size entry is actually only read with domain decomposition.
76 #define MAX_CHARGEGROUP_SIZE 256
77 #define SET_CGINFO_GID(cgi,gid) (cgi) = (((cgi) & ~65535) | (gid) )
78 #define GET_CGINFO_GID(cgi) ( (cgi) & 65535)
79 #define SET_CGINFO_EXCL_INTRA(cgi) (cgi) = ((cgi) | (1<<16))
80 #define GET_CGINFO_EXCL_INTRA(cgi) ( (cgi) & (1<<16))
81 #define SET_CGINFO_EXCL_INTER(cgi) (cgi) = ((cgi) | (1<<17))
82 #define GET_CGINFO_EXCL_INTER(cgi) ( (cgi) & (1<<17))
83 #define SET_CGINFO_SOLOPT(cgi,opt) (cgi) = (((cgi) & ~(15<<18)) | ((opt)<<18))
84 #define GET_CGINFO_SOLOPT(cgi) (((cgi)>>18) & 15)
85 /* This bit is only used with bBondComm in the domain decomposition */
86 #define SET_CGINFO_BOND_INTER(cgi) (cgi) = ((cgi) | (1<<22))
87 #define GET_CGINFO_BOND_INTER(cgi) ( (cgi) & (1<<22))
88 #define SET_CGINFO_NATOMS(cgi,opt) (cgi) = (((cgi) & ~(255<<23)) | ((opt)<<23))
89 #define GET_CGINFO_NATOMS(cgi) (((cgi)>>23) & 255)
92 /* Value to be used in mdrun for an infinite cut-off.
93 * Since we need to compare with the cut-off squared,
94 * this value should be slighlty smaller than sqrt(GMX_FLOAT_MAX).
96 #define GMX_CUTOFF_INF 1E+18
99 enum { egCOULSR, egLJSR, egBHAMSR, egCOULLR, egLJLR, egBHAMLR,
100 egCOUL14, egLJ14, egGB, egNR };
102 typedef struct {
103 int nener; /* The number of energy group pairs */
104 real *ener[egNR]; /* Energy terms for each pair of groups */
105 } gmx_grppairener_t;
107 typedef struct {
108 real term[F_NRE]; /* The energies for all different interaction types */
109 gmx_grppairener_t grpp;
110 double dvdl_lin; /* Contributions to dvdl with linear lam-dependence */
111 double dvdl_nonlin; /* Idem, but non-linear dependence */
112 int n_lambda;
113 double *enerpart_lambda; /* Partial energy for lambda and flambda[] */
114 } gmx_enerdata_t;
115 /* The idea is that dvdl terms with linear lambda dependence will be added
116 * automatically to enerpart_lambda. Terms with non-linear lambda dependence
117 * should explicitly determine the energies at foreign lambda points
118 * when n_lambda > 0.
121 typedef struct {
122 int cg_start;
123 int cg_end;
124 int cg_mod;
125 int *cginfo;
126 } cginfo_mb_t;
129 /* ewald table type */
130 typedef struct ewald_tab *ewald_tab_t;
132 typedef struct {
133 /* Domain Decomposition */
134 bool bDomDec;
136 /* PBC stuff */
137 int ePBC;
138 bool bMolPBC;
139 int rc_scaling;
140 rvec posres_com;
141 rvec posres_comB;
143 /* Use special N*N kernels? */
144 bool bAllvsAll;
145 /* Private work data */
146 void *AllvsAll_work;
147 void *AllvsAll_workgb;
149 /* Cut-Off stuff.
150 * Infinite cut-off's will be GMX_CUTOFF_INF (unlike in t_inputrec: 0).
152 real rlist,rlistlong;
154 /* Dielectric constant resp. multiplication factor for charges */
155 real zsquare,temp;
156 real epsilon_r,epsilon_rf,epsfac;
158 /* Constants for reaction fields */
159 real kappa,k_rf,c_rf;
161 /* Charge sum and dipole for topology A/B ([0]/[1]) for Ewald corrections */
162 double qsum[2];
163 rvec mu_tot[2];
165 /* Dispersion correction stuff */
166 int eDispCorr;
167 /* The shift of the shift or user potentials */
168 real enershiftsix;
169 real enershifttwelve;
170 /* Integrated differces for energy and virial with cut-off functions */
171 real enerdiffsix;
172 real enerdifftwelve;
173 real virdiffsix;
174 real virdifftwelve;
175 /* Constant for long range dispersion correction (average dispersion)
176 * for topology A/B ([0]/[1]) */
177 real avcsix[2];
178 /* Constant for long range repulsion term. Relative difference of about
179 * 0.1 percent with 0.8 nm cutoffs. But hey, it's cheap anyway...
181 real avctwelve[2];
183 /* Fudge factors */
184 real fudgeQQ;
186 /* Table stuff */
187 bool bcoultab;
188 bool bvdwtab;
189 /* The normal tables are in the nblists struct(s) below */
190 t_forcetable tab14; /* for 1-4 interactions only */
192 /* PPPM & Shifting stuff */
193 real rcoulomb_switch,rcoulomb;
194 real *phi;
196 /* VdW stuff */
197 double reppow;
198 real rvdw_switch,rvdw;
199 real bham_b_max;
201 /* Free energy ? */
202 int efep;
203 real sc_alpha;
204 int sc_power;
205 real sc_sigma6;
206 bool bSepDVDL;
208 /* NS Stuff */
209 int eeltype;
210 int vdwtype;
211 int cg0,hcg;
212 /* solvent_opt contains the enum for the most common solvent
213 * in the system, which will be optimized.
214 * It can be set to esolNO to disable all water optimization */
215 int solvent_opt;
216 int nWatMol;
217 bool bGrid;
218 cginfo_mb_t *cginfo_mb;
219 int *cginfo;
220 rvec *cg_cm;
221 int cg_nalloc;
222 rvec *shift_vec;
224 /* The neighborlists including tables */
225 int nnblists;
226 int *gid2nblists;
227 t_nblists *nblists;
229 /* The wall tables (if used) */
230 int nwall;
231 t_forcetable **wall_tab;
233 /* This mask array of length nn determines whether or not this bit of the
234 * neighbourlists should be computed. Usually all these are true of course,
235 * but not when shells are used. During minimisation all the forces that
236 * include shells are done, then after minimsation is converged the remaining
237 * forces are computed.
239 /* bool *bMask; */
241 /* The number of charge groups participating in do_force_lowlevel */
242 int ncg_force;
243 /* The number of atoms participating in do_force_lowlevel */
244 int natoms_force;
245 /* The allocation size of vectors of size natoms_force */
246 int nalloc_force;
248 /* Twin Range stuff, f_twin has size natoms_force */
249 bool bTwinRange;
250 int nlr;
251 rvec *f_twin;
253 /* Forces that should not enter into the virial summation:
254 * PPPM/PME/Ewald/posres
256 bool bF_NoVirSum;
257 int f_novirsum_n;
258 int f_novirsum_nalloc;
259 rvec *f_novirsum_alloc;
260 /* Pointer that points to f_novirsum_alloc when pressure is calcaluted,
261 * points to the normal force vectors wen pressure is not requested.
263 rvec *f_novirsum;
265 /* Long-range forces and virial for PPPM/PME/Ewald */
266 gmx_pme_t pmedata;
267 tensor vir_el_recip;
269 /* PME/Ewald stuff */
270 bool bEwald;
271 real ewaldcoeff;
272 ewald_tab_t ewald_table;
274 /* Virial Stuff */
275 rvec *fshift;
276 rvec vir_diag_posres;
277 dvec vir_wall_z;
279 /* Non bonded Parameter lists */
280 int ntype; /* Number of atom types */
281 bool bBHAM;
282 real *nbfp;
284 /* Energy group pair flags */
285 int *egp_flags;
287 /* xmdrun flexible constraints */
288 real fc_stepsize;
290 /* Generalized born implicit solvent */
291 bool bGB;
292 /* Generalized born stuff */
293 real gb_epsilon_solvent;
294 /* Table data for GB */
295 t_forcetable gbtab;
296 /* VdW radius for each atomtype (dim is thus ntype) */
297 real *atype_radius;
298 /* Effective radius (derived from effective volume) for each type */
299 real *atype_vol;
300 /* Implicit solvent - surface tension for each atomtype */
301 real *atype_surftens;
302 /* Implicit solvent - radius for GB calculation */
303 real *atype_gb_radius;
304 /* Implicit solvent - overlap for HCT model */
305 real *atype_S_hct;
306 /* Generalized born interaction data */
307 gmx_genborn_t *born;
309 /* Table scale for GB */
310 real gbtabscale;
311 /* Table range for GB */
312 real gbtabr;
313 /* GB neighborlists (the sr list will contain for each atom all other atoms
314 * (for use in the SA calculation) and the lr list will contain
315 * for each atom all atoms 1-4 or greater (for use in the GB calculation)
317 t_nblist gblist_sr;
318 t_nblist gblist_lr;
319 t_nblist gblist;
321 /* Inverse square root of the Born radii for implicit solvent */
322 real *invsqrta;
323 /* Derivatives of the potential with respect to the Born radii */
324 real *dvda;
325 /* Derivatives of the Born radii with respect to coordinates */
326 real *dadx;
327 real *dadx_rawptr;
328 int nalloc_dadx; /* Allocated size of dadx */
330 /* If > 0 signals Test Particle Insertion,
331 * the value is the number of atoms of the molecule to insert
332 * Only the energy difference due to the addition of the last molecule
333 * should be calculated.
335 bool n_tpi;
337 /* Neighbor searching stuff */
338 gmx_ns_t ns;
340 /* QMMM stuff */
341 bool bQMMM;
342 t_QMMMrec *qr;
344 /* QM-MM neighborlists */
345 t_nblist QMMMlist;
347 /* Limit for printing large forces, negative is don't print */
348 real print_force;
350 /* coarse load balancing time measurement */
351 double t_fnbf;
352 double t_wait;
353 int timesteps;
355 /* User determined parameters, copied from the inputrec */
356 int userint1;
357 int userint2;
358 int userint3;
359 int userint4;
360 real userreal1;
361 real userreal2;
362 real userreal3;
363 real userreal4;
364 } t_forcerec;
366 #define C6(nbfp,ntp,ai,aj) (nbfp)[2*((ntp)*(ai)+(aj))]
367 #define C12(nbfp,ntp,ai,aj) (nbfp)[2*((ntp)*(ai)+(aj))+1]
368 #define BHAMC(nbfp,ntp,ai,aj) (nbfp)[3*((ntp)*(ai)+(aj))]
369 #define BHAMA(nbfp,ntp,ai,aj) (nbfp)[3*((ntp)*(ai)+(aj))+1]
370 #define BHAMB(nbfp,ntp,ai,aj) (nbfp)[3*((ntp)*(ai)+(aj))+2]
372 #ifdef __cplusplus
374 #endif