Added selection examples.
[gromacs/qmmm-gamess-us.git] / include / vec.h
blobeaa56bf4cea4d1e9d82203b1b5a7e66619d902a2
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * VERSION 3.2.0
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
32 * And Hey:
33 * Gromacs Runs On Most of All Computer Systems
35 #ifndef _vec_h
36 #define _vec_h
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
41 #define gmx_inline inline
42 #else
43 #ifdef __GNUC__
44 #define gmx_inline __inline
45 #else
46 #define inline
47 #endif
49 #endif
52 collection of in-line ready operations:
54 lookup-table optimized scalar operations:
55 real gmx_invsqrt(real x)
56 void vecinvsqrt(real in[],real out[],int n)
57 void vecrecip(real in[],real out[],int n)
58 real sqr(real x)
59 double dsqr(double x)
61 vector operations:
62 void rvec_add(const rvec a,const rvec b,rvec c) c = a + b
63 void dvec_add(const dvec a,const dvec b,dvec c) c = a + b
64 void ivec_add(const ivec a,const ivec b,ivec c) c = a + b
65 void rvec_inc(rvec a,const rvec b) a += b
66 void dvec_inc(dvec a,const dvec b) a += b
67 void ivec_inc(ivec a,const ivec b) a += b
68 void rvec_sub(const rvec a,const rvec b,rvec c) c = a - b
69 void dvec_sub(const dvec a,const dvec b,dvec c) c = a - b
70 void rvec_dec(rvec a,rvec b) a -= b
71 void copy_rvec(const rvec a,rvec b) b = a (reals)
72 void copy_dvec(const dvec a,dvec b) b = a (reals)
73 void copy_ivec(const ivec a,ivec b) b = a (integers)
74 void ivec_sub(const ivec a,const ivec b,ivec c) c = a - b
75 void svmul(real a,rvec v1,rvec v2) v2 = a * v1
76 void dsvmul(double a,dvec v1,dvec v2) v2 = a * v1
77 void clear_rvec(rvec a) a = 0
78 void clear_dvec(dvec a) a = 0
79 void clear_ivec(rvec a) a = 0
80 void clear_rvecs(int n,rvec v[])
81 real iprod(rvec a,rvec b) = a . b (inner product)
82 double diprod(dvec a,dvec b) = a . b (inner product)
83 real iiprod(ivec a,ivec b) = a . b (integers)
84 real norm2(rvec a) = | a |^2 ( = x*y*z )
85 double dnorm2(dvec a) = | a |^2 ( = x*y*z )
86 real norm(rvec a) = | a |
87 double dnorm(dvec a) = | a |
88 void cprod(rvec a,rvec b,rvec c) c = a x b (cross product)
89 void dprod(rvec a,rvec b,rvec c) c = a x b (cross product)
90 void dprod(rvec a,rvec b,rvec c) c = a * b (direct product)
91 real cos_angle(rvec a,rvec b)
92 real cos_angle_no_table(rvec a,rvec b)
93 real distance2(rvec v1, rvec v2) = | v2 - v1 |^2
94 void unitv(rvec src,rvec dest) dest = src / |src|
95 void unitv_no_table(rvec src,rvec dest) dest = src / |src|
97 matrix (3x3) operations:
98 ! indicates that dest should not be the same as a, b or src
99 the _ur0 varieties work on matrices that have only zeros
100 in the upper right part, such as box matrices, these varieties
101 could produce less rounding errors, not due to the operations themselves,
102 but because the compiler can easier recombine the operations
103 void copy_mat(matrix a,matrix b) b = a
104 void clear_mat(matrix a) a = 0
105 void mmul(matrix a,matrix b,matrix dest) ! dest = a . b
106 void mmul_ur0(matrix a,matrix b,matrix dest) dest = a . b
107 void transpose(matrix src,matrix dest) ! dest = src*
108 void tmmul(matrix a,matrix b,matrix dest) ! dest = a* . b
109 void mtmul(matrix a,matrix b,matrix dest) ! dest = a . b*
110 real det(matrix a) = det(a)
111 void m_add(matrix a,matrix b,matrix dest) dest = a + b
112 void m_sub(matrix a,matrix b,matrix dest) dest = a - b
113 void msmul(matrix m1,real r1,matrix dest) dest = r1 * m1
114 void m_inv_ur0(matrix src,matrix dest) dest = src^-1
115 void m_inv(matrix src,matrix dest) ! dest = src^-1
116 void mvmul(matrix a,rvec src,rvec dest) ! dest = a . src
117 void mvmul_ur0(matrix a,rvec src,rvec dest) dest = a . src
118 void tmvmul_ur0(matrix a,rvec src,rvec dest) dest = a* . src
119 real trace(matrix m) = trace(m)
122 #include "types/simple.h"
123 #include "maths.h"
124 #include "typedefs.h"
125 #include "sysstuff.h"
126 #include "macros.h"
127 #include "gmx_fatal.h"
128 #include "mpelogging.h"
129 #include "physics.h"
131 #ifdef __cplusplus
132 extern "C" {
133 #elif 0
134 } /* avoid screwing up indentation */
135 #endif
138 #define EXP_LSB 0x00800000
139 #define EXP_MASK 0x7f800000
140 #define EXP_SHIFT 23
141 #define FRACT_MASK 0x007fffff
142 #define FRACT_SIZE 11 /* significant part of fraction */
143 #define FRACT_SHIFT (EXP_SHIFT-FRACT_SIZE)
144 #define EXP_ADDR(val) (((val)&EXP_MASK)>>EXP_SHIFT)
145 #define FRACT_ADDR(val) (((val)&(FRACT_MASK|EXP_LSB))>>FRACT_SHIFT)
147 #define PR_VEC(a) a[XX],a[YY],a[ZZ]
149 #ifdef GMX_SOFTWARE_INVSQRT
150 extern const unsigned int * gmx_invsqrt_exptab;
151 extern const unsigned int * gmx_invsqrt_fracttab;
152 #endif
155 typedef union
157 unsigned int bval;
158 float fval;
159 } t_convert;
162 #ifdef GMX_SOFTWARE_INVSQRT
163 static real gmx_invsqrt(real x)
165 const real half=0.5;
166 const real three=3.0;
167 t_convert result,bit_pattern;
168 unsigned int exp,fract;
169 real lu;
170 real y;
171 #ifdef GMX_DOUBLE
172 real y2;
173 #endif
175 bit_pattern.fval=x;
176 exp = EXP_ADDR(bit_pattern.bval);
177 fract = FRACT_ADDR(bit_pattern.bval);
178 result.bval=gmx_invsqrt_exptab[exp] | gmx_invsqrt_fracttab[fract];
179 lu = result.fval;
181 y=(half*lu*(three-((x*lu)*lu)));
182 #ifdef GMX_DOUBLE
183 y2=(half*y*(three-((x*y)*y)));
185 return y2; /* 10 Flops */
186 #else
187 return y; /* 5 Flops */
188 #endif
190 #define INVSQRT_DONE
191 #endif /* gmx_invsqrt */
193 #ifdef GMX_POWERPC_SQRT
194 static real gmx_invsqrt(real x)
196 const real half=0.5;
197 const real three=3.0;
198 t_convert result,bit_pattern;
199 unsigned int exp,fract;
200 real lu;
201 real y;
202 #ifdef GMX_DOUBLE
203 real y2;
204 #endif
206 lu = __frsqrte((double)x);
208 y=(half*lu*(three-((x*lu)*lu)));
210 #if (GMX_POWERPC_SQRT==2)
211 /* Extra iteration required */
212 y=(half*y*(three-((x*y)*y)));
213 #endif
215 #ifdef GMX_DOUBLE
216 y2=(half*y*(three-((x*y)*y)));
218 return y2; /* 10 Flops */
219 #else
220 return y; /* 5 Flops */
221 #endif
223 #define INVSQRT_DONE
224 #endif /* powerpc_invsqrt */
227 #ifndef INVSQRT_DONE
228 #define gmx_invsqrt(x) (1.0f/sqrt(x))
229 #endif
235 static real sqr(real x)
237 return (x*x);
240 static inline double dsqr(double x)
242 return (x*x);
245 /* Maclaurin series for sinh(x)/x, useful for NH chains and MTTK pressure control
246 Here, we compute it to 10th order, which might be overkill, 8th is probably enough,
247 but it's not very much more expensive. */
249 static inline real series_sinhx(real x)
251 real x2 = x*x;
252 return (1 + (x2/6.0)*(1 + (x2/20.0)*(1 + (x2/42.0)*(1 + (x2/72.0)*(1 + (x2/110.0))))));
255 extern void vecinvsqrt(real in[],real out[],int n);
256 /* Perform out[i]=1.0/sqrt(in[i]) for n elements */
259 extern void vecrecip(real in[],real out[],int n);
260 /* Perform out[i]=1.0/(in[i]) for n elements */
262 /* Note: If you need a fast version of vecinvsqrt
263 * and/or vecrecip, call detectcpu() and run the SSE/3DNow/SSE2/Altivec
264 * versions if your hardware supports it.
266 * To use those routines, your memory HAS TO BE CACHE-ALIGNED.
267 * Start by allocating 31 bytes more than you need, put
268 * this in a temp variable (e.g. _buf, so you can free it later), and
269 * create your aligned array buf with
271 * buf=(real *) ( ( (unsigned long int)_buf + 31 ) & (~0x1f) );
275 static inline void rvec_add(const rvec a,const rvec b,rvec c)
277 real x,y,z;
279 x=a[XX]+b[XX];
280 y=a[YY]+b[YY];
281 z=a[ZZ]+b[ZZ];
283 c[XX]=x;
284 c[YY]=y;
285 c[ZZ]=z;
288 static inline void dvec_add(const dvec a,const dvec b,dvec c)
290 double x,y,z;
292 x=a[XX]+b[XX];
293 y=a[YY]+b[YY];
294 z=a[ZZ]+b[ZZ];
296 c[XX]=x;
297 c[YY]=y;
298 c[ZZ]=z;
301 static inline void ivec_add(const ivec a,const ivec b,ivec c)
303 int x,y,z;
305 x=a[XX]+b[XX];
306 y=a[YY]+b[YY];
307 z=a[ZZ]+b[ZZ];
309 c[XX]=x;
310 c[YY]=y;
311 c[ZZ]=z;
314 static inline void rvec_inc(rvec a,const rvec b)
316 real x,y,z;
318 x=a[XX]+b[XX];
319 y=a[YY]+b[YY];
320 z=a[ZZ]+b[ZZ];
322 a[XX]=x;
323 a[YY]=y;
324 a[ZZ]=z;
327 static inline void dvec_inc(dvec a,const dvec b)
329 double x,y,z;
331 x=a[XX]+b[XX];
332 y=a[YY]+b[YY];
333 z=a[ZZ]+b[ZZ];
335 a[XX]=x;
336 a[YY]=y;
337 a[ZZ]=z;
340 static inline void rvec_sub(const rvec a,const rvec b,rvec c)
342 real x,y,z;
344 x=a[XX]-b[XX];
345 y=a[YY]-b[YY];
346 z=a[ZZ]-b[ZZ];
348 c[XX]=x;
349 c[YY]=y;
350 c[ZZ]=z;
353 static inline void dvec_sub(const dvec a,const dvec b,dvec c)
355 double x,y,z;
357 x=a[XX]-b[XX];
358 y=a[YY]-b[YY];
359 z=a[ZZ]-b[ZZ];
361 c[XX]=x;
362 c[YY]=y;
363 c[ZZ]=z;
366 static inline void rvec_dec(rvec a,const rvec b)
368 real x,y,z;
370 x=a[XX]-b[XX];
371 y=a[YY]-b[YY];
372 z=a[ZZ]-b[ZZ];
374 a[XX]=x;
375 a[YY]=y;
376 a[ZZ]=z;
379 static inline void copy_rvec(const rvec a,rvec b)
381 b[XX]=a[XX];
382 b[YY]=a[YY];
383 b[ZZ]=a[ZZ];
386 static inline void copy_rvecn(rvec *a,rvec *b,int startn, int endn)
388 int i;
389 for (i=startn;i<endn;i++) {
390 b[i][XX]=a[i][XX];
391 b[i][YY]=a[i][YY];
392 b[i][ZZ]=a[i][ZZ];
396 static inline void copy_dvec(const dvec a,dvec b)
398 b[XX]=a[XX];
399 b[YY]=a[YY];
400 b[ZZ]=a[ZZ];
403 static inline void copy_ivec(const ivec a,ivec b)
405 b[XX]=a[XX];
406 b[YY]=a[YY];
407 b[ZZ]=a[ZZ];
410 static inline void ivec_sub(const ivec a,const ivec b,ivec c)
412 int x,y,z;
414 x=a[XX]-b[XX];
415 y=a[YY]-b[YY];
416 z=a[ZZ]-b[ZZ];
418 c[XX]=x;
419 c[YY]=y;
420 c[ZZ]=z;
423 static inline void copy_mat(matrix a,matrix b)
425 copy_rvec(a[XX],b[XX]);
426 copy_rvec(a[YY],b[YY]);
427 copy_rvec(a[ZZ],b[ZZ]);
430 static inline void svmul(real a,const rvec v1,rvec v2)
432 v2[XX]=a*v1[XX];
433 v2[YY]=a*v1[YY];
434 v2[ZZ]=a*v1[ZZ];
437 static inline void dsvmul(double a,const dvec v1,dvec v2)
439 v2[XX]=a*v1[XX];
440 v2[YY]=a*v1[YY];
441 v2[ZZ]=a*v1[ZZ];
444 static inline real distance2(const rvec v1,const rvec v2)
446 return sqr(v2[XX]-v1[XX]) + sqr(v2[YY]-v1[YY]) + sqr(v2[ZZ]-v1[ZZ]);
449 static inline void clear_rvec(rvec a)
451 /* The ibm compiler has problems with inlining this
452 * when we use a const real variable
454 a[XX]=0.0;
455 a[YY]=0.0;
456 a[ZZ]=0.0;
459 static inline void clear_dvec(dvec a)
461 /* The ibm compiler has problems with inlining this
462 * when we use a const real variable
464 a[XX]=0.0;
465 a[YY]=0.0;
466 a[ZZ]=0.0;
469 static inline void clear_ivec(ivec a)
471 a[XX]=0;
472 a[YY]=0;
473 a[ZZ]=0;
476 static inline void clear_rvecs(int n,rvec v[])
478 /* memset(v[0],0,DIM*n*sizeof(v[0][0])); */
479 int i;
481 GMX_MPE_LOG(ev_clear_rvecs_start);
483 for(i=0; (i<n); i++)
484 clear_rvec(v[i]);
486 GMX_MPE_LOG(ev_clear_rvecs_finish);
489 static inline void clear_mat(matrix a)
491 /* memset(a[0],0,DIM*DIM*sizeof(a[0][0])); */
493 const real nul=0.0;
495 a[XX][XX]=a[XX][YY]=a[XX][ZZ]=nul;
496 a[YY][XX]=a[YY][YY]=a[YY][ZZ]=nul;
497 a[ZZ][XX]=a[ZZ][YY]=a[ZZ][ZZ]=nul;
500 static inline real iprod(const rvec a,const rvec b)
502 return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
505 static inline double diprod(const dvec a,const dvec b)
507 return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
510 static inline int iiprod(const ivec a,const ivec b)
512 return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
515 static inline real norm2(const rvec a)
517 return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
520 static inline double dnorm2(const dvec a)
522 return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
525 static inline real norm(const rvec a)
527 return (real)sqrt(a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ]);
530 static inline double dnorm(const dvec a)
532 return sqrt(a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ]);
535 /* WARNING:
536 * Do _not_ use these routines to calculate the angle between two vectors
537 * as acos(cos_angle(u,v)). While it might seem obvious, the acos function
538 * is very flat close to -1 and 1, which will lead to accuracy-loss.
539 * Instead, use the new gmx_angle() function directly.
541 static inline real
542 cos_angle(const rvec a,const rvec b)
545 * ax*bx + ay*by + az*bz
546 * cos-vec (a,b) = ---------------------
547 * ||a|| * ||b||
549 real cosval;
550 int m;
551 double aa,bb,ip,ipa,ipb,ipab; /* For accuracy these must be double! */
553 ip=ipa=ipb=0.0;
554 for(m=0; (m<DIM); m++) { /* 18 */
555 aa = a[m];
556 bb = b[m];
557 ip += aa*bb;
558 ipa += aa*aa;
559 ipb += bb*bb;
561 ipab = ipa*ipb;
562 if (ipab > 0)
563 cosval = ip*gmx_invsqrt(ipab); /* 7 */
564 else
565 cosval = 1;
566 /* 25 TOTAL */
567 if (cosval > 1.0)
568 return 1.0;
569 if (cosval <-1.0)
570 return -1.0;
572 return cosval;
575 /* WARNING:
576 * Do _not_ use these routines to calculate the angle between two vectors
577 * as acos(cos_angle(u,v)). While it might seem obvious, the acos function
578 * is very flat close to -1 and 1, which will lead to accuracy-loss.
579 * Instead, use the new gmx_angle() function directly.
581 static inline real
582 cos_angle_no_table(const rvec a,const rvec b)
584 /* This version does not need the invsqrt lookup table */
585 real cosval;
586 int m;
587 double aa,bb,ip,ipa,ipb; /* For accuracy these must be double! */
589 ip=ipa=ipb=0.0;
590 for(m=0; (m<DIM); m++) { /* 18 */
591 aa = a[m];
592 bb = b[m];
593 ip += aa*bb;
594 ipa += aa*aa;
595 ipb += bb*bb;
597 cosval=ip/sqrt(ipa*ipb); /* 12 */
598 /* 30 TOTAL */
599 if (cosval > 1.0)
600 return 1.0;
601 if (cosval <-1.0)
602 return -1.0;
604 return cosval;
608 static inline void cprod(const rvec a,const rvec b,rvec c)
610 c[XX]=a[YY]*b[ZZ]-a[ZZ]*b[YY];
611 c[YY]=a[ZZ]*b[XX]-a[XX]*b[ZZ];
612 c[ZZ]=a[XX]*b[YY]-a[YY]*b[XX];
615 static inline void dcprod(const dvec a,const dvec b,dvec c)
617 c[XX]=a[YY]*b[ZZ]-a[ZZ]*b[YY];
618 c[YY]=a[ZZ]*b[XX]-a[XX]*b[ZZ];
619 c[ZZ]=a[XX]*b[YY]-a[YY]*b[XX];
622 /* This routine calculates the angle between a & b without any loss of accuracy close to 0/PI.
623 * If you only need cos(theta), use the cos_angle() routines to save a few cycles.
624 * This routine is faster than it might appear, since atan2 is accelerated on many CPUs (e.g. x86).
626 static inline real
627 gmx_angle(const rvec a, const rvec b)
629 rvec w;
630 real wlen,s,theta;
632 cprod(a,b,w);
634 wlen = norm(w);
635 s = iprod(a,b);
637 return atan2(wlen,s);
640 static inline void mmul_ur0(matrix a,matrix b,matrix dest)
642 dest[XX][XX]=a[XX][XX]*b[XX][XX];
643 dest[XX][YY]=0.0;
644 dest[XX][ZZ]=0.0;
645 dest[YY][XX]=a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX];
646 dest[YY][YY]= a[YY][YY]*b[YY][YY];
647 dest[YY][ZZ]=0.0;
648 dest[ZZ][XX]=a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
649 dest[ZZ][YY]= a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
650 dest[ZZ][ZZ]= a[ZZ][ZZ]*b[ZZ][ZZ];
653 static inline void mmul(matrix a,matrix b,matrix dest)
655 dest[XX][XX]=a[XX][XX]*b[XX][XX]+a[XX][YY]*b[YY][XX]+a[XX][ZZ]*b[ZZ][XX];
656 dest[YY][XX]=a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[YY][ZZ]*b[ZZ][XX];
657 dest[ZZ][XX]=a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
658 dest[XX][YY]=a[XX][XX]*b[XX][YY]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[ZZ][YY];
659 dest[YY][YY]=a[YY][XX]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[ZZ][YY];
660 dest[ZZ][YY]=a[ZZ][XX]*b[XX][YY]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
661 dest[XX][ZZ]=a[XX][XX]*b[XX][ZZ]+a[XX][YY]*b[YY][ZZ]+a[XX][ZZ]*b[ZZ][ZZ];
662 dest[YY][ZZ]=a[YY][XX]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[YY][ZZ]*b[ZZ][ZZ];
663 dest[ZZ][ZZ]=a[ZZ][XX]*b[XX][ZZ]+a[ZZ][YY]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
666 static inline void transpose(matrix src,matrix dest)
668 dest[XX][XX]=src[XX][XX];
669 dest[YY][XX]=src[XX][YY];
670 dest[ZZ][XX]=src[XX][ZZ];
671 dest[XX][YY]=src[YY][XX];
672 dest[YY][YY]=src[YY][YY];
673 dest[ZZ][YY]=src[YY][ZZ];
674 dest[XX][ZZ]=src[ZZ][XX];
675 dest[YY][ZZ]=src[ZZ][YY];
676 dest[ZZ][ZZ]=src[ZZ][ZZ];
679 static inline void tmmul(matrix a,matrix b,matrix dest)
681 /* Computes dest=mmul(transpose(a),b,dest) - used in do_pr_pcoupl */
682 dest[XX][XX]=a[XX][XX]*b[XX][XX]+a[YY][XX]*b[YY][XX]+a[ZZ][XX]*b[ZZ][XX];
683 dest[XX][YY]=a[XX][XX]*b[XX][YY]+a[YY][XX]*b[YY][YY]+a[ZZ][XX]*b[ZZ][YY];
684 dest[XX][ZZ]=a[XX][XX]*b[XX][ZZ]+a[YY][XX]*b[YY][ZZ]+a[ZZ][XX]*b[ZZ][ZZ];
685 dest[YY][XX]=a[XX][YY]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[ZZ][YY]*b[ZZ][XX];
686 dest[YY][YY]=a[XX][YY]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[ZZ][YY]*b[ZZ][YY];
687 dest[YY][ZZ]=a[XX][YY]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[ZZ][YY]*b[ZZ][ZZ];
688 dest[ZZ][XX]=a[XX][ZZ]*b[XX][XX]+a[YY][ZZ]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
689 dest[ZZ][YY]=a[XX][ZZ]*b[XX][YY]+a[YY][ZZ]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
690 dest[ZZ][ZZ]=a[XX][ZZ]*b[XX][ZZ]+a[YY][ZZ]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
693 static inline void mtmul(matrix a,matrix b,matrix dest)
695 /* Computes dest=mmul(a,transpose(b),dest) - used in do_pr_pcoupl */
696 dest[XX][XX]=a[XX][XX]*b[XX][XX]+a[XX][YY]*b[XX][YY]+a[XX][ZZ]*b[XX][ZZ];
697 dest[XX][YY]=a[XX][XX]*b[YY][XX]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[YY][ZZ];
698 dest[XX][ZZ]=a[XX][XX]*b[ZZ][XX]+a[XX][YY]*b[ZZ][YY]+a[XX][ZZ]*b[ZZ][ZZ];
699 dest[YY][XX]=a[YY][XX]*b[XX][XX]+a[YY][YY]*b[XX][YY]+a[YY][ZZ]*b[XX][ZZ];
700 dest[YY][YY]=a[YY][XX]*b[YY][XX]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[YY][ZZ];
701 dest[YY][ZZ]=a[YY][XX]*b[ZZ][XX]+a[YY][YY]*b[ZZ][YY]+a[YY][ZZ]*b[ZZ][ZZ];
702 dest[ZZ][XX]=a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[XX][YY]+a[ZZ][ZZ]*b[XX][ZZ];
703 dest[ZZ][YY]=a[ZZ][XX]*b[YY][XX]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[YY][ZZ];
704 dest[ZZ][ZZ]=a[ZZ][XX]*b[ZZ][XX]+a[ZZ][YY]*b[ZZ][YY]+a[ZZ][ZZ]*b[ZZ][ZZ];
707 static inline real det(matrix a)
709 return ( a[XX][XX]*(a[YY][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[YY][ZZ])
710 -a[YY][XX]*(a[XX][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[XX][ZZ])
711 +a[ZZ][XX]*(a[XX][YY]*a[YY][ZZ]-a[YY][YY]*a[XX][ZZ]));
714 static inline void m_add(matrix a,matrix b,matrix dest)
716 dest[XX][XX]=a[XX][XX]+b[XX][XX];
717 dest[XX][YY]=a[XX][YY]+b[XX][YY];
718 dest[XX][ZZ]=a[XX][ZZ]+b[XX][ZZ];
719 dest[YY][XX]=a[YY][XX]+b[YY][XX];
720 dest[YY][YY]=a[YY][YY]+b[YY][YY];
721 dest[YY][ZZ]=a[YY][ZZ]+b[YY][ZZ];
722 dest[ZZ][XX]=a[ZZ][XX]+b[ZZ][XX];
723 dest[ZZ][YY]=a[ZZ][YY]+b[ZZ][YY];
724 dest[ZZ][ZZ]=a[ZZ][ZZ]+b[ZZ][ZZ];
727 static inline void m_sub(matrix a,matrix b,matrix dest)
729 dest[XX][XX]=a[XX][XX]-b[XX][XX];
730 dest[XX][YY]=a[XX][YY]-b[XX][YY];
731 dest[XX][ZZ]=a[XX][ZZ]-b[XX][ZZ];
732 dest[YY][XX]=a[YY][XX]-b[YY][XX];
733 dest[YY][YY]=a[YY][YY]-b[YY][YY];
734 dest[YY][ZZ]=a[YY][ZZ]-b[YY][ZZ];
735 dest[ZZ][XX]=a[ZZ][XX]-b[ZZ][XX];
736 dest[ZZ][YY]=a[ZZ][YY]-b[ZZ][YY];
737 dest[ZZ][ZZ]=a[ZZ][ZZ]-b[ZZ][ZZ];
740 static inline void msmul(matrix m1,real r1,matrix dest)
742 dest[XX][XX]=r1*m1[XX][XX];
743 dest[XX][YY]=r1*m1[XX][YY];
744 dest[XX][ZZ]=r1*m1[XX][ZZ];
745 dest[YY][XX]=r1*m1[YY][XX];
746 dest[YY][YY]=r1*m1[YY][YY];
747 dest[YY][ZZ]=r1*m1[YY][ZZ];
748 dest[ZZ][XX]=r1*m1[ZZ][XX];
749 dest[ZZ][YY]=r1*m1[ZZ][YY];
750 dest[ZZ][ZZ]=r1*m1[ZZ][ZZ];
753 static inline void m_inv_ur0(matrix src,matrix dest)
755 double tmp = src[XX][XX]*src[YY][YY]*src[ZZ][ZZ];
756 if (fabs(tmp) <= 100*GMX_REAL_MIN)
757 gmx_fatal(FARGS,"Can not invert matrix, determinant is zero");
759 dest[XX][XX] = 1/src[XX][XX];
760 dest[YY][YY] = 1/src[YY][YY];
761 dest[ZZ][ZZ] = 1/src[ZZ][ZZ];
762 dest[ZZ][XX] = (src[YY][XX]*src[ZZ][YY]*dest[YY][YY]
763 - src[ZZ][XX])*dest[XX][XX]*dest[ZZ][ZZ];
764 dest[YY][XX] = -src[YY][XX]*dest[XX][XX]*dest[YY][YY];
765 dest[ZZ][YY] = -src[ZZ][YY]*dest[YY][YY]*dest[ZZ][ZZ];
766 dest[XX][YY] = 0.0;
767 dest[XX][ZZ] = 0.0;
768 dest[YY][ZZ] = 0.0;
771 static inline void m_inv(matrix src,matrix dest)
773 const real smallreal = (real)1.0e-24;
774 const real largereal = (real)1.0e24;
775 real deter,c,fc;
777 deter = det(src);
778 c = (real)1.0/deter;
779 fc = (real)fabs(c);
781 if ((fc <= smallreal) || (fc >= largereal))
782 gmx_fatal(FARGS,"Can not invert matrix, determinant = %e",deter);
784 dest[XX][XX]= c*(src[YY][YY]*src[ZZ][ZZ]-src[ZZ][YY]*src[YY][ZZ]);
785 dest[XX][YY]=-c*(src[XX][YY]*src[ZZ][ZZ]-src[ZZ][YY]*src[XX][ZZ]);
786 dest[XX][ZZ]= c*(src[XX][YY]*src[YY][ZZ]-src[YY][YY]*src[XX][ZZ]);
787 dest[YY][XX]=-c*(src[YY][XX]*src[ZZ][ZZ]-src[ZZ][XX]*src[YY][ZZ]);
788 dest[YY][YY]= c*(src[XX][XX]*src[ZZ][ZZ]-src[ZZ][XX]*src[XX][ZZ]);
789 dest[YY][ZZ]=-c*(src[XX][XX]*src[YY][ZZ]-src[YY][XX]*src[XX][ZZ]);
790 dest[ZZ][XX]= c*(src[YY][XX]*src[ZZ][YY]-src[ZZ][XX]*src[YY][YY]);
791 dest[ZZ][YY]=-c*(src[XX][XX]*src[ZZ][YY]-src[ZZ][XX]*src[XX][YY]);
792 dest[ZZ][ZZ]= c*(src[XX][XX]*src[YY][YY]-src[YY][XX]*src[XX][YY]);
795 static inline void mvmul(matrix a,const rvec src,rvec dest)
797 dest[XX]=a[XX][XX]*src[XX]+a[XX][YY]*src[YY]+a[XX][ZZ]*src[ZZ];
798 dest[YY]=a[YY][XX]*src[XX]+a[YY][YY]*src[YY]+a[YY][ZZ]*src[ZZ];
799 dest[ZZ]=a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
802 static inline void mvmul_ur0(matrix a,const rvec src,rvec dest)
804 dest[ZZ]=a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
805 dest[YY]=a[YY][XX]*src[XX]+a[YY][YY];
806 dest[XX]=a[XX][XX]*src[XX];
809 static inline void tmvmul_ur0(matrix a,const rvec src,rvec dest)
811 dest[XX]=a[XX][XX]*src[XX]+a[YY][XX]*src[YY]+a[ZZ][XX]*src[ZZ];
812 dest[YY]= a[YY][YY]*src[YY]+a[ZZ][YY]*src[ZZ];
813 dest[ZZ]= a[ZZ][ZZ]*src[ZZ];
816 static inline void unitv(const rvec src,rvec dest)
818 real linv;
820 linv=gmx_invsqrt(norm2(src));
821 dest[XX]=linv*src[XX];
822 dest[YY]=linv*src[YY];
823 dest[ZZ]=linv*src[ZZ];
826 static inline void unitv_no_table(const rvec src,rvec dest)
828 real linv;
830 linv=1.0/sqrt(norm2(src));
831 dest[XX]=linv*src[XX];
832 dest[YY]=linv*src[YY];
833 dest[ZZ]=linv*src[ZZ];
836 static void calc_lll(rvec box,rvec lll)
838 lll[XX] = 2.0*M_PI/box[XX];
839 lll[YY] = 2.0*M_PI/box[YY];
840 lll[ZZ] = 2.0*M_PI/box[ZZ];
843 static inline real trace(matrix m)
845 return (m[XX][XX]+m[YY][YY]+m[ZZ][ZZ]);
848 static inline real _divide(real a,real b,const char *file,int line)
850 if (fabs(b) <= GMX_REAL_MIN)
851 gmx_fatal(FARGS,"Dividing by zero, file %s, line %d",file,line);
852 return a/b;
855 static inline int _mod(int a,int b,char *file,int line)
857 if(b==0)
858 gmx_fatal(FARGS,"Modulo zero, file %s, line %d",file,line);
859 return a % b;
862 /* Operations on multidimensional rvecs, used e.g. in edsam.c */
863 static void m_rveccopy(int dim, rvec *a, rvec *b)
865 /* b = a */
866 int i;
868 for (i=0; i<dim; i++)
869 copy_rvec(a[i],b[i]);
872 /*computer matrix vectors from base vectors and angles */
873 static void matrix_convert(matrix box, rvec vec, rvec angle)
875 svmul(DEG2RAD,angle,angle);
876 box[XX][XX] = vec[XX];
877 box[YY][XX] = vec[YY]*cos(angle[ZZ]);
878 box[YY][YY] = vec[YY]*sin(angle[ZZ]);
879 box[ZZ][XX] = vec[ZZ]*cos(angle[YY]);
880 box[ZZ][YY] = vec[ZZ]
881 *(cos(angle[XX])-cos(angle[YY])*cos(angle[ZZ]))/sin(angle[ZZ]);
882 box[ZZ][ZZ] = sqrt(sqr(vec[ZZ])
883 -box[ZZ][XX]*box[ZZ][XX]-box[ZZ][YY]*box[ZZ][YY]);
886 #define divide(a,b) _divide((a),(b),__FILE__,__LINE__)
887 #define mod(a,b) _mod((a),(b),__FILE__,__LINE__)
889 #ifdef __cplusplus
891 #endif
894 #endif /* _vec_h */