3 * This source code is part of
7 * GROningen MAchine for Chemical Simulations
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
33 * Green Red Orange Magenta Azure Cyan Skyblue
52 int nfp_ffn
[effnNR
] = { 0, 1, 2, 3, 2, 5, 7, 9, 3 };
54 const char *s_ffn
[effnNR
+2] = { NULL
, "none", "exp", "aexp", "exp_exp", "vac",
55 "exp5", "exp7", "exp9", NULL
, NULL
};
56 /* We don't allow errest as a choice on the command line */
58 const char *longs_ffn
[effnNR
] = {
62 "y = a2 exp(-x/a1) + (1-a2) exp(-x/a3)",
63 "y = exp(-v) (cosh(wv) + 1/w sinh(wv)), v = x/(2 a1), w = sqrt(1 - a2)",
64 "y = a1 exp(-x/a2) + a3 exp(-x/a4) + a5",
65 "y = a1 exp(-x/a2) + a3 exp(-x/a4) + a5 exp(-x/a6) + a7",
66 "y = a1 exp(-x/a2) + a3 exp(-x/a4) + a5 exp(-x/a6) + a7 exp(-x/a8) + a9",
67 "y = a2*ee(a1,x) + (1-a2)*ee(a2,x)"
70 extern bool mrqmin(real x
[],real y
[],real sig
[],int ndata
,real a
[],
71 int ma
,int lista
[],int mfit
,real
**covar
,real
**alpha
,
73 void (*funcs
)(real x
,real a
[],real
*y
,real dyda
[]),
76 extern bool mrqmin_new(real x
[],real y
[],real sig
[],int ndata
,real a
[],
77 int ia
[],int ma
,real
**covar
,real
**alpha
,real
*chisq
,
78 void (*funcs
)(real
, real
[], real
*, real
[]),
81 static real
myexp(real x
,real A
,real tau
)
83 if ((A
== 0) || (tau
== 0))
88 static void exp_one_parm(real x
,real a
[],real
*y
,real dyda
[])
100 dyda
[1] = x
*e1
/sqr(a
[1]);
103 static void exp_two_parm(real x
,real a
[],real
*y
,real dyda
[])
115 dyda
[1] = x
*a
[2]*e1
/sqr(a
[1]);
119 static void exp_3_parm(real x
,real a
[],real
*y
,real dyda
[])
123 * y = a2 exp(-x/a1) + (1-a2) exp(-x/a3)
131 *y
= a
[2]*e1
+ (1-a
[2])*e2
;
132 dyda
[1] = x
*a
[2]*e1
/sqr(a
[1]);
134 dyda
[3] = x
*(1-a
[2])*e2
/sqr(a
[3]);
137 static void exp_5_parm(real x
,real a
[],real
*y
,real dyda
[])
141 * y = a1 exp(-x/a2) + a3 exp(-x/a4) + a5
149 *y
= a
[1]*e1
+ a
[3]*e2
+ a
[5];
152 fprintf(debug
,"exp_5_parm called: x = %10.3f y = %10.3f\n"
153 "a = ( %8.3f %8.3f %8.3f %8.3f %8.3f)\n",
154 x
,*y
,a
[1],a
[2],a
[3],a
[4],a
[5]);
156 dyda
[2] = x
*e1
/sqr(a
[2]);
158 dyda
[4] = x
*e2
/sqr(a
[4]);
162 static void exp_7_parm(real x
,real a
[],real
*y
,real dyda
[])
166 * y = a1 exp(-x/a2) + a3 exp(-x/a4) + a5 exp(-x/a6) + a7
175 *y
= a
[1]*e1
+ a
[3]*e2
+ a
[5]*e3
+ a
[7];
178 dyda
[2] = x
*e1
/sqr(a
[2]);
180 dyda
[4] = x
*e2
/sqr(a
[4]);
182 dyda
[6] = x
*e3
/sqr(a
[6]);
186 static void exp_9_parm(real x
,real a
[],real
*y
,real dyda
[])
190 * y = a1 exp(-x/a2) + a3 exp(-x/a4) + a5 exp(-x/a6) + a7
200 *y
= a
[1]*e1
+ a
[3]*e2
+ a
[5]*e3
+ a
[7]*e4
+ a
[9];
203 dyda
[2] = x
*e1
/sqr(a
[2]);
205 dyda
[4] = x
*e2
/sqr(a
[4]);
207 dyda
[6] = x
*e3
/sqr(a
[6]);
209 dyda
[8] = x
*e4
/sqr(a
[8]);
213 static void vac_2_parm(real x
,real a
[],real
*y
,real dyda
[])
217 * y = 1/2 (1 - 1/w) exp(-(1+w)v) + 1/2 (1 + 1/w) exp(-(1-w)v)
219 * = exp(-v) (cosh(wv) + 1/w sinh(wv))
224 * For tranverse current autocorrelation functions:
226 * a2 = 4 tau (eta/rho) k^2
230 double v
,det
,omega
,omega2
,em
,ec
,es
;
237 omega
= sqrt(omega2
);
239 ec
= em
*0.5*(exp(omega
*v
)+exp(-omega
*v
));
240 es
= em
*0.5*(exp(omega
*v
)-exp(-omega
*v
))/omega
;
242 ec
= em
*cos(omega
*v
);
243 es
= em
*sin(omega
*v
)/omega
;
246 dyda
[2] = (v
/det
*ec
+(v
-1/det
)*es
)/(-2.0);
247 dyda
[1] = (1-det
)*v
/a
[1]*es
;
250 dyda
[2] = -v
*v
*em
*(0.5+v
/6);
251 dyda
[1] = v
*v
/a
[1]*em
;
255 static void errest_3_parm(real x
,real a
[],real
*y
,real dyda
[])
260 e1
= exp(-x
/a
[1]) - 1;
264 e2
= exp(-x
/a
[3]) - 1;
269 v1
= 2*a
[1]*(e1
*a
[1]/x
+ 1);
270 v2
= 2*a
[3]*(e2
*a
[3]/x
+ 1);
271 *y
= a
[2]*v1
+ (1-a
[2])*v2
;
272 dyda
[1] = 2* a
[2] *(v1
/a
[1] + e1
);
273 dyda
[3] = 2*(1 - a
[2])*(v2
/a
[3] + e2
);
283 typedef void (*myfitfn
)(real x
,real a
[],real
*y
,real dyda
[]);
284 myfitfn mfitfn
[effnNR
] = {
285 exp_one_parm
, exp_one_parm
, exp_two_parm
, exp_3_parm
, vac_2_parm
,
286 exp_5_parm
, exp_7_parm
, exp_9_parm
, errest_3_parm
289 real
fit_function(int eFitFn
,real
*parm
,real x
)
291 static real y
,dum
[8];
293 mfitfn
[eFitFn
](x
,parm
-1,&y
,dum
);
298 /* lmfit_exp supports up to 3 parameter fitting of exponential functions */
299 static bool lmfit_exp(int nfit
,real x
[],real y
[],real dy
[],real ftol
,
300 real parm
[],real dparm
[],bool bVerbose
,
303 real chisq
,ochisq
,alamda
;
304 real
*a
,**covar
,**alpha
,*dum
;
306 int i
,j
,ma
,mfit
,*lista
,*ia
;
308 if ((eFitFn
< 0) || (eFitFn
>= effnNR
))
309 gmx_fatal(FARGS
,"fitfn = %d, should be in 0..%d (%s,%d)",
310 effnNR
-1,eFitFn
,__FILE__
,__LINE__
);
312 ma
=mfit
=nfp_ffn
[eFitFn
]; /* number of parameters to fit */
319 for(i
=1; (i
<ma
+1); i
++) {
327 fprintf(stderr
,"Will keep parameters fixed during fit procedure: %d\n",
334 fprintf(debug
,"%d parameter fit\n",mfit
);
337 alamda
= -1; /* Starting value */
339 for(i
=0; (i
<mfit
); i
++)
344 fprintf(stderr
,"%4s %10s %10s %10s %10s %10s\n",
345 "Step","chi^2","Lambda","A1","A2","A3");
348 /* mrqmin(x-1,y-1,dy-1,nfit,a,ma,lista,mfit,covar,alpha,
349 * &chisq,expfn[mfit-1],&alamda)
351 if (!mrqmin_new(x
-1,y
-1,dy
-1,nfit
,a
,ia
,ma
,covar
,alpha
,&chisq
,
352 mfitfn
[eFitFn
],&alamda
))
356 fprintf(stderr
,"%4d %10.5e %10.5e %10.5e",
357 j
,chisq
,alamda
,a
[1]);
359 fprintf(stderr
," %10.5e",a
[2]);
361 fprintf(stderr
," %10.5e",a
[3]);
362 fprintf(stderr
,"\n");
365 bCont
= ((fabs(ochisq
- chisq
) > fabs(ftol
*chisq
)) ||
366 ((ochisq
== chisq
)));
367 } while (bCont
&& (alamda
!= 0.0) && (j
< 50));
369 fprintf(stderr
,"\n");
371 /* Now get the covariance matrix out */
374 /* mrqmin(x-1,y-1,dy-1,nfit,a,ma,lista,mfit,covar,alpha,
375 * &chisq,expfn[mfit-1],&alamda)
377 if ( !mrqmin_new(x
-1,y
-1,dy
-1,nfit
,a
,ia
,ma
,covar
,alpha
,&chisq
,
378 mfitfn
[eFitFn
],&alamda
))
381 for(j
=0; (j
<mfit
); j
++) {
383 dparm
[j
] = covar
[j
+1][j
+1];
386 for(i
=0; (i
<ma
+1); i
++) {
399 real
do_lmfit(int ndata
,real c1
[],real sig
[],real dt
,real x0
[],
400 real begintimefit
,real endtimefit
,const output_env_t oenv
,
401 bool bVerbose
, int eFitFn
,real fitparms
[],int fix
)
406 int i
,j
,nparm
,nfitpnts
;
412 nparm
= nfp_ffn
[eFitFn
];
414 fprintf(debug
,"There are %d points to fit %d vars!\n",ndata
,nparm
);
415 fprintf(debug
,"Fit to function %d from %g thru %g, dt=%g\n",
416 eFitFn
,begintimefit
,endtimefit
,dt
);
424 for(i
=0; i
<ndata
; i
++) {
425 ttt
= x0
? x0
[i
] : dt
*i
;
426 if (ttt
>=begintimefit
&& ttt
<=endtimefit
) {
430 /* mrqmin does not like sig to be zero */
436 fprintf(debug
,"j= %d, i= %d, x= %g, y= %g, dy= %g\n",
437 j
,i
,x
[j
],y
[j
],dy
[j
]);
443 if (nfitpnts
< nparm
)
444 fprintf(stderr
,"Not enough data points for fitting!\n");
449 for(i
=0; (i
< nparm
); i
++)
452 if (!lmfit_exp(nfitpnts
,x
,y
,dy
,ftol
,parm
,dparm
,bVerbose
,eFitFn
,fix
))
453 fprintf(stderr
,"Fit failed!\n");
454 else if (nparm
<= 3) {
455 /* Compute the integral from begintimefit */
457 integral
=(parm
[0]*myexp(begintimefit
,parm
[1], parm
[0]) +
458 parm
[2]*myexp(begintimefit
,1-parm
[1],parm
[2]));
460 integral
=parm
[0]*myexp(begintimefit
,parm
[1], parm
[0]);
462 integral
=parm
[0]*myexp(begintimefit
,1, parm
[0]);
464 gmx_fatal(FARGS
,"nparm = %d in file %s, line %d",
465 nparm
,__FILE__
,__LINE__
);
467 /* Generate THE output */
469 fprintf(stderr
,"FIT: # points used in fit is: %d\n",nfitpnts
);
470 fprintf(stderr
,"FIT: %21s%21s%21s\n",
471 "parm0 ","parm1 (ps) ","parm2 (ps) ");
472 fprintf(stderr
,"FIT: ------------------------------------------------------------\n");
473 fprintf(stderr
,"FIT: %8.3g +/- %8.3g%9.4g +/- %8.3g%8.3g +/- %8.3g\n",
474 parm
[0],dparm
[0],parm
[1],dparm
[1],parm
[2],dparm
[2]);
475 fprintf(stderr
,"FIT: Integral (calc with fitted function) from %g ps to inf. is: %g\n",
476 begintimefit
,integral
);
478 sprintf(buf
,"test%d.xvg",nfitpnts
);
479 fp
= xvgropen(buf
,"C(t) + Fit to C(t)","Time (ps)","C(t)",oenv
);
480 fprintf(fp
,"# parm0 = %g, parm1 = %g, parm2 = %g\n",
481 parm
[0],parm
[1],parm
[2]);
482 for(j
=0; (j
<nfitpnts
); j
++) {
483 ttt
= x0
? x0
[j
] : dt
*j
;
484 fprintf(fp
,"%10.5e %10.5e %10.5e\n",
485 ttt
,c1
[j
],fit_function(eFitFn
,parm
,ttt
));
490 for(i
=0;(i
<nparm
);i
++)
491 fitparms
[i
] = parm
[i
];
503 void do_expfit(int ndata
,real c1
[],real dt
,real begintimefit
,real endtimefit
)
507 real aa
,bb
,saa
,sbb
,A
,tau
,dA
,dtau
;
509 fprintf(stderr
,"Will fit data from %g (ps) to %g (ps).\n",
510 begintimefit
,endtimefit
);
512 snew(x
,ndata
); /* allocate the maximum necessary space */
517 for(i
=0; (i
<ndata
); i
++) {
518 if ( (dt
*i
>= begintimefit
) && (dt
*i
<= endtimefit
) ) {
522 fprintf(stderr
,"n= %d, i= %d, x= %g, y= %g\n",n
,i
,x
[n
],y
[n
]);
526 fprintf(stderr
,"# of data points used in the fit is : %d\n\n",n
);
527 expfit(n
,x
,y
,Dy
,&aa
,&saa
,&bb
,&sbb
);
533 fprintf(stderr
,"Fitted to y=exp(a+bx):\n");
534 fprintf(stderr
,"a = %10.5f\t b = %10.5f",aa
,bb
);
535 fprintf(stderr
,"\n");
536 fprintf(stderr
,"Fitted to y=Aexp(-x/tau):\n");
537 fprintf(stderr
,"A = %10.5f\t tau = %10.5f\n",A
,tau
);
538 fprintf(stderr
,"dA = %10.5f\t dtau = %10.5f\n",dA
,dtau
);
542 void expfit(int n
, real
*x
, real
*y
, real
*Dy
, real
*a
, real
*sa
,
545 real
*w
,*ly
,A
,SA
,B
,SB
;
547 real sum
,xbar
,ybar
,Sxx
,Sxy
,wr2
,chi2
,gamma
,Db
;
554 #define sqr(x) ((x)*(x))
560 /* Calculate weights and values of ln(y). */
562 w
[i
]=sqr(y
[i
]/Dy
[i
]);
566 /* The weighted averages of x and y: xbar and ybar. */
578 /* The centered product sums Sxx and Sxy, and hence A and B. */
582 Sxx
+=w
[i
]*sqr(x
[i
]-xbar
);
583 Sxy
+=w
[i
]*(x
[i
]-xbar
)*(ly
[i
]-ybar
);
588 /* Chi-squared (chi2) and gamma. */
592 wr2
=w
[i
]*sqr(ly
[i
]-A
-B
*x
[i
]);
594 gamma
+=wr2
*(x
[i
]-xbar
);
597 /* Refined values of A and B. Also SA and SB. */
600 A
-=ONEP5
*chi2
/sum
-xbar
*Db
;
601 SB
=sqrt((chi2
/(n
-2))/Sxx
);
602 SA
=SB
*sqrt(Sxx
/sum
+sqr(xbar
));