1 /* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
4 * This source code is part of
8 * GROningen MAchine for Chemical Simulations
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2008, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
33 * Gallium Rubidium Oxygen Manganese Argon Carbon Silicon
36 #include "groupcoord.h"
37 #include "mpelogging.h"
42 #include "gmx_ga2la.h"
44 #define MIN(a,b) (((a)<(b))?(a):(b))
48 /* Select the indices of the group's atoms which are local and store them in
49 * anrs_loc[0..nr_loc]. The indices are saved in coll_ind[] for later reduction
50 * in communicate_group_positions()
52 extern void dd_make_local_group_indices(
54 const int nr
, /* IN: Total number of atoms in the group */
55 int anrs
[], /* IN: Global atom numbers of the groups atoms */
56 int *nr_loc
, /* OUT: Number of group atoms found locally */
57 int *anrs_loc
[], /* OUT: Local atom numbers of the group */
58 int *nalloc_loc
, /* IN+OUT: Allocation size of anrs_loc */
59 int coll_ind
[]) /* OUT (opt): Where is this position found in the collective array? */
65 /* Loop over all the atom indices of the group to check
66 * which ones are on the local node */
70 if (ga2la_get_home(ga2la
,anrs
[i
],&ii
))
72 /* The atom with this index is a home atom */
73 if (localnr
>= *nalloc_loc
) /* Check whether memory suffices */
75 *nalloc_loc
= over_alloc_dd(localnr
+1);
76 /* We never need more memory than the number of atoms in the group */
77 *nalloc_loc
= MIN(*nalloc_loc
, nr
);
78 srenew(*anrs_loc
,*nalloc_loc
);
80 /* Save the atoms index in the local atom numbers array */
81 (*anrs_loc
)[localnr
] = ii
;
85 /* Keep track of where this local atom belongs in the collective index array.
86 * This is needed when reducing the local arrays to a collective/global array
87 * in communicate_group_positions */
88 coll_ind
[localnr
] = i
;
91 /* add one to the local atom count */
96 /* Return the number of local atoms that were found */
101 static void get_shifts_group(
104 rvec
*xcoll
, /* IN: Collective set of positions [0..nr] */
105 int nr
, /* IN: Total number of atoms in the group */
106 rvec
*xcoll_old
, /* IN: Positions from the last time step [0...nr] */
107 ivec
*shifts
) /* OUT: Shifts for xcoll */
113 /* Get the shifts such that each atom is within closest
114 * distance to its position at the last NS time step after shifting.
115 * If we start with a whole group, and always keep track of
116 * shift changes, the group will stay whole this way */
117 for (i
=0; i
< nr
; i
++)
118 clear_ivec(shifts
[i
]);
122 /* The distance this atom moved since the last time step */
123 /* If this is more than just a bit, it has changed its home pbc box */
124 rvec_sub(xcoll
[i
],xcoll_old
[i
],dx
);
126 for(m
=npbcdim
-1; m
>=0; m
--)
128 while (dx
[m
] < -0.5*box
[m
][m
])
134 while (dx
[m
] >= 0.5*box
[m
][m
])
145 static void shift_positions_group(
147 rvec x
[], /* The positions [0..nr] */
148 ivec
*is
, /* The shifts [0..nr] */
149 int nr
) /* The number of positions and shifts */
154 GMX_MPE_LOG(ev_shift_start
);
156 /* Loop over the group's atoms */
159 for (i
=0; i
< nr
; i
++)
165 x
[i
][XX
]=x
[i
][XX
]+tx
*box
[XX
][XX
]+ty
*box
[YY
][XX
]+tz
*box
[ZZ
][XX
];
166 x
[i
][YY
]=x
[i
][YY
]+ty
*box
[YY
][YY
]+tz
*box
[ZZ
][YY
];
167 x
[i
][ZZ
]=x
[i
][ZZ
]+tz
*box
[ZZ
][ZZ
];
171 for (i
=0; i
< nr
; i
++)
177 x
[i
][XX
]=x
[i
][XX
]+tx
*box
[XX
][XX
];
178 x
[i
][YY
]=x
[i
][YY
]+ty
*box
[YY
][YY
];
179 x
[i
][ZZ
]=x
[i
][ZZ
]+tz
*box
[ZZ
][ZZ
];
182 GMX_MPE_LOG(ev_shift_finish
);
186 /* Assemble the positions of the group such that every node has all of them.
187 * The atom indices are retrieved from anrs_loc[0..nr_loc]
188 * Note that coll_ind[i] = i is needed in the serial case */
189 extern void communicate_group_positions(
191 rvec
*xcoll
, /* OUT: Collective array of positions */
192 ivec
*shifts
, /* IN+OUT: Collective array of shifts for xcoll */
193 ivec
*extra_shifts
, /* BUF: Extra shifts since last time step */
194 const bool bNS
, /* IN: NS step, the shifts have changed */
195 rvec
*x_loc
, /* IN: Local positions on this node */
196 const int nr
, /* IN: Total number of atoms in the group */
197 const int nr_loc
, /* IN: Local number of atoms in the group */
198 int *anrs_loc
, /* IN: Local atom numbers */
199 int *coll_ind
, /* IN: Collective index */
200 rvec
*xcoll_old
, /* IN+OUT: Positions from the last time step, used to make group whole */
206 GMX_MPE_LOG(ev_get_group_x_start
);
208 /* Zero out the groups' global position array */
209 clear_rvecs(nr
, xcoll
);
211 /* Put the local positions that this node has into the right place of
212 * the collective array. Note that in the serial case, coll_ind[i] = i */
213 for (i
=0; i
<nr_loc
; i
++)
214 copy_rvec(x_loc
[anrs_loc
[i
]], xcoll
[coll_ind
[i
]]);
218 /* Add the arrays from all nodes together */
219 gmx_sum(nr
*3, xcoll
[0], cr
);
221 /* To make the group whole, start with a whole group and each
222 * step move the assembled positions at closest distance to the positions
223 * from the last step. First shift the positions with the saved shift
224 * vectors (these are 0 when this routine is called for the first time!) */
225 shift_positions_group(box
, xcoll
, shifts
, nr
);
227 /* Now check if some shifts changed since the last step.
228 * This only needs to be done when the shifts are expected to have changed,
229 * i.e. after neighboursearching */
232 get_shifts_group(3, box
, xcoll
, nr
, xcoll_old
, extra_shifts
);
234 /* Shift with the additional shifts such that we get a whole group now */
235 shift_positions_group(box
, xcoll
, extra_shifts
, nr
);
237 /* Add the shift vectors together for the next time step */
240 shifts
[i
][XX
] += extra_shifts
[i
][XX
];
241 shifts
[i
][YY
] += extra_shifts
[i
][YY
];
242 shifts
[i
][ZZ
] += extra_shifts
[i
][ZZ
];
245 /* Store current correctly-shifted positions for comparison in the next NS time step */
247 copy_rvec(xcoll
[i
],xcoll_old
[i
]);
251 GMX_MPE_LOG(ev_get_group_x_finish
);
255 /* Determine the (weighted) sum vector from positions x */
256 extern double get_sum_of_positions(rvec x
[], real weight
[], const int nat
, dvec dsumvec
)
260 double weight_sum
= 0.0;
263 /* Zero out the center */
266 /* Loop over all atoms and add their weighted position vectors */
269 for (i
=0; i
<nat
; i
++)
271 weight_sum
+= weight
[i
];
272 svmul(weight
[i
], x
[i
], x_weighted
);
273 dsumvec
[XX
] += x_weighted
[XX
];
274 dsumvec
[YY
] += x_weighted
[YY
];
275 dsumvec
[ZZ
] += x_weighted
[ZZ
];
280 for (i
=0; i
<nat
; i
++)
282 dsumvec
[XX
] += x
[i
][XX
];
283 dsumvec
[YY
] += x
[i
][YY
];
284 dsumvec
[ZZ
] += x
[i
][ZZ
];
291 /* Determine center of structure from collective positions x */
292 extern void get_center(rvec x
[], real weight
[], const int nr
, rvec rcenter
)
295 double weight_sum
, denom
;
298 weight_sum
= get_sum_of_positions(x
, weight
, nr
, dcenter
);
301 denom
= weight_sum
; /* Divide by the sum of weight */
303 denom
= nr
; /* Divide by the number of atoms */
305 dsvmul(1.0/denom
, dcenter
, dcenter
);
307 rcenter
[XX
] = dcenter
[XX
];
308 rcenter
[YY
] = dcenter
[YY
];
309 rcenter
[ZZ
] = dcenter
[ZZ
];
313 /* Get the center from local positions that already have the correct
314 * PBC representation */
315 extern void get_center_comm(
317 rvec x_loc
[], /* Local positions */
318 real weight_loc
[], /* Local masses or other weights */
319 int nr_loc
, /* Local number of atoms */
320 int nr_group
, /* Total number of atoms of the group */
321 rvec center
) /* Weighted center */
323 double weight_sum
, denom
;
328 weight_sum
= get_sum_of_positions(x_loc
, weight_loc
, nr_loc
, dsumvec
);
330 /* Add the local contributions from all nodes. Put the sum vector and the
331 * weight in a buffer array so that we get along with a single communication
335 buf
[0] = dsumvec
[XX
];
336 buf
[1] = dsumvec
[YY
];
337 buf
[2] = dsumvec
[ZZ
];
340 /* Communicate buffer */
341 gmx_sumd(4, buf
, cr
);
343 dsumvec
[XX
] = buf
[0];
344 dsumvec
[YY
] = buf
[1];
345 dsumvec
[ZZ
] = buf
[2];
349 if (weight_loc
!= NULL
)
350 denom
= 1.0/weight_sum
; /* Divide by the sum of weight to get center of mass e.g. */
352 denom
= 1.0/nr_group
; /* Divide by the number of atoms to get the geometrical center */
354 center
[XX
] = dsumvec
[XX
]*denom
;
355 center
[YY
] = dsumvec
[YY
]*denom
;
356 center
[ZZ
] = dsumvec
[ZZ
]*denom
;
360 /* Translate x with transvec */
361 extern void translate_x(rvec x
[], const int nr
, const rvec transvec
)
367 rvec_inc(x
[i
], transvec
);
371 extern void rotate_x(rvec x
[], const int nr
, matrix rmat
)
377 /* Apply the rotation matrix */
386 x
[i
][j
] += rmat
[k
][j
]*x_old
[k
];