3 * This source code is part of
7 * GROningen MAchine for Chemical Simulations
9 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
10 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
11 * Copyright (c) 2001-2008, The GROMACS development team,
12 * check out http://www.gromacs.org for more information.
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version 2
17 * of the License, or (at your option) any later version.
19 * If you want to redistribute modifications, please consider that
20 * scientific software is very special. Version control is crucial -
21 * bugs must be traceable. We will be happy to consider code for
22 * inclusion in the official distribution, but derived work must not
23 * be called official GROMACS. Details are found in the README & COPYING
24 * files - if they are missing, get the official version at www.gromacs.org.
26 * To help us fund GROMACS development, we humbly ask that you cite
27 * the papers on the package - you can find them in the top README file.
29 * For more info, check our website at http://www.gromacs.org
32 * Gallium Rubidium Oxygen Manganese Argon Carbon Silicon
41 #include "mtop_util.h"
43 int n_bonded_dx(gmx_mtop_t
*mtop
,bool bExcl
)
45 int mb
,nmol
,ftype
,ndxb
,ndx_excl
;
49 /* Count the number of pbc_rvec_sub calls required for bonded interactions.
50 * This number is also roughly proportional to the computational cost.
54 for(mb
=0; mb
<mtop
->nmolblock
; mb
++) {
55 molt
= &mtop
->moltype
[mtop
->molblock
[mb
].type
];
56 nmol
= mtop
->molblock
[mb
].nmol
;
57 for(ftype
=0; ftype
<F_NRE
; ftype
++) {
58 if (interaction_function
[ftype
].flags
& IF_BOND
) {
60 case F_POSRES
: ndxb
= 1; break;
61 case F_CONNBONDS
: ndxb
= 0; break;
62 default: ndxb
= NRAL(ftype
) - 1; break;
64 ndx
+= nmol
*ndxb
*molt
->ilist
[ftype
].nr
/(1 + NRAL(ftype
));
68 ndx_excl
+= nmol
*(molt
->excls
.nra
- molt
->atoms
.nr
)/2;
75 fprintf(debug
,"ndx bonded %d exclusions %d\n",ndx
,ndx_excl
);
82 float pme_load_estimate(gmx_mtop_t
*mtop
,t_inputrec
*ir
,matrix box
)
85 int mb
,nmol
,atnr
,cg
,a
,a0
,ncqlj
,ncq
,nclj
;
86 bool bBHAM
,bLJcut
,bChargePerturbed
,bWater
,bQ
,bLJ
;
87 double nw
,nqlj
,nq
,nlj
;
88 double cost_bond
,cost_pp
,cost_spread
,cost_fft
,cost_solve
,cost_pme
;
89 float fq
,fqlj
,flj
,fljtab
,fqljw
,fqw
,fqspread
,ffft
,fsolve
,fbond
;
94 bBHAM
= (mtop
->ffparams
.functype
[0] == F_BHAM
);
96 bLJcut
= ((ir
->vdwtype
== evdwCUT
) && !bBHAM
);
98 /* Computational cost of bonded, non-bonded and PME calculations.
99 * This will be machine dependent.
100 * The numbers here are accurate for Intel Core2 and AMD Athlon 64
101 * in single precision. In double precision PME mesh is slightly cheaper,
102 * although not so much that the numbers need to be adjusted.
105 fqlj
= (bLJcut
? 1.5 : 2.0 );
106 flj
= (bLJcut
? 1.0 : 1.75);
107 /* Cost of 1 water with one Q/LJ atom */
108 fqljw
= (bLJcut
? 2.0 : 2.25);
109 /* Cost of 1 water with one Q atom or with 1/3 water (LJ negligible) */
111 /* Cost of q spreading and force interpolation per charge */
113 /* Cost of fft's, will be multiplied with N log(N) */
115 /* Cost of pme_solve, will be multiplied with N */
117 /* Cost of a bonded interaction divided by the number of (pbc_)dx required */
120 iparams
= mtop
->ffparams
.iparams
;
121 atnr
= mtop
->ffparams
.atnr
;
126 bChargePerturbed
= FALSE
;
127 for(mb
=0; mb
<mtop
->nmolblock
; mb
++) {
128 molt
= &mtop
->moltype
[mtop
->molblock
[mb
].type
];
129 atom
= molt
->atoms
.atom
;
130 nmol
= mtop
->molblock
[mb
].nmol
;
132 for(cg
=0; cg
<molt
->cgs
.nr
; cg
++) {
138 while (a
< molt
->cgs
.index
[cg
+1]) {
139 bQ
= (atom
[a
].q
!= 0 || atom
[a
].qB
!= 0);
140 bLJ
= (iparams
[(atnr
+1)*atom
[a
].type
].lj
.c6
!= 0 ||
141 iparams
[(atnr
+1)*atom
[a
].type
].lj
.c12
!= 0);
142 if (atom
[a
].q
!= atom
[a
].qB
) {
143 bChargePerturbed
= TRUE
;
145 /* This if this atom fits into water optimization */
146 if (!((a
== a0
&& bQ
&& bLJ
) ||
147 (a
== a0
+1 && bQ
&& !bLJ
) ||
148 (a
== a0
+2 && bQ
&& !bLJ
&& atom
[a
].q
== atom
[a
-1].q
) ||
149 (a
== a0
+3 && !bQ
&& bLJ
)))
171 fprintf(debug
,"nw %g nqlj %g nq %g nlj %g\n",nw
,nqlj
,nq
,nlj
);
173 cost_bond
= fbond
*n_bonded_dx(mtop
,TRUE
);
175 /* For the PP non-bonded cost it is (unrealistically) assumed
176 * that all atoms are distributed homogeneously in space.
178 cost_pp
= 0.5*(fqljw
*nw
*nqlj
+
179 fqw
*nw
*(3*nw
+ nq
) +
181 fq
*nq
*(3*nw
+ nqlj
+ nq
) +
182 flj
*nlj
*(nw
+ nqlj
+ nlj
))
183 *4/3*M_PI
*ir
->rlist
*ir
->rlist
*ir
->rlist
/det(box
);
185 cost_spread
= fqspread
*(3*nw
+ nqlj
+ nq
);
186 cost_fft
= ffft
*ir
->nkx
*ir
->nky
*ir
->nkz
*log(ir
->nkx
*ir
->nky
*ir
->nkz
);
187 cost_solve
= fsolve
*ir
->nkx
*ir
->nky
*ir
->nkz
;
189 if (ir
->efep
!= efepNO
&& bChargePerturbed
) {
190 /* All PME work, except the spline coefficient calculation, doubles */
196 cost_pme
= cost_spread
+ cost_fft
+ cost_solve
;
198 ratio
= cost_pme
/(cost_bond
+ cost_pp
+ cost_pme
);
207 cost_bond
,cost_pp
,cost_spread
,cost_fft
,cost_solve
);
209 fprintf(debug
,"Estimate for relative PME load: %.3f\n",ratio
);