Parallel vs. sequentiual code: I get binary identical result (apart from comment...
[gromacs/qmmm-gamess-us.git] / src / tools / autocorr.c
blobbb72d984b54ec945bd84a175e5088636899ddb6f
1 /*
2 *
3 * This source code is part of
4 *
5 * G R O M A C S
6 *
7 * GROningen MAchine for Chemical Simulations
8 *
9 * VERSION 3.2.0
10 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
11 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
12 * Copyright (c) 2001-2004, The GROMACS development team,
13 * check out http://www.gromacs.org for more information.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * If you want to redistribute modifications, please consider that
21 * scientific software is very special. Version control is crucial -
22 * bugs must be traceable. We will be happy to consider code for
23 * inclusion in the official distribution, but derived work must not
24 * be called official GROMACS. Details are found in the README & COPYING
25 * files - if they are missing, get the official version at www.gromacs.org.
27 * To help us fund GROMACS development, we humbly ask that you cite
28 * the papers on the package - you can find them in the top README file.
30 * For more info, check our website at http://www.gromacs.org
32 * And Hey:
33 * Green Red Orange Magenta Azure Cyan Skyblue
35 #ifdef HAVE_CONFIG_H
36 #include <config.h>
37 #endif
39 #include <stdio.h>
40 #include <math.h>
41 #include "macros.h"
42 #include "typedefs.h"
43 #include "physics.h"
44 #include "smalloc.h"
45 #include "xvgr.h"
46 #include "futil.h"
47 #include "gstat.h"
48 #include "names.h"
49 #include "gmx_fatal.h"
50 #include "vec.h"
51 #include "string2.h"
52 #include "correl.h"
54 #define MODE(x) ((mode & (x)) == (x))
56 typedef struct {
57 unsigned long mode;
58 int nrestart,nout,P,fitfn,nskip;
59 bool bFour,bNormalize;
60 real tbeginfit,tendfit;
61 } t_acf;
63 static bool bACFinit = FALSE;
64 static t_acf acf;
66 enum { enNorm, enCos, enSin };
68 int sffn2effn(const char **sffn)
70 int eFitFn,i;
72 eFitFn = 0;
73 for(i=0; i<effnNR; i++)
74 if (sffn[i+1] && strcmp(sffn[0],sffn[i+1])==0)
75 eFitFn = i;
77 return eFitFn;
80 static void low_do_four_core(int nfour,int nframes,real c1[],real cfour[],
81 int nCos,bool bPadding)
83 int i=0;
84 real aver,*ans;
86 aver = 0.0;
87 switch (nCos) {
88 case enNorm:
89 for(i=0; (i<nframes); i++) {
90 aver+=c1[i];
91 cfour[i]=c1[i];
93 break;
94 case enCos:
95 for(i=0; (i<nframes); i++)
96 cfour[i]=cos(c1[i]);
97 break;
98 case enSin:
99 for(i=0; (i<nframes); i++)
100 cfour[i]=sin(c1[i]);
101 break;
102 default:
103 gmx_fatal(FARGS,"nCos = %d, %s %d",nCos,__FILE__,__LINE__);
105 for( ; (i<nfour); i++)
106 cfour[i]= 0.0;
108 if (bPadding) {
109 aver /= nframes;
110 /* printf("aver = %g\n",aver); */
111 for(i=0; (i<nframes); i++)
112 cfour[i] -= aver;
115 snew(ans,2*nfour);
116 correl(cfour-1,cfour-1,nfour,ans-1);
118 if (bPadding)
119 for (i=0; (i<nfour); i++)
120 cfour[i] = ans[i]+sqr(aver);
121 else
122 for (i=0; (i<nfour); i++)
123 cfour[i] = ans[i];
125 sfree(ans);
128 static void do_ac_core(int nframes,int nout,
129 real corr[],real c1[],int nrestart,
130 unsigned long mode)
132 int j,k,j3,jk3,m,n;
133 real ccc,cth;
134 rvec xj,xk,rr;
136 if (nrestart < 1) {
137 printf("WARNING: setting number of restarts to 1\n");
138 nrestart = 1;
140 if (debug)
141 fprintf(debug,
142 "Starting do_ac_core: nframes=%d, nout=%d, nrestart=%d,mode=%lu\n",
143 nframes,nout,nrestart,mode);
145 for(j=0; (j<nout); j++)
146 corr[j]=0;
148 /* Loop over starting points. */
149 for(j=0; (j<nframes); j+=nrestart) {
150 j3 = DIM*j;
152 /* Loop over the correlation length for this starting point */
153 for(k=0; (k<nout) && (j+k < nframes); k++) {
154 jk3 = DIM*(j+k);
156 /* Switch over possible ACF types.
157 * It might be more efficient to put the loops inside the switch,
158 * but this is more clear, and save development time!
160 if (MODE(eacNormal)) {
161 corr[k] += c1[j]*c1[j+k];
163 else if (MODE(eacCos)) {
164 /* Compute the cos (phi(t)-phi(t+dt)) */
165 corr[k] += cos(c1[j]-c1[j+k]);
167 else if (MODE(eacIden)) {
168 /* Check equality (phi(t)==phi(t+dt)) */
169 corr[k] += (c1[j]==c1[j+k])? 1 : 0;
171 else if (MODE(eacP1) || MODE(eacP2) || MODE(eacP3)) {
172 for(m=0; (m<DIM); m++) {
173 xj[m] = c1[j3+m];
174 xk[m] = c1[jk3+m];
176 cth=cos_angle(xj,xk);
178 if (cth-1.0 > 1.0e-15) {
179 printf("j: %d, k: %d, xj:(%g,%g,%g), xk:(%g,%g,%g)\n",
180 j,k,xj[XX],xj[YY],xj[ZZ],xk[XX],xk[YY],xk[ZZ]);
183 corr[k] += LegendreP(cth,mode); /* 1.5*cth*cth-0.5; */
185 else if (MODE(eacRcross)) {
186 for(m=0; (m<DIM); m++) {
187 xj[m] = c1[j3+m];
188 xk[m] = c1[jk3+m];
190 cprod(xj,xk,rr);
192 corr[k] += iprod(rr,rr);
194 else if (MODE(eacVector)) {
195 for(m=0; (m<DIM); m++) {
196 xj[m] = c1[j3+m];
197 xk[m] = c1[jk3+m];
199 ccc = iprod(xj,xk);
201 corr[k] += ccc;
203 else
204 gmx_fatal(FARGS,"\nInvalid mode (%d) in do_ac_core",mode);
207 /* Correct for the number of points and copy results to the data array */
208 for(j=0; (j<nout); j++) {
209 n = (nframes-j+(nrestart-1))/nrestart;
210 c1[j] = corr[j]/n;
214 void normalize_acf(int nout,real corr[])
216 int j;
217 real c0;
219 if (debug) {
220 fprintf(debug,"Before normalization\n");
221 for(j=0; (j<nout); j++)
222 fprintf(debug,"%5d %10f\n",j,corr[j]);
225 /* Normalisation makes that c[0] = 1.0 and that other points are scaled
226 * accordingly.
228 if (corr[0] == 0.0)
229 c0 = 1.0;
230 else
231 c0 = 1.0/corr[0];
232 for(j=0; (j<nout); j++)
233 corr[j] *= c0;
235 if (debug) {
236 fprintf(debug,"After normalization\n");
237 for(j=0; (j<nout); j++)
238 fprintf(debug,"%5d %10f\n",j,corr[j]);
242 void average_acf(bool bVerbose,int n,int nitem,real **c1)
244 real c0;
245 int i,j;
247 if (bVerbose)
248 printf("Averaging correlation functions\n");
250 for(j=0; (j<n); j++) {
251 c0 = 0;
252 for(i=0; (i<nitem); i++)
253 c0+=c1[i][j];
254 c1[0][j] = c0/nitem;
258 void norm_and_scale_vectors(int nframes,real c1[],real scale)
260 int j,m;
261 real *rij;
263 for(j=0; (j<nframes); j++) {
264 rij = &(c1[j*DIM]);
265 unitv(rij,rij);
266 for(m=0; (m<DIM); m++)
267 rij[m]*=scale;
271 void dump_tmp(char *s,int n,real c[])
273 FILE *fp;
274 int i;
276 fp=ffopen(s,"w");
277 for(i=0; (i<n); i++)
278 fprintf(fp,"%10d %10g\n",i,c[i]);
279 ffclose(fp);
282 real print_and_integrate(FILE *fp,int n,real dt,real c[],real *fit,int nskip)
284 real c0,sum;
285 int j;
287 /* Use trapezoidal rule for calculating integral */
288 sum = 0.0;
289 for(j=0; (j<n); j++) {
290 c0 = c[j];
291 if (fp && (nskip == 0 || j % nskip == 0))
292 fprintf(fp,"%10.3f %10.5f\n",j*dt,c0);
293 if (j > 0)
294 sum+=dt*(c0+c[j-1]);
296 if (fp) {
297 fprintf(fp,"&\n");
298 if (fit) {
299 for(j=0; (j<n); j++)
300 if (nskip == 0 || j % nskip == 0)
301 fprintf(fp,"%10.3f %10.5f\n",j*dt,fit[j]);
302 fprintf(fp,"&\n");
305 return sum*0.5;
308 real evaluate_integral(int n,real x[],real y[],real dy[],real aver_start,
309 real *stddev)
311 double sum,sum_var,w;
312 double sum_tail=0,sum2_tail=0;
313 int j,nsum_tail=0;
315 /* Use trapezoidal rule for calculating integral */
316 if (n <= 0)
317 gmx_fatal(FARGS,"Evaluating integral: n = %d (file %s, line %d)",
318 n,__FILE__,__LINE__);
320 sum = 0;
321 sum_var = 0;
322 for(j=0; (j<n); j++) {
323 w = 0;
324 if (j > 0)
325 w += 0.5*(x[j] - x[j-1]);
326 if (j < n-1)
327 w += 0.5*(x[j+1] - x[j]);
328 sum += w*y[j];
329 if (dy) {
330 /* Assume all errors are uncorrelated */
331 sum_var += sqr(w*dy[j]);
334 if ((aver_start > 0) && (x[j] >= aver_start)) {
335 sum_tail += sum;
336 sum2_tail += sqrt(sum_var);
337 nsum_tail += 1;
341 if (nsum_tail > 0) {
342 sum = sum_tail/nsum_tail;
343 /* This is a worst case estimate, assuming all stddev's are correlated. */
344 *stddev = sum2_tail/nsum_tail;
346 else
347 *stddev = sqrt(sum_var);
349 return sum;
352 void do_four_core(unsigned long mode,int nfour,int nf2,int nframes,
353 real c1[],real csum[],real ctmp[])
355 real *cfour;
356 char buf[32];
357 real fac;
358 int j,m,m1;
360 snew(cfour,nfour);
362 if (MODE(eacNormal)) {
363 /********************************************
364 * N O R M A L
365 ********************************************/
366 low_do_four_core(nfour,nf2,c1,csum,enNorm,FALSE);
368 else if (MODE(eacCos)) {
369 /***************************************************
370 * C O S I N E
371 ***************************************************/
372 /* Copy the data to temp array. Since we need it twice
373 * we can't overwrite original.
375 for(j=0; (j<nf2); j++)
376 ctmp[j]=c1[j];
378 /* Cosine term of AC function */
379 low_do_four_core(nfour,nf2,ctmp,cfour,enCos,FALSE);
380 for(j=0; (j<nf2); j++)
381 c1[j] = cfour[j];
383 /* Sine term of AC function */
384 low_do_four_core(nfour,nf2,ctmp,cfour,enSin,FALSE);
385 for(j=0; (j<nf2); j++) {
386 c1[j] += cfour[j];
387 csum[j] = c1[j];
390 else if (MODE(eacP2)) {
391 /***************************************************
392 * Legendre polynomials
393 ***************************************************/
394 /* First normalize the vectors */
395 norm_and_scale_vectors(nframes,c1,1.0);
397 /* For P2 thingies we have to do six FFT based correls
398 * First for XX^2, then for YY^2, then for ZZ^2
399 * Then we have to do XY, YZ and XZ (counting these twice)
400 * After that we sum them and normalise
401 * P2(x) = (3 * cos^2 (x) - 1)/2
402 * for unit vectors u and v we compute the cosine as the inner product
403 * cos(u,v) = uX vX + uY vY + uZ vZ
405 * oo
407 * C(t) = | (3 cos^2(u(t'),u(t'+t)) - 1)/2 dt'
411 * For ACF we need:
412 * P2(u(0),u(t)) = [3 * (uX(0) uX(t) +
413 * uY(0) uY(t) +
414 * uZ(0) uZ(t))^2 - 1]/2
415 * = [3 * ((uX(0) uX(t))^2 +
416 * (uY(0) uY(t))^2 +
417 * (uZ(0) uZ(t))^2 +
418 * 2(uX(0) uY(0) uX(t) uY(t)) +
419 * 2(uX(0) uZ(0) uX(t) uZ(t)) +
420 * 2(uY(0) uZ(0) uY(t) uZ(t))) - 1]/2
422 * = [(3/2) * (<uX^2> + <uY^2> + <uZ^2> +
423 * 2<uXuY> + 2<uXuZ> + 2<uYuZ>) - 0.5]
427 /* Because of normalization the number of -0.5 to subtract
428 * depends on the number of data points!
430 for(j=0; (j<nf2); j++)
431 csum[j] = -0.5*(nf2-j);
433 /***** DIAGONAL ELEMENTS ************/
434 for(m=0; (m<DIM); m++) {
435 /* Copy the vector data in a linear array */
436 for(j=0; (j<nf2); j++)
437 ctmp[j] = sqr(c1[DIM*j+m]);
438 if (debug) {
439 sprintf(buf,"c1diag%d.xvg",m);
440 dump_tmp(buf,nf2,ctmp);
443 low_do_four_core(nfour,nf2,ctmp,cfour,enNorm,FALSE);
445 if (debug) {
446 sprintf(buf,"c1dfout%d.xvg",m);
447 dump_tmp(buf,nf2,cfour);
449 fac = 1.5;
450 for(j=0; (j<nf2); j++)
451 csum[j] += fac*(cfour[j]);
453 /******* OFF-DIAGONAL ELEMENTS **********/
454 for(m=0; (m<DIM); m++) {
455 /* Copy the vector data in a linear array */
456 m1=(m+1) % DIM;
457 for(j=0; (j<nf2); j++)
458 ctmp[j]=c1[DIM*j+m]*c1[DIM*j+m1];
460 if (debug) {
461 sprintf(buf,"c1off%d.xvg",m);
462 dump_tmp(buf,nf2,ctmp);
464 low_do_four_core(nfour,nf2,ctmp,cfour,enNorm,FALSE);
465 if (debug) {
466 sprintf(buf,"c1ofout%d.xvg",m);
467 dump_tmp(buf,nf2,cfour);
469 fac = 3.0;
470 for(j=0; (j<nf2); j++) {
471 csum[j] += fac*cfour[j];
475 else if (MODE(eacP1) || MODE(eacVector)) {
476 /***************************************************
477 * V E C T O R & P1
478 ***************************************************/
479 if (MODE(eacP1)) {
480 /* First normalize the vectors */
481 norm_and_scale_vectors(nframes,c1,1.0);
484 /* For vector thingies we have to do three FFT based correls
485 * First for XX, then for YY, then for ZZ
486 * After that we sum them and normalise
488 for(j=0; (j<nf2); j++) {
489 csum[j]=0.0;
491 for(m=0; (m<DIM); m++) {
492 /* Copy the vector data in a linear array */
493 for(j=0; (j<nf2); j++)
494 ctmp[j]=c1[DIM*j+m];
495 low_do_four_core(nfour,nf2,ctmp,cfour,enNorm,FALSE);
496 for(j=0; (j<nf2); j++)
497 csum[j] += cfour[j];
500 else
501 gmx_fatal(FARGS,"\nUnknown mode in do_autocorr (%d)",mode);
503 sfree(cfour);
504 for(j=0; (j<nf2); j++)
505 c1[j] = csum[j]/(real)(nframes-j);
508 real fit_acf(int ncorr,int fitfn,const output_env_t oenv,bool bVerbose,
509 real tbeginfit,real tendfit,real dt,real c1[],real *fit)
511 real fitparm[3];
512 real tStart,tail_corr,sum,sumtot=0,ct_estimate,*sig;
513 int i,j,jmax,nf_int;
514 bool bPrint;
516 bPrint = bVerbose || bDebugMode();
518 if (bPrint) printf("COR:\n");
520 if (tendfit <= 0)
521 tendfit = ncorr*dt;
522 nf_int = min(ncorr,(int)(tendfit/dt));
523 sum = print_and_integrate(debug,nf_int,dt,c1,NULL,1);
525 /* Estimate the correlation time for better fitting */
526 ct_estimate = 0.5*c1[0];
527 for(i=1; (i<ncorr) && (c1[i]>0); i++)
528 ct_estimate += c1[i];
529 ct_estimate *= dt/c1[0];
531 if (bPrint) {
532 printf("COR: Correlation time (plain integral from %6.3f to %6.3f ps) = %8.5f ps\n",
533 0.0,dt*nf_int,sum);
534 printf("COR: Relaxation times are computed as fit to an exponential:\n");
535 printf("COR: %s\n",longs_ffn[fitfn]);
536 printf("COR: Fit to correlation function from %6.3f ps to %6.3f ps, results in a\n",tbeginfit,min(ncorr*dt,tendfit));
539 tStart = 0;
540 if (bPrint)
541 printf("COR:%11s%11s%11s%11s%11s%11s%11s\n",
542 "Fit from","Integral","Tail Value","Sum (ps)"," a1 (ps)",
543 (nfp_ffn[fitfn]>=2) ? " a2 ()" : "",
544 (nfp_ffn[fitfn]>=3) ? " a3 (ps)" : "");
545 if (tbeginfit > 0)
546 jmax = 3;
547 else
548 jmax = 1;
549 if (fitfn == effnEXP3) {
550 fitparm[0] = 0.002*ncorr*dt;
551 fitparm[1] = 0.95;
552 fitparm[2] = 0.2*ncorr*dt;
553 } else {
554 /* Good initial guess, this increases the probability of convergence */
555 fitparm[0] = ct_estimate;
556 fitparm[1] = 1.0;
557 fitparm[2] = 1.0;
560 /* Generate more or less appropriate sigma's */
561 snew(sig,ncorr);
562 for(i=0; i<ncorr; i++)
563 sig[i] = sqrt(ct_estimate+dt*i);
565 for(j=0; ((j<jmax) && (tStart < tendfit)); j++) {
566 /* Use the previous fitparm as starting values for the next fit */
567 nf_int = min(ncorr,(int)((tStart+1e-4)/dt));
568 sum = print_and_integrate(debug,nf_int,dt,c1,NULL,1);
569 tail_corr = do_lmfit(ncorr,c1,sig,dt,NULL,tStart,tendfit,oenv,
570 bDebugMode(),fitfn,fitparm,0);
571 sumtot = sum+tail_corr;
572 if (fit && ((jmax == 1) || (j == 1)))
573 for(i=0; (i<ncorr); i++)
574 fit[i] = fit_function(fitfn,fitparm,i*dt);
575 if (bPrint) {
576 printf("COR:%11.4e%11.4e%11.4e%11.4e",tStart,sum,tail_corr,sumtot);
577 for(i=0; (i<nfp_ffn[fitfn]); i++)
578 printf(" %11.4e",fitparm[i]);
579 printf("\n");
581 tStart += tbeginfit;
583 sfree(sig);
585 return sumtot;
588 void low_do_autocorr(const char *fn,const output_env_t oenv,const char *title,
589 int nframes,int nitem,int nout,real **c1,
590 real dt,unsigned long mode,int nrestart,
591 bool bAver,bool bNormalize,
592 bool bVerbose,real tbeginfit,real tendfit,
593 int eFitFn,int nskip)
595 FILE *fp,*gp=NULL;
596 int i,k,nfour;
597 real *csum;
598 real *ctmp,*fit;
599 real c0,sum,Ct2av,Ctav;
600 bool bFour = acf.bFour;
602 /* Check flags and parameters */
603 /* nout = get_acfnout();*/
604 if (nout == -1)
605 nout = acf.nout = (nframes+1)/2;
606 else if (nout > nframes)
607 nout=nframes;
609 if (MODE(eacCos) && MODE(eacVector))
610 gmx_fatal(FARGS,"Incompatible options bCos && bVector (%s, %d)",
611 __FILE__,__LINE__);
612 if ((MODE(eacP3) || MODE(eacRcross)) && bFour) {
613 fprintf(stderr,"Can't combine mode %lu with FFT, turning off FFT\n",mode);
614 bFour = FALSE;
616 if (MODE(eacNormal) && MODE(eacVector))
617 gmx_fatal(FARGS,"Incompatible mode bits: normal and vector (or Legendre)");
619 /* Print flags and parameters */
620 if (bVerbose) {
621 printf("Will calculate %s of %d thingies for %d frames\n",
622 title ? title : "autocorrelation",nitem,nframes);
623 printf("bAver = %s, bFour = %s bNormalize= %s\n",
624 bool_names[bAver],bool_names[bFour],bool_names[bNormalize]);
625 printf("mode = %lu, dt = %g, nrestart = %d\n",mode,dt,nrestart);
627 if (bFour) {
628 c0 = log((double)nframes)/log(2.0);
629 k = c0;
630 if (k < c0)
631 k++;
632 k++;
633 nfour = 1<<k;
634 if (debug)
635 fprintf(debug,"Using FFT to calculate %s, #points for FFT = %d\n",
636 title,nfour);
638 /* Allocate temp arrays */
639 snew(csum,nfour);
640 snew(ctmp,nfour);
641 } else {
642 nfour = 0; /* To keep the compiler happy */
643 snew(csum,nframes);
644 snew(ctmp,nframes);
647 /* Loop over items (e.g. molecules or dihedrals)
648 * In this loop the actual correlation functions are computed, but without
649 * normalizing them.
651 k = max(1,pow(10,(int)(log(nitem)/log(100))));
652 for(i=0; i<nitem; i++) {
653 if (bVerbose && ((i%k==0 || i==nitem-1)))
654 fprintf(stderr,"\rThingie %d",i+1);
656 if (bFour)
657 do_four_core(mode,nfour,nframes,nframes,c1[i],csum,ctmp);
658 else
659 do_ac_core(nframes,nout,ctmp,c1[i],nrestart,mode);
661 if (bVerbose)
662 fprintf(stderr,"\n");
663 sfree(ctmp);
664 sfree(csum);
666 if (fn) {
667 snew(fit,nout);
668 fp=xvgropen(fn,title,"Time (ps)","C(t)",oenv);
669 } else {
670 fit = NULL;
671 fp = NULL;
673 if (bAver) {
674 if (nitem > 1)
675 average_acf(bVerbose,nframes,nitem,c1);
677 if (bNormalize)
678 normalize_acf(nout,c1[0]);
680 if (eFitFn != effnNONE) {
681 fit_acf(nout,eFitFn,oenv,fn!=NULL,tbeginfit,tendfit,dt,c1[0],fit);
682 sum = print_and_integrate(fp,nout,dt,c1[0],fit,1);
683 } else {
684 sum = print_and_integrate(fp,nout,dt,c1[0],NULL,1);
685 if (bVerbose)
686 printf("Correlation time (integral over corrfn): %g (ps)\n",sum);
688 } else {
689 /* Not averaging. Normalize individual ACFs */
690 Ctav = Ct2av = 0;
691 if (debug)
692 gp = xvgropen("ct-distr.xvg","Correlation times","item","time (ps)",oenv);
693 for(i=0; i<nitem; i++) {
694 if (bNormalize)
695 normalize_acf(nout,c1[i]);
696 if (eFitFn != effnNONE) {
697 fit_acf(nout,eFitFn,oenv,fn!=NULL,tbeginfit,tendfit,dt,c1[i],fit);
698 sum = print_and_integrate(fp,nout,dt,c1[i],fit,1);
699 } else {
700 sum = print_and_integrate(fp,nout,dt,c1[i],NULL,1);
701 if (debug)
702 fprintf(debug,
703 "CORRelation time (integral over corrfn %d): %g (ps)\n",
704 i,sum);
706 Ctav += sum;
707 Ct2av += sum*sum;
708 if (debug)
709 fprintf(gp,"%5d %.3f\n",i,sum);
711 if (debug)
712 ffclose(gp);
713 if (nitem > 1) {
714 Ctav /= nitem;
715 Ct2av /= nitem;
716 printf("Average correlation time %.3f Std. Dev. %.3f Error %.3f (ps)\n",
717 Ctav,sqrt((Ct2av - sqr(Ctav))),
718 sqrt((Ct2av - sqr(Ctav))/(nitem-1)));
721 if (fp)
722 ffclose(fp);
723 sfree(fit);
726 static const char *Leg[] = { NULL, "0", "1", "2", "3", NULL };
728 t_pargs *add_acf_pargs(int *npargs,t_pargs *pa)
730 t_pargs acfpa[] = {
731 { "-acflen", FALSE, etINT, {&acf.nout},
732 "Length of the ACF, default is half the number of frames" },
733 { "-normalize",FALSE, etBOOL, {&acf.bNormalize},
734 "Normalize ACF" },
735 { "-fftcorr", FALSE, etBOOL, {&acf.bFour},
736 "HIDDENUse fast fourier transform for correlation function" },
737 { "-nrestart", FALSE, etINT, {&acf.nrestart},
738 "HIDDENNumber of frames between time origins for ACF when no FFT is used" },
739 { "-P", FALSE, etENUM, {Leg},
740 "Order of Legendre polynomial for ACF (0 indicates none)" },
741 { "-fitfn", FALSE, etENUM, {s_ffn},
742 "Fit function" },
743 { "-ncskip", FALSE, etINT, {&acf.nskip},
744 "Skip N points in the output file of correlation functions" },
745 { "-beginfit", FALSE, etREAL, {&acf.tbeginfit},
746 "Time where to begin the exponential fit of the correlation function" },
747 { "-endfit", FALSE, etREAL, {&acf.tendfit},
748 "Time where to end the exponential fit of the correlation function, -1 is till the end" },
750 #define NPA asize(acfpa)
751 t_pargs *ppa;
752 int i;
754 snew(ppa,*npargs+NPA);
755 for(i=0; (i<*npargs); i++)
756 ppa[i] = pa[i];
757 for(i=0; (i<NPA); i++)
758 ppa[*npargs+i] = acfpa[i];
759 (*npargs) += NPA;
761 acf.mode = 0;
762 acf.nrestart = 1;
763 acf.nout = -1;
764 acf.P = 0;
765 acf.fitfn = effnEXP1;
766 acf.bFour = TRUE;
767 acf.bNormalize = TRUE;
768 acf.tbeginfit = 0.0;
769 acf.tendfit = -1;
771 bACFinit = TRUE;
773 return ppa;
776 void do_autocorr(const char *fn,const output_env_t oenv,const char *title,
777 int nframes,int nitem,real **c1,
778 real dt,unsigned long mode,bool bAver)
780 if (!bACFinit) {
781 printf("ACF data structures have not been initialised. Call add_acf_pargs\n");
784 /* Handle enumerated types */
785 sscanf(Leg[0],"%d",&acf.P);
786 acf.fitfn = sffn2effn(s_ffn);
788 switch (acf.P) {
789 case 1:
790 mode = mode | eacP1;
791 break;
792 case 2:
793 mode = mode | eacP2;
794 break;
795 case 3:
796 mode = mode | eacP3;
797 break;
798 default:
799 break;
802 low_do_autocorr(fn,oenv,title,nframes,nitem,acf.nout,c1,dt,mode,
803 acf.nrestart,bAver,acf.bNormalize,
804 bDebugMode(),acf.tbeginfit,acf.tendfit,
805 acf.fitfn,acf.nskip);
808 int get_acfnout(void)
810 if (!bACFinit)
811 gmx_fatal(FARGS,"ACF data not initialized yet");
813 return acf.nout;
816 int get_acffitfn(void)
818 if (!bACFinit)
819 gmx_fatal(FARGS,"ACF data not initialized yet");
821 return sffn2effn(s_ffn);
824 void cross_corr(int n,real f[],real g[],real corr[])
826 int i,j;
828 if (acf.bFour)
829 correl(f-1,g-1,n,corr-1);
830 else {
831 for(i=0; (i<n); i++) {
832 for(j=i; (j<n); j++)
833 corr[j-i] += f[i]*g[j];
834 corr[i] /= (real)(n-i);