* NEWS: Version 1.3.12 released.
[gzip.git] / inflate.c
blobefca2bf765b56875ea65760ba6ebb76fac963c40
1 /* Inflate deflated data
3 Copyright (C) 1997, 1998, 1999, 2002, 2006 Free Software
4 Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
20 /* Not copyrighted 1992 by Mark Adler
21 version c10p1, 10 January 1993 */
23 /* You can do whatever you like with this source file, though I would
24 prefer that if you modify it and redistribute it that you include
25 comments to that effect with your name and the date. Thank you.
26 [The history has been moved to the file ChangeLog.]
30 Inflate deflated (PKZIP's method 8 compressed) data. The compression
31 method searches for as much of the current string of bytes (up to a
32 length of 258) in the previous 32K bytes. If it doesn't find any
33 matches (of at least length 3), it codes the next byte. Otherwise, it
34 codes the length of the matched string and its distance backwards from
35 the current position. There is a single Huffman code that codes both
36 single bytes (called "literals") and match lengths. A second Huffman
37 code codes the distance information, which follows a length code. Each
38 length or distance code actually represents a base value and a number
39 of "extra" (sometimes zero) bits to get to add to the base value. At
40 the end of each deflated block is a special end-of-block (EOB) literal/
41 length code. The decoding process is basically: get a literal/length
42 code; if EOB then done; if a literal, emit the decoded byte; if a
43 length then get the distance and emit the referred-to bytes from the
44 sliding window of previously emitted data.
46 There are (currently) three kinds of inflate blocks: stored, fixed, and
47 dynamic. The compressor deals with some chunk of data at a time, and
48 decides which method to use on a chunk-by-chunk basis. A chunk might
49 typically be 32K or 64K. If the chunk is uncompressible, then the
50 "stored" method is used. In this case, the bytes are simply stored as
51 is, eight bits per byte, with none of the above coding. The bytes are
52 preceded by a count, since there is no longer an EOB code.
54 If the data is compressible, then either the fixed or dynamic methods
55 are used. In the dynamic method, the compressed data is preceded by
56 an encoding of the literal/length and distance Huffman codes that are
57 to be used to decode this block. The representation is itself Huffman
58 coded, and so is preceded by a description of that code. These code
59 descriptions take up a little space, and so for small blocks, there is
60 a predefined set of codes, called the fixed codes. The fixed method is
61 used if the block codes up smaller that way (usually for quite small
62 chunks), otherwise the dynamic method is used. In the latter case, the
63 codes are customized to the probabilities in the current block, and so
64 can code it much better than the pre-determined fixed codes.
66 The Huffman codes themselves are decoded using a multi-level table
67 lookup, in order to maximize the speed of decoding plus the speed of
68 building the decoding tables. See the comments below that precede the
69 lbits and dbits tuning parameters.
74 Notes beyond the 1.93a appnote.txt:
76 1. Distance pointers never point before the beginning of the output
77 stream.
78 2. Distance pointers can point back across blocks, up to 32k away.
79 3. There is an implied maximum of 7 bits for the bit length table and
80 15 bits for the actual data.
81 4. If only one code exists, then it is encoded using one bit. (Zero
82 would be more efficient, but perhaps a little confusing.) If two
83 codes exist, they are coded using one bit each (0 and 1).
84 5. There is no way of sending zero distance codes--a dummy must be
85 sent if there are none. (History: a pre 2.0 version of PKZIP would
86 store blocks with no distance codes, but this was discovered to be
87 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
88 zero distance codes, which is sent as one code of zero bits in
89 length.
90 6. There are up to 286 literal/length codes. Code 256 represents the
91 end-of-block. Note however that the static length tree defines
92 288 codes just to fill out the Huffman codes. Codes 286 and 287
93 cannot be used though, since there is no length base or extra bits
94 defined for them. Similarly, there are up to 30 distance codes.
95 However, static trees define 32 codes (all 5 bits) to fill out the
96 Huffman codes, but the last two had better not show up in the data.
97 7. Unzip can check dynamic Huffman blocks for complete code sets.
98 The exception is that a single code would not be complete (see #4).
99 8. The five bits following the block type is really the number of
100 literal codes sent minus 257.
101 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
102 (1+6+6). Therefore, to output three times the length, you output
103 three codes (1+1+1), whereas to output four times the same length,
104 you only need two codes (1+3). Hmm.
105 10. In the tree reconstruction algorithm, Code = Code + Increment
106 only if BitLength(i) is not zero. (Pretty obvious.)
107 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
108 12. Note: length code 284 can represent 227-258, but length code 285
109 really is 258. The last length deserves its own, short code
110 since it gets used a lot in very redundant files. The length
111 258 is special since 258 - 3 (the min match length) is 255.
112 13. The literal/length and distance code bit lengths are read as a
113 single stream of lengths. It is possible (and advantageous) for
114 a repeat code (16, 17, or 18) to go across the boundary between
115 the two sets of lengths.
118 #ifdef RCSID
119 static char rcsid[] = "$Id$";
120 #endif
122 #include <config.h>
123 #include "tailor.h"
125 #if defined STDC_HEADERS || defined HAVE_STDLIB_H
126 # include <stdlib.h>
127 #endif
129 #include "gzip.h"
130 #define slide window
132 /* Huffman code lookup table entry--this entry is four bytes for machines
133 that have 16-bit pointers (e.g. PC's in the small or medium model).
134 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
135 means that v is a literal, 16 < e < 32 means that v is a pointer to
136 the next table, which codes e - 16 bits, and lastly e == 99 indicates
137 an unused code. If a code with e == 99 is looked up, this implies an
138 error in the data. */
139 struct huft {
140 uch e; /* number of extra bits or operation */
141 uch b; /* number of bits in this code or subcode */
142 union {
143 ush n; /* literal, length base, or distance base */
144 struct huft *t; /* pointer to next level of table */
145 } v;
149 /* Function prototypes */
150 int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *,
151 struct huft **, int *));
152 int huft_free OF((struct huft *));
153 int inflate_codes OF((struct huft *, struct huft *, int, int));
154 int inflate_stored OF((void));
155 int inflate_fixed OF((void));
156 int inflate_dynamic OF((void));
157 int inflate_block OF((int *));
158 int inflate OF((void));
161 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
162 stream to find repeated byte strings. This is implemented here as a
163 circular buffer. The index is updated simply by incrementing and then
164 and'ing with 0x7fff (32K-1). */
165 /* It is left to other modules to supply the 32K area. It is assumed
166 to be usable as if it were declared "uch slide[32768];" or as just
167 "uch *slide;" and then malloc'ed in the latter case. The definition
168 must be in unzip.h, included above. */
169 /* unsigned wp; current position in slide */
170 #define wp outcnt
171 #define flush_output(w) (wp=(w),flush_window())
173 /* Tables for deflate from PKZIP's appnote.txt. */
174 static unsigned border[] = { /* Order of the bit length code lengths */
175 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
176 static ush cplens[] = { /* Copy lengths for literal codes 257..285 */
177 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
178 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
179 /* note: see note #13 above about the 258 in this list. */
180 static ush cplext[] = { /* Extra bits for literal codes 257..285 */
181 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
182 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
183 static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
184 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
185 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
186 8193, 12289, 16385, 24577};
187 static ush cpdext[] = { /* Extra bits for distance codes */
188 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
189 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
190 12, 12, 13, 13};
194 /* Macros for inflate() bit peeking and grabbing.
195 The usage is:
197 NEEDBITS(j)
198 x = b & mask_bits[j];
199 DUMPBITS(j)
201 where NEEDBITS makes sure that b has at least j bits in it, and
202 DUMPBITS removes the bits from b. The macros use the variable k
203 for the number of bits in b. Normally, b and k are register
204 variables for speed, and are initialized at the beginning of a
205 routine that uses these macros from a global bit buffer and count.
206 The macros also use the variable w, which is a cached copy of wp.
208 If we assume that EOB will be the longest code, then we will never
209 ask for bits with NEEDBITS that are beyond the end of the stream.
210 So, NEEDBITS should not read any more bytes than are needed to
211 meet the request. Then no bytes need to be "returned" to the buffer
212 at the end of the last block.
214 However, this assumption is not true for fixed blocks--the EOB code
215 is 7 bits, but the other literal/length codes can be 8 or 9 bits.
216 (The EOB code is shorter than other codes because fixed blocks are
217 generally short. So, while a block always has an EOB, many other
218 literal/length codes have a significantly lower probability of
219 showing up at all.) However, by making the first table have a
220 lookup of seven bits, the EOB code will be found in that first
221 lookup, and so will not require that too many bits be pulled from
222 the stream.
225 ulg bb; /* bit buffer */
226 unsigned bk; /* bits in bit buffer */
228 ush mask_bits[] = {
229 0x0000,
230 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
231 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
234 #define GETBYTE() (inptr < insize ? inbuf[inptr++] : (wp = w, fill_inbuf(0)))
236 #ifdef CRYPT
237 uch cc;
238 # define NEXTBYTE() \
239 (decrypt ? (cc = GETBYTE(), zdecode(cc), cc) : GETBYTE())
240 #else
241 # define NEXTBYTE() (uch)GETBYTE()
242 #endif
243 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
244 #define DUMPBITS(n) {b>>=(n);k-=(n);}
248 Huffman code decoding is performed using a multi-level table lookup.
249 The fastest way to decode is to simply build a lookup table whose
250 size is determined by the longest code. However, the time it takes
251 to build this table can also be a factor if the data being decoded
252 is not very long. The most common codes are necessarily the
253 shortest codes, so those codes dominate the decoding time, and hence
254 the speed. The idea is you can have a shorter table that decodes the
255 shorter, more probable codes, and then point to subsidiary tables for
256 the longer codes. The time it costs to decode the longer codes is
257 then traded against the time it takes to make longer tables.
259 This results of this trade are in the variables lbits and dbits
260 below. lbits is the number of bits the first level table for literal/
261 length codes can decode in one step, and dbits is the same thing for
262 the distance codes. Subsequent tables are also less than or equal to
263 those sizes. These values may be adjusted either when all of the
264 codes are shorter than that, in which case the longest code length in
265 bits is used, or when the shortest code is *longer* than the requested
266 table size, in which case the length of the shortest code in bits is
267 used.
269 There are two different values for the two tables, since they code a
270 different number of possibilities each. The literal/length table
271 codes 286 possible values, or in a flat code, a little over eight
272 bits. The distance table codes 30 possible values, or a little less
273 than five bits, flat. The optimum values for speed end up being
274 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
275 The optimum values may differ though from machine to machine, and
276 possibly even between compilers. Your mileage may vary.
280 int lbits = 9; /* bits in base literal/length lookup table */
281 int dbits = 6; /* bits in base distance lookup table */
284 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
285 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
286 #define N_MAX 288 /* maximum number of codes in any set */
289 unsigned hufts; /* track memory usage */
292 int huft_build(b, n, s, d, e, t, m)
293 unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
294 unsigned n; /* number of codes (assumed <= N_MAX) */
295 unsigned s; /* number of simple-valued codes (0..s-1) */
296 ush *d; /* list of base values for non-simple codes */
297 ush *e; /* list of extra bits for non-simple codes */
298 struct huft **t; /* result: starting table */
299 int *m; /* maximum lookup bits, returns actual */
300 /* Given a list of code lengths and a maximum table size, make a set of
301 tables to decode that set of codes. Return zero on success, one if
302 the given code set is incomplete (the tables are still built in this
303 case), two if the input is invalid (all zero length codes or an
304 oversubscribed set of lengths), and three if not enough memory. */
306 unsigned a; /* counter for codes of length k */
307 unsigned c[BMAX+1]; /* bit length count table */
308 unsigned f; /* i repeats in table every f entries */
309 int g; /* maximum code length */
310 int h; /* table level */
311 register unsigned i; /* counter, current code */
312 register unsigned j; /* counter */
313 register int k; /* number of bits in current code */
314 int l; /* bits per table (returned in m) */
315 register unsigned *p; /* pointer into c[], b[], or v[] */
316 register struct huft *q; /* points to current table */
317 struct huft r; /* table entry for structure assignment */
318 struct huft *u[BMAX]; /* table stack */
319 unsigned v[N_MAX]; /* values in order of bit length */
320 register int w; /* bits before this table == (l * h) */
321 unsigned x[BMAX+1]; /* bit offsets, then code stack */
322 unsigned *xp; /* pointer into x */
323 int y; /* number of dummy codes added */
324 unsigned z; /* number of entries in current table */
327 /* Generate counts for each bit length */
328 memzero(c, sizeof(c));
329 p = b; i = n;
330 do {
331 Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
332 n-i, *p));
333 c[*p]++; /* assume all entries <= BMAX */
334 p++; /* Can't combine with above line (Solaris bug) */
335 } while (--i);
336 if (c[0] == n) /* null input--all zero length codes */
338 q = (struct huft *) malloc (2 * sizeof *q);
339 if (!q)
340 return 3;
341 hufts += 2;
342 q[0].v.t = (struct huft *) NULL;
343 q[1].e = 99; /* invalid code marker */
344 q[1].b = 1;
345 *t = q + 1;
346 *m = 1;
347 return 0;
351 /* Find minimum and maximum length, bound *m by those */
352 l = *m;
353 for (j = 1; j <= BMAX; j++)
354 if (c[j])
355 break;
356 k = j; /* minimum code length */
357 if ((unsigned)l < j)
358 l = j;
359 for (i = BMAX; i; i--)
360 if (c[i])
361 break;
362 g = i; /* maximum code length */
363 if ((unsigned)l > i)
364 l = i;
365 *m = l;
368 /* Adjust last length count to fill out codes, if needed */
369 for (y = 1 << j; j < i; j++, y <<= 1)
370 if ((y -= c[j]) < 0)
371 return 2; /* bad input: more codes than bits */
372 if ((y -= c[i]) < 0)
373 return 2;
374 c[i] += y;
377 /* Generate starting offsets into the value table for each length */
378 x[1] = j = 0;
379 p = c + 1; xp = x + 2;
380 while (--i) { /* note that i == g from above */
381 *xp++ = (j += *p++);
385 /* Make a table of values in order of bit lengths */
386 p = b; i = 0;
387 do {
388 if ((j = *p++) != 0)
389 v[x[j]++] = i;
390 } while (++i < n);
391 n = x[g]; /* set n to length of v */
394 /* Generate the Huffman codes and for each, make the table entries */
395 x[0] = i = 0; /* first Huffman code is zero */
396 p = v; /* grab values in bit order */
397 h = -1; /* no tables yet--level -1 */
398 w = -l; /* bits decoded == (l * h) */
399 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
400 q = (struct huft *)NULL; /* ditto */
401 z = 0; /* ditto */
403 /* go through the bit lengths (k already is bits in shortest code) */
404 for (; k <= g; k++)
406 a = c[k];
407 while (a--)
409 /* here i is the Huffman code of length k bits for value *p */
410 /* make tables up to required level */
411 while (k > w + l)
413 h++;
414 w += l; /* previous table always l bits */
416 /* compute minimum size table less than or equal to l bits */
417 z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
418 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
419 { /* too few codes for k-w bit table */
420 f -= a + 1; /* deduct codes from patterns left */
421 xp = c + k;
422 if (j < z)
423 while (++j < z) /* try smaller tables up to z bits */
425 if ((f <<= 1) <= *++xp)
426 break; /* enough codes to use up j bits */
427 f -= *xp; /* else deduct codes from patterns */
430 z = 1 << j; /* table entries for j-bit table */
432 /* allocate and link in new table */
433 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
434 (struct huft *)NULL)
436 if (h)
437 huft_free(u[0]);
438 return 3; /* not enough memory */
440 hufts += z + 1; /* track memory usage */
441 *t = q + 1; /* link to list for huft_free() */
442 *(t = &(q->v.t)) = (struct huft *)NULL;
443 u[h] = ++q; /* table starts after link */
445 /* connect to last table, if there is one */
446 if (h)
448 x[h] = i; /* save pattern for backing up */
449 r.b = (uch)l; /* bits to dump before this table */
450 r.e = (uch)(16 + j); /* bits in this table */
451 r.v.t = q; /* pointer to this table */
452 j = i >> (w - l); /* (get around Turbo C bug) */
453 u[h-1][j] = r; /* connect to last table */
457 /* set up table entry in r */
458 r.b = (uch)(k - w);
459 if (p >= v + n)
460 r.e = 99; /* out of values--invalid code */
461 else if (*p < s)
463 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
464 r.v.n = (ush)(*p); /* simple code is just the value */
465 p++; /* one compiler does not like *p++ */
467 else
469 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
470 r.v.n = d[*p++ - s];
473 /* fill code-like entries with r */
474 f = 1 << (k - w);
475 for (j = i >> w; j < z; j += f)
476 q[j] = r;
478 /* backwards increment the k-bit code i */
479 for (j = 1 << (k - 1); i & j; j >>= 1)
480 i ^= j;
481 i ^= j;
483 /* backup over finished tables */
484 while ((i & ((1 << w) - 1)) != x[h])
486 h--; /* don't need to update q */
487 w -= l;
493 /* Return true (1) if we were given an incomplete table */
494 return y != 0 && g != 1;
499 int huft_free(t)
500 struct huft *t; /* table to free */
501 /* Free the malloc'ed tables built by huft_build(), which makes a linked
502 list of the tables it made, with the links in a dummy first entry of
503 each table. */
505 register struct huft *p, *q;
508 /* Go through linked list, freeing from the malloced (t[-1]) address. */
509 p = t;
510 while (p != (struct huft *)NULL)
512 q = (--p)->v.t;
513 free((char*)p);
514 p = q;
516 return 0;
520 int inflate_codes(tl, td, bl, bd)
521 struct huft *tl, *td; /* literal/length and distance decoder tables */
522 int bl, bd; /* number of bits decoded by tl[] and td[] */
523 /* inflate (decompress) the codes in a deflated (compressed) block.
524 Return an error code or zero if it all goes ok. */
526 register unsigned e; /* table entry flag/number of extra bits */
527 unsigned n, d; /* length and index for copy */
528 unsigned w; /* current window position */
529 struct huft *t; /* pointer to table entry */
530 unsigned ml, md; /* masks for bl and bd bits */
531 register ulg b; /* bit buffer */
532 register unsigned k; /* number of bits in bit buffer */
535 /* make local copies of globals */
536 b = bb; /* initialize bit buffer */
537 k = bk;
538 w = wp; /* initialize window position */
540 /* inflate the coded data */
541 ml = mask_bits[bl]; /* precompute masks for speed */
542 md = mask_bits[bd];
543 for (;;) /* do until end of block */
545 NEEDBITS((unsigned)bl)
546 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
547 do {
548 if (e == 99)
549 return 1;
550 DUMPBITS(t->b)
551 e -= 16;
552 NEEDBITS(e)
553 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
554 DUMPBITS(t->b)
555 if (e == 16) /* then it's a literal */
557 slide[w++] = (uch)t->v.n;
558 Tracevv((stderr, "%c", slide[w-1]));
559 if (w == WSIZE)
561 flush_output(w);
562 w = 0;
565 else /* it's an EOB or a length */
567 /* exit if end of block */
568 if (e == 15)
569 break;
571 /* get length of block to copy */
572 NEEDBITS(e)
573 n = t->v.n + ((unsigned)b & mask_bits[e]);
574 DUMPBITS(e);
576 /* decode distance of block to copy */
577 NEEDBITS((unsigned)bd)
578 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
579 do {
580 if (e == 99)
581 return 1;
582 DUMPBITS(t->b)
583 e -= 16;
584 NEEDBITS(e)
585 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
586 DUMPBITS(t->b)
587 NEEDBITS(e)
588 d = w - t->v.n - ((unsigned)b & mask_bits[e]);
589 DUMPBITS(e)
590 Tracevv((stderr,"\\[%d,%d]", w-d, n));
592 /* do the copy */
593 do {
594 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
595 #if !defined(NOMEMCPY) && !defined(DEBUG)
596 if (w - d >= e) /* (this test assumes unsigned comparison) */
598 memcpy(slide + w, slide + d, e);
599 w += e;
600 d += e;
602 else /* do it slow to avoid memcpy() overlap */
603 #endif /* !NOMEMCPY */
604 do {
605 slide[w++] = slide[d++];
606 Tracevv((stderr, "%c", slide[w-1]));
607 } while (--e);
608 if (w == WSIZE)
610 flush_output(w);
611 w = 0;
613 } while (n);
618 /* restore the globals from the locals */
619 wp = w; /* restore global window pointer */
620 bb = b; /* restore global bit buffer */
621 bk = k;
623 /* done */
624 return 0;
629 int inflate_stored()
630 /* "decompress" an inflated type 0 (stored) block. */
632 unsigned n; /* number of bytes in block */
633 unsigned w; /* current window position */
634 register ulg b; /* bit buffer */
635 register unsigned k; /* number of bits in bit buffer */
638 /* make local copies of globals */
639 b = bb; /* initialize bit buffer */
640 k = bk;
641 w = wp; /* initialize window position */
644 /* go to byte boundary */
645 n = k & 7;
646 DUMPBITS(n);
649 /* get the length and its complement */
650 NEEDBITS(16)
651 n = ((unsigned)b & 0xffff);
652 DUMPBITS(16)
653 NEEDBITS(16)
654 if (n != (unsigned)((~b) & 0xffff))
655 return 1; /* error in compressed data */
656 DUMPBITS(16)
659 /* read and output the compressed data */
660 while (n--)
662 NEEDBITS(8)
663 slide[w++] = (uch)b;
664 if (w == WSIZE)
666 flush_output(w);
667 w = 0;
669 DUMPBITS(8)
673 /* restore the globals from the locals */
674 wp = w; /* restore global window pointer */
675 bb = b; /* restore global bit buffer */
676 bk = k;
677 return 0;
682 int inflate_fixed()
683 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
684 either replace this with a custom decoder, or at least precompute the
685 Huffman tables. */
687 int i; /* temporary variable */
688 struct huft *tl; /* literal/length code table */
689 struct huft *td; /* distance code table */
690 int bl; /* lookup bits for tl */
691 int bd; /* lookup bits for td */
692 unsigned l[288]; /* length list for huft_build */
695 /* set up literal table */
696 for (i = 0; i < 144; i++)
697 l[i] = 8;
698 for (; i < 256; i++)
699 l[i] = 9;
700 for (; i < 280; i++)
701 l[i] = 7;
702 for (; i < 288; i++) /* make a complete, but wrong code set */
703 l[i] = 8;
704 bl = 7;
705 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
706 return i;
709 /* set up distance table */
710 for (i = 0; i < 30; i++) /* make an incomplete code set */
711 l[i] = 5;
712 bd = 5;
713 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
715 huft_free(tl);
716 return i;
720 /* decompress until an end-of-block code */
721 if (inflate_codes(tl, td, bl, bd))
722 return 1;
725 /* free the decoding tables, return */
726 huft_free(tl);
727 huft_free(td);
728 return 0;
733 int inflate_dynamic()
734 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
736 int i; /* temporary variables */
737 unsigned j;
738 unsigned l; /* last length */
739 unsigned m; /* mask for bit lengths table */
740 unsigned n; /* number of lengths to get */
741 unsigned w; /* current window position */
742 struct huft *tl; /* literal/length code table */
743 struct huft *td; /* distance code table */
744 int bl; /* lookup bits for tl */
745 int bd; /* lookup bits for td */
746 unsigned nb; /* number of bit length codes */
747 unsigned nl; /* number of literal/length codes */
748 unsigned nd; /* number of distance codes */
749 #ifdef PKZIP_BUG_WORKAROUND
750 unsigned ll[288+32]; /* literal/length and distance code lengths */
751 #else
752 unsigned ll[286+30]; /* literal/length and distance code lengths */
753 #endif
754 register ulg b; /* bit buffer */
755 register unsigned k; /* number of bits in bit buffer */
758 /* make local bit buffer */
759 b = bb;
760 k = bk;
761 w = wp;
764 /* read in table lengths */
765 NEEDBITS(5)
766 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
767 DUMPBITS(5)
768 NEEDBITS(5)
769 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
770 DUMPBITS(5)
771 NEEDBITS(4)
772 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
773 DUMPBITS(4)
774 #ifdef PKZIP_BUG_WORKAROUND
775 if (nl > 288 || nd > 32)
776 #else
777 if (nl > 286 || nd > 30)
778 #endif
779 return 1; /* bad lengths */
782 /* read in bit-length-code lengths */
783 for (j = 0; j < nb; j++)
785 NEEDBITS(3)
786 ll[border[j]] = (unsigned)b & 7;
787 DUMPBITS(3)
789 for (; j < 19; j++)
790 ll[border[j]] = 0;
793 /* build decoding table for trees--single level, 7 bit lookup */
794 bl = 7;
795 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
797 if (i == 1)
798 huft_free(tl);
799 return i; /* incomplete code set */
802 if (tl == NULL) /* Grrrhhh */
803 return 2;
805 /* read in literal and distance code lengths */
806 n = nl + nd;
807 m = mask_bits[bl];
808 i = l = 0;
809 while ((unsigned)i < n)
811 NEEDBITS((unsigned)bl)
812 j = (td = tl + ((unsigned)b & m))->b;
813 DUMPBITS(j)
814 j = td->v.n;
815 if (j < 16) /* length of code in bits (0..15) */
816 ll[i++] = l = j; /* save last length in l */
817 else if (j == 16) /* repeat last length 3 to 6 times */
819 NEEDBITS(2)
820 j = 3 + ((unsigned)b & 3);
821 DUMPBITS(2)
822 if ((unsigned)i + j > n)
823 return 1;
824 while (j--)
825 ll[i++] = l;
827 else if (j == 17) /* 3 to 10 zero length codes */
829 NEEDBITS(3)
830 j = 3 + ((unsigned)b & 7);
831 DUMPBITS(3)
832 if ((unsigned)i + j > n)
833 return 1;
834 while (j--)
835 ll[i++] = 0;
836 l = 0;
838 else /* j == 18: 11 to 138 zero length codes */
840 NEEDBITS(7)
841 j = 11 + ((unsigned)b & 0x7f);
842 DUMPBITS(7)
843 if ((unsigned)i + j > n)
844 return 1;
845 while (j--)
846 ll[i++] = 0;
847 l = 0;
852 /* free decoding table for trees */
853 huft_free(tl);
856 /* restore the global bit buffer */
857 bb = b;
858 bk = k;
861 /* build the decoding tables for literal/length and distance codes */
862 bl = lbits;
863 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
865 if (i == 1) {
866 Trace ((stderr, " incomplete literal tree\n"));
867 huft_free(tl);
869 return i; /* incomplete code set */
871 bd = dbits;
872 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
874 if (i == 1) {
875 Trace ((stderr, " incomplete distance tree\n"));
876 #ifdef PKZIP_BUG_WORKAROUND
877 i = 0;
879 #else
880 huft_free(td);
882 huft_free(tl);
883 return i; /* incomplete code set */
884 #endif
888 /* decompress until an end-of-block code */
889 if (inflate_codes(tl, td, bl, bd))
890 return 1;
893 /* free the decoding tables, return */
894 huft_free(tl);
895 huft_free(td);
896 return 0;
901 int inflate_block(e)
902 int *e; /* last block flag */
903 /* decompress an inflated block */
905 unsigned t; /* block type */
906 unsigned w; /* current window position */
907 register ulg b; /* bit buffer */
908 register unsigned k; /* number of bits in bit buffer */
911 /* make local bit buffer */
912 b = bb;
913 k = bk;
914 w = wp;
917 /* read in last block bit */
918 NEEDBITS(1)
919 *e = (int)b & 1;
920 DUMPBITS(1)
923 /* read in block type */
924 NEEDBITS(2)
925 t = (unsigned)b & 3;
926 DUMPBITS(2)
929 /* restore the global bit buffer */
930 bb = b;
931 bk = k;
934 /* inflate that block type */
935 if (t == 2)
936 return inflate_dynamic();
937 if (t == 0)
938 return inflate_stored();
939 if (t == 1)
940 return inflate_fixed();
943 /* bad block type */
944 return 2;
949 int inflate()
950 /* decompress an inflated entry */
952 int e; /* last block flag */
953 int r; /* result code */
954 unsigned h; /* maximum struct huft's malloc'ed */
957 /* initialize window, bit buffer */
958 wp = 0;
959 bk = 0;
960 bb = 0;
963 /* decompress until the last block */
964 h = 0;
965 do {
966 hufts = 0;
967 if ((r = inflate_block(&e)) != 0)
968 return r;
969 if (hufts > h)
970 h = hufts;
971 } while (!e);
973 /* Undo too much lookahead. The next read will be byte aligned so we
974 * can discard unused bits in the last meaningful byte.
976 while (bk >= 8) {
977 bk -= 8;
978 inptr--;
981 /* flush out slide */
982 flush_output(wp);
985 /* return success */
986 Trace ((stderr, "<%u> ", h));
987 return 0;