maint: new file: .prev-version
[gzip.git] / inflate.c
blob71ce8efdbcd764c4e752c9c9589f0be78ccb45a4
1 /* Inflate deflated data
3 Copyright (C) 1997, 1998, 1999, 2002, 2006 Free Software
4 Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
20 /* Not copyrighted 1992 by Mark Adler
21 version c10p1, 10 January 1993 */
23 /* You can do whatever you like with this source file, though I would
24 prefer that if you modify it and redistribute it that you include
25 comments to that effect with your name and the date. Thank you.
26 [The history has been moved to the file ChangeLog.]
30 Inflate deflated (PKZIP's method 8 compressed) data. The compression
31 method searches for as much of the current string of bytes (up to a
32 length of 258) in the previous 32K bytes. If it doesn't find any
33 matches (of at least length 3), it codes the next byte. Otherwise, it
34 codes the length of the matched string and its distance backwards from
35 the current position. There is a single Huffman code that codes both
36 single bytes (called "literals") and match lengths. A second Huffman
37 code codes the distance information, which follows a length code. Each
38 length or distance code actually represents a base value and a number
39 of "extra" (sometimes zero) bits to get to add to the base value. At
40 the end of each deflated block is a special end-of-block (EOB) literal/
41 length code. The decoding process is basically: get a literal/length
42 code; if EOB then done; if a literal, emit the decoded byte; if a
43 length then get the distance and emit the referred-to bytes from the
44 sliding window of previously emitted data.
46 There are (currently) three kinds of inflate blocks: stored, fixed, and
47 dynamic. The compressor deals with some chunk of data at a time, and
48 decides which method to use on a chunk-by-chunk basis. A chunk might
49 typically be 32K or 64K. If the chunk is uncompressible, then the
50 "stored" method is used. In this case, the bytes are simply stored as
51 is, eight bits per byte, with none of the above coding. The bytes are
52 preceded by a count, since there is no longer an EOB code.
54 If the data is compressible, then either the fixed or dynamic methods
55 are used. In the dynamic method, the compressed data is preceded by
56 an encoding of the literal/length and distance Huffman codes that are
57 to be used to decode this block. The representation is itself Huffman
58 coded, and so is preceded by a description of that code. These code
59 descriptions take up a little space, and so for small blocks, there is
60 a predefined set of codes, called the fixed codes. The fixed method is
61 used if the block codes up smaller that way (usually for quite small
62 chunks), otherwise the dynamic method is used. In the latter case, the
63 codes are customized to the probabilities in the current block, and so
64 can code it much better than the pre-determined fixed codes.
66 The Huffman codes themselves are decoded using a multi-level table
67 lookup, in order to maximize the speed of decoding plus the speed of
68 building the decoding tables. See the comments below that precede the
69 lbits and dbits tuning parameters.
74 Notes beyond the 1.93a appnote.txt:
76 1. Distance pointers never point before the beginning of the output
77 stream.
78 2. Distance pointers can point back across blocks, up to 32k away.
79 3. There is an implied maximum of 7 bits for the bit length table and
80 15 bits for the actual data.
81 4. If only one code exists, then it is encoded using one bit. (Zero
82 would be more efficient, but perhaps a little confusing.) If two
83 codes exist, they are coded using one bit each (0 and 1).
84 5. There is no way of sending zero distance codes--a dummy must be
85 sent if there are none. (History: a pre 2.0 version of PKZIP would
86 store blocks with no distance codes, but this was discovered to be
87 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
88 zero distance codes, which is sent as one code of zero bits in
89 length.
90 6. There are up to 286 literal/length codes. Code 256 represents the
91 end-of-block. Note however that the static length tree defines
92 288 codes just to fill out the Huffman codes. Codes 286 and 287
93 cannot be used though, since there is no length base or extra bits
94 defined for them. Similarly, there are up to 30 distance codes.
95 However, static trees define 32 codes (all 5 bits) to fill out the
96 Huffman codes, but the last two had better not show up in the data.
97 7. Unzip can check dynamic Huffman blocks for complete code sets.
98 The exception is that a single code would not be complete (see #4).
99 8. The five bits following the block type is really the number of
100 literal codes sent minus 257.
101 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
102 (1+6+6). Therefore, to output three times the length, you output
103 three codes (1+1+1), whereas to output four times the same length,
104 you only need two codes (1+3). Hmm.
105 10. In the tree reconstruction algorithm, Code = Code + Increment
106 only if BitLength(i) is not zero. (Pretty obvious.)
107 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
108 12. Note: length code 284 can represent 227-258, but length code 285
109 really is 258. The last length deserves its own, short code
110 since it gets used a lot in very redundant files. The length
111 258 is special since 258 - 3 (the min match length) is 255.
112 13. The literal/length and distance code bit lengths are read as a
113 single stream of lengths. It is possible (and advantageous) for
114 a repeat code (16, 17, or 18) to go across the boundary between
115 the two sets of lengths.
118 #ifdef RCSID
119 static char rcsid[] = "$Id$";
120 #endif
122 #include <config.h>
123 #include "tailor.h"
125 #if defined STDC_HEADERS || defined HAVE_STDLIB_H
126 # include <stdlib.h>
127 #endif
129 #include "gzip.h"
130 #define slide window
132 /* Huffman code lookup table entry--this entry is four bytes for machines
133 that have 16-bit pointers (e.g. PC's in the small or medium model).
134 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
135 means that v is a literal, 16 < e < 32 means that v is a pointer to
136 the next table, which codes e - 16 bits, and lastly e == 99 indicates
137 an unused code. If a code with e == 99 is looked up, this implies an
138 error in the data. */
139 struct huft {
140 uch e; /* number of extra bits or operation */
141 uch b; /* number of bits in this code or subcode */
142 union {
143 ush n; /* literal, length base, or distance base */
144 struct huft *t; /* pointer to next level of table */
145 } v;
149 /* Function prototypes */
150 int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *,
151 struct huft **, int *));
152 int huft_free OF((struct huft *));
153 int inflate_codes OF((struct huft *, struct huft *, int, int));
154 int inflate_stored OF((void));
155 int inflate_fixed OF((void));
156 int inflate_dynamic OF((void));
157 int inflate_block OF((int *));
158 int inflate OF((void));
161 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
162 stream to find repeated byte strings. This is implemented here as a
163 circular buffer. The index is updated simply by incrementing and then
164 and'ing with 0x7fff (32K-1). */
165 /* It is left to other modules to supply the 32K area. It is assumed
166 to be usable as if it were declared "uch slide[32768];" or as just
167 "uch *slide;" and then malloc'ed in the latter case. The definition
168 must be in unzip.h, included above. */
169 /* unsigned wp; current position in slide */
170 #define wp outcnt
171 #define flush_output(w) (wp=(w),flush_window())
173 /* Tables for deflate from PKZIP's appnote.txt. */
174 static unsigned border[] = { /* Order of the bit length code lengths */
175 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
176 static ush cplens[] = { /* Copy lengths for literal codes 257..285 */
177 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
178 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
179 /* note: see note #13 above about the 258 in this list. */
180 static ush cplext[] = { /* Extra bits for literal codes 257..285 */
181 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
182 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
183 static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
184 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
185 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
186 8193, 12289, 16385, 24577};
187 static ush cpdext[] = { /* Extra bits for distance codes */
188 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
189 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
190 12, 12, 13, 13};
194 /* Macros for inflate() bit peeking and grabbing.
195 The usage is:
197 NEEDBITS(j)
198 x = b & mask_bits[j];
199 DUMPBITS(j)
201 where NEEDBITS makes sure that b has at least j bits in it, and
202 DUMPBITS removes the bits from b. The macros use the variable k
203 for the number of bits in b. Normally, b and k are register
204 variables for speed, and are initialized at the beginning of a
205 routine that uses these macros from a global bit buffer and count.
206 The macros also use the variable w, which is a cached copy of wp.
208 If we assume that EOB will be the longest code, then we will never
209 ask for bits with NEEDBITS that are beyond the end of the stream.
210 So, NEEDBITS should not read any more bytes than are needed to
211 meet the request. Then no bytes need to be "returned" to the buffer
212 at the end of the last block.
214 However, this assumption is not true for fixed blocks--the EOB code
215 is 7 bits, but the other literal/length codes can be 8 or 9 bits.
216 (The EOB code is shorter than other codes because fixed blocks are
217 generally short. So, while a block always has an EOB, many other
218 literal/length codes have a significantly lower probability of
219 showing up at all.) However, by making the first table have a
220 lookup of seven bits, the EOB code will be found in that first
221 lookup, and so will not require that too many bits be pulled from
222 the stream.
225 ulg bb; /* bit buffer */
226 unsigned bk; /* bits in bit buffer */
228 ush mask_bits[] = {
229 0x0000,
230 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
231 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
234 #define GETBYTE() (inptr < insize ? inbuf[inptr++] : (wp = w, fill_inbuf(0)))
236 #ifdef CRYPT
237 uch cc;
238 # define NEXTBYTE() \
239 (decrypt ? (cc = GETBYTE(), zdecode(cc), cc) : GETBYTE())
240 #else
241 # define NEXTBYTE() (uch)GETBYTE()
242 #endif
243 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
244 #define DUMPBITS(n) {b>>=(n);k-=(n);}
248 Huffman code decoding is performed using a multi-level table lookup.
249 The fastest way to decode is to simply build a lookup table whose
250 size is determined by the longest code. However, the time it takes
251 to build this table can also be a factor if the data being decoded
252 is not very long. The most common codes are necessarily the
253 shortest codes, so those codes dominate the decoding time, and hence
254 the speed. The idea is you can have a shorter table that decodes the
255 shorter, more probable codes, and then point to subsidiary tables for
256 the longer codes. The time it costs to decode the longer codes is
257 then traded against the time it takes to make longer tables.
259 This results of this trade are in the variables lbits and dbits
260 below. lbits is the number of bits the first level table for literal/
261 length codes can decode in one step, and dbits is the same thing for
262 the distance codes. Subsequent tables are also less than or equal to
263 those sizes. These values may be adjusted either when all of the
264 codes are shorter than that, in which case the longest code length in
265 bits is used, or when the shortest code is *longer* than the requested
266 table size, in which case the length of the shortest code in bits is
267 used.
269 There are two different values for the two tables, since they code a
270 different number of possibilities each. The literal/length table
271 codes 286 possible values, or in a flat code, a little over eight
272 bits. The distance table codes 30 possible values, or a little less
273 than five bits, flat. The optimum values for speed end up being
274 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
275 The optimum values may differ though from machine to machine, and
276 possibly even between compilers. Your mileage may vary.
280 int lbits = 9; /* bits in base literal/length lookup table */
281 int dbits = 6; /* bits in base distance lookup table */
284 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
285 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
286 #define N_MAX 288 /* maximum number of codes in any set */
289 unsigned hufts; /* track memory usage */
292 int huft_build(b, n, s, d, e, t, m)
293 unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
294 unsigned n; /* number of codes (assumed <= N_MAX) */
295 unsigned s; /* number of simple-valued codes (0..s-1) */
296 ush *d; /* list of base values for non-simple codes */
297 ush *e; /* list of extra bits for non-simple codes */
298 struct huft **t; /* result: starting table */
299 int *m; /* maximum lookup bits, returns actual */
300 /* Given a list of code lengths and a maximum table size, make a set of
301 tables to decode that set of codes. Return zero on success, one if
302 the given code set is incomplete (the tables are still built in this
303 case), two if the input is invalid (all zero length codes or an
304 oversubscribed set of lengths), and three if not enough memory. */
306 unsigned a; /* counter for codes of length k */
307 unsigned c[BMAX+1]; /* bit length count table */
308 unsigned f; /* i repeats in table every f entries */
309 int g; /* maximum code length */
310 int h; /* table level */
311 register unsigned i; /* counter, current code */
312 register unsigned j; /* counter */
313 register int k; /* number of bits in current code */
314 int l; /* bits per table (returned in m) */
315 register unsigned *p; /* pointer into c[], b[], or v[] */
316 register struct huft *q; /* points to current table */
317 struct huft r; /* table entry for structure assignment */
318 struct huft *u[BMAX]; /* table stack */
319 unsigned v[N_MAX]; /* values in order of bit length */
320 register int w; /* bits before this table == (l * h) */
321 unsigned x[BMAX+1]; /* bit offsets, then code stack */
322 unsigned *xp; /* pointer into x */
323 int y; /* number of dummy codes added */
324 unsigned z; /* number of entries in current table */
327 /* Generate counts for each bit length */
328 memzero(c, sizeof(c));
329 p = b; i = n;
330 do {
331 Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
332 n-i, *p));
333 c[*p]++; /* assume all entries <= BMAX */
334 p++; /* Can't combine with above line (Solaris bug) */
335 } while (--i);
336 if (c[0] == n) /* null input--all zero length codes */
338 q = (struct huft *) malloc (3 * sizeof *q);
339 if (!q)
340 return 3;
341 hufts += 3;
342 q[0].v.t = (struct huft *) NULL;
343 q[1].e = 99; /* invalid code marker */
344 q[1].b = 1;
345 q[2].e = 99; /* invalid code marker */
346 q[2].b = 1;
347 *t = q + 1;
348 *m = 1;
349 return 0;
353 /* Find minimum and maximum length, bound *m by those */
354 l = *m;
355 for (j = 1; j <= BMAX; j++)
356 if (c[j])
357 break;
358 k = j; /* minimum code length */
359 if ((unsigned)l < j)
360 l = j;
361 for (i = BMAX; i; i--)
362 if (c[i])
363 break;
364 g = i; /* maximum code length */
365 if ((unsigned)l > i)
366 l = i;
367 *m = l;
370 /* Adjust last length count to fill out codes, if needed */
371 for (y = 1 << j; j < i; j++, y <<= 1)
372 if ((y -= c[j]) < 0)
373 return 2; /* bad input: more codes than bits */
374 if ((y -= c[i]) < 0)
375 return 2;
376 c[i] += y;
379 /* Generate starting offsets into the value table for each length */
380 x[1] = j = 0;
381 p = c + 1; xp = x + 2;
382 while (--i) { /* note that i == g from above */
383 *xp++ = (j += *p++);
387 /* Make a table of values in order of bit lengths */
388 p = b; i = 0;
389 do {
390 if ((j = *p++) != 0)
391 v[x[j]++] = i;
392 } while (++i < n);
393 n = x[g]; /* set n to length of v */
396 /* Generate the Huffman codes and for each, make the table entries */
397 x[0] = i = 0; /* first Huffman code is zero */
398 p = v; /* grab values in bit order */
399 h = -1; /* no tables yet--level -1 */
400 w = -l; /* bits decoded == (l * h) */
401 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
402 q = (struct huft *)NULL; /* ditto */
403 z = 0; /* ditto */
405 /* go through the bit lengths (k already is bits in shortest code) */
406 for (; k <= g; k++)
408 a = c[k];
409 while (a--)
411 /* here i is the Huffman code of length k bits for value *p */
412 /* make tables up to required level */
413 while (k > w + l)
415 h++;
416 w += l; /* previous table always l bits */
418 /* compute minimum size table less than or equal to l bits */
419 z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
420 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
421 { /* too few codes for k-w bit table */
422 f -= a + 1; /* deduct codes from patterns left */
423 xp = c + k;
424 if (j < z)
425 while (++j < z) /* try smaller tables up to z bits */
427 if ((f <<= 1) <= *++xp)
428 break; /* enough codes to use up j bits */
429 f -= *xp; /* else deduct codes from patterns */
432 z = 1 << j; /* table entries for j-bit table */
434 /* allocate and link in new table */
435 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
436 (struct huft *)NULL)
438 if (h)
439 huft_free(u[0]);
440 return 3; /* not enough memory */
442 hufts += z + 1; /* track memory usage */
443 *t = q + 1; /* link to list for huft_free() */
444 *(t = &(q->v.t)) = (struct huft *)NULL;
445 u[h] = ++q; /* table starts after link */
447 /* connect to last table, if there is one */
448 if (h)
450 x[h] = i; /* save pattern for backing up */
451 r.b = (uch)l; /* bits to dump before this table */
452 r.e = (uch)(16 + j); /* bits in this table */
453 r.v.t = q; /* pointer to this table */
454 j = i >> (w - l); /* (get around Turbo C bug) */
455 u[h-1][j] = r; /* connect to last table */
459 /* set up table entry in r */
460 r.b = (uch)(k - w);
461 if (p >= v + n)
462 r.e = 99; /* out of values--invalid code */
463 else if (*p < s)
465 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
466 r.v.n = (ush)(*p); /* simple code is just the value */
467 p++; /* one compiler does not like *p++ */
469 else
471 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
472 r.v.n = d[*p++ - s];
475 /* fill code-like entries with r */
476 f = 1 << (k - w);
477 for (j = i >> w; j < z; j += f)
478 q[j] = r;
480 /* backwards increment the k-bit code i */
481 for (j = 1 << (k - 1); i & j; j >>= 1)
482 i ^= j;
483 i ^= j;
485 /* backup over finished tables */
486 while ((i & ((1 << w) - 1)) != x[h])
488 h--; /* don't need to update q */
489 w -= l;
495 /* Return true (1) if we were given an incomplete table */
496 return y != 0 && g != 1;
501 int huft_free(t)
502 struct huft *t; /* table to free */
503 /* Free the malloc'ed tables built by huft_build(), which makes a linked
504 list of the tables it made, with the links in a dummy first entry of
505 each table. */
507 register struct huft *p, *q;
510 /* Go through linked list, freeing from the malloced (t[-1]) address. */
511 p = t;
512 while (p != (struct huft *)NULL)
514 q = (--p)->v.t;
515 free((char*)p);
516 p = q;
518 return 0;
522 int inflate_codes(tl, td, bl, bd)
523 struct huft *tl, *td; /* literal/length and distance decoder tables */
524 int bl, bd; /* number of bits decoded by tl[] and td[] */
525 /* inflate (decompress) the codes in a deflated (compressed) block.
526 Return an error code or zero if it all goes ok. */
528 register unsigned e; /* table entry flag/number of extra bits */
529 unsigned n, d; /* length and index for copy */
530 unsigned w; /* current window position */
531 struct huft *t; /* pointer to table entry */
532 unsigned ml, md; /* masks for bl and bd bits */
533 register ulg b; /* bit buffer */
534 register unsigned k; /* number of bits in bit buffer */
537 /* make local copies of globals */
538 b = bb; /* initialize bit buffer */
539 k = bk;
540 w = wp; /* initialize window position */
542 /* inflate the coded data */
543 ml = mask_bits[bl]; /* precompute masks for speed */
544 md = mask_bits[bd];
545 for (;;) /* do until end of block */
547 NEEDBITS((unsigned)bl)
548 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
549 do {
550 if (e == 99)
551 return 1;
552 DUMPBITS(t->b)
553 e -= 16;
554 NEEDBITS(e)
555 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
556 DUMPBITS(t->b)
557 if (e == 16) /* then it's a literal */
559 slide[w++] = (uch)t->v.n;
560 Tracevv((stderr, "%c", slide[w-1]));
561 if (w == WSIZE)
563 flush_output(w);
564 w = 0;
567 else /* it's an EOB or a length */
569 /* exit if end of block */
570 if (e == 15)
571 break;
573 /* get length of block to copy */
574 NEEDBITS(e)
575 n = t->v.n + ((unsigned)b & mask_bits[e]);
576 DUMPBITS(e);
578 /* decode distance of block to copy */
579 NEEDBITS((unsigned)bd)
580 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
581 do {
582 if (e == 99)
583 return 1;
584 DUMPBITS(t->b)
585 e -= 16;
586 NEEDBITS(e)
587 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
588 DUMPBITS(t->b)
589 NEEDBITS(e)
590 d = w - t->v.n - ((unsigned)b & mask_bits[e]);
591 DUMPBITS(e)
592 Tracevv((stderr,"\\[%d,%d]", w-d, n));
594 /* do the copy */
595 do {
596 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
597 #if !defined(NOMEMCPY) && !defined(DEBUG)
598 if (w - d >= e) /* (this test assumes unsigned comparison) */
600 memcpy(slide + w, slide + d, e);
601 w += e;
602 d += e;
604 else /* do it slow to avoid memcpy() overlap */
605 #endif /* !NOMEMCPY */
606 do {
607 slide[w++] = slide[d++];
608 Tracevv((stderr, "%c", slide[w-1]));
609 } while (--e);
610 if (w == WSIZE)
612 flush_output(w);
613 w = 0;
615 } while (n);
620 /* restore the globals from the locals */
621 wp = w; /* restore global window pointer */
622 bb = b; /* restore global bit buffer */
623 bk = k;
625 /* done */
626 return 0;
631 int inflate_stored()
632 /* "decompress" an inflated type 0 (stored) block. */
634 unsigned n; /* number of bytes in block */
635 unsigned w; /* current window position */
636 register ulg b; /* bit buffer */
637 register unsigned k; /* number of bits in bit buffer */
640 /* make local copies of globals */
641 b = bb; /* initialize bit buffer */
642 k = bk;
643 w = wp; /* initialize window position */
646 /* go to byte boundary */
647 n = k & 7;
648 DUMPBITS(n);
651 /* get the length and its complement */
652 NEEDBITS(16)
653 n = ((unsigned)b & 0xffff);
654 DUMPBITS(16)
655 NEEDBITS(16)
656 if (n != (unsigned)((~b) & 0xffff))
657 return 1; /* error in compressed data */
658 DUMPBITS(16)
661 /* read and output the compressed data */
662 while (n--)
664 NEEDBITS(8)
665 slide[w++] = (uch)b;
666 if (w == WSIZE)
668 flush_output(w);
669 w = 0;
671 DUMPBITS(8)
675 /* restore the globals from the locals */
676 wp = w; /* restore global window pointer */
677 bb = b; /* restore global bit buffer */
678 bk = k;
679 return 0;
684 int inflate_fixed()
685 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
686 either replace this with a custom decoder, or at least precompute the
687 Huffman tables. */
689 int i; /* temporary variable */
690 struct huft *tl; /* literal/length code table */
691 struct huft *td; /* distance code table */
692 int bl; /* lookup bits for tl */
693 int bd; /* lookup bits for td */
694 unsigned l[288]; /* length list for huft_build */
697 /* set up literal table */
698 for (i = 0; i < 144; i++)
699 l[i] = 8;
700 for (; i < 256; i++)
701 l[i] = 9;
702 for (; i < 280; i++)
703 l[i] = 7;
704 for (; i < 288; i++) /* make a complete, but wrong code set */
705 l[i] = 8;
706 bl = 7;
707 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
708 return i;
711 /* set up distance table */
712 for (i = 0; i < 30; i++) /* make an incomplete code set */
713 l[i] = 5;
714 bd = 5;
715 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
717 huft_free(tl);
718 return i;
722 /* decompress until an end-of-block code */
723 if (inflate_codes(tl, td, bl, bd))
724 return 1;
727 /* free the decoding tables, return */
728 huft_free(tl);
729 huft_free(td);
730 return 0;
735 int inflate_dynamic()
736 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
738 int i; /* temporary variables */
739 unsigned j;
740 unsigned l; /* last length */
741 unsigned m; /* mask for bit lengths table */
742 unsigned n; /* number of lengths to get */
743 unsigned w; /* current window position */
744 struct huft *tl; /* literal/length code table */
745 struct huft *td; /* distance code table */
746 int bl; /* lookup bits for tl */
747 int bd; /* lookup bits for td */
748 unsigned nb; /* number of bit length codes */
749 unsigned nl; /* number of literal/length codes */
750 unsigned nd; /* number of distance codes */
751 #ifdef PKZIP_BUG_WORKAROUND
752 unsigned ll[288+32]; /* literal/length and distance code lengths */
753 #else
754 unsigned ll[286+30]; /* literal/length and distance code lengths */
755 #endif
756 register ulg b; /* bit buffer */
757 register unsigned k; /* number of bits in bit buffer */
760 /* make local bit buffer */
761 b = bb;
762 k = bk;
763 w = wp;
766 /* read in table lengths */
767 NEEDBITS(5)
768 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
769 DUMPBITS(5)
770 NEEDBITS(5)
771 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
772 DUMPBITS(5)
773 NEEDBITS(4)
774 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
775 DUMPBITS(4)
776 #ifdef PKZIP_BUG_WORKAROUND
777 if (nl > 288 || nd > 32)
778 #else
779 if (nl > 286 || nd > 30)
780 #endif
781 return 1; /* bad lengths */
784 /* read in bit-length-code lengths */
785 for (j = 0; j < nb; j++)
787 NEEDBITS(3)
788 ll[border[j]] = (unsigned)b & 7;
789 DUMPBITS(3)
791 for (; j < 19; j++)
792 ll[border[j]] = 0;
795 /* build decoding table for trees--single level, 7 bit lookup */
796 bl = 7;
797 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
799 if (i == 1)
800 huft_free(tl);
801 return i; /* incomplete code set */
804 if (tl == NULL) /* Grrrhhh */
805 return 2;
807 /* read in literal and distance code lengths */
808 n = nl + nd;
809 m = mask_bits[bl];
810 i = l = 0;
811 while ((unsigned)i < n)
813 NEEDBITS((unsigned)bl)
814 j = (td = tl + ((unsigned)b & m))->b;
815 DUMPBITS(j)
816 j = td->v.n;
817 if (j < 16) /* length of code in bits (0..15) */
818 ll[i++] = l = j; /* save last length in l */
819 else if (j == 16) /* repeat last length 3 to 6 times */
821 NEEDBITS(2)
822 j = 3 + ((unsigned)b & 3);
823 DUMPBITS(2)
824 if ((unsigned)i + j > n)
825 return 1;
826 while (j--)
827 ll[i++] = l;
829 else if (j == 17) /* 3 to 10 zero length codes */
831 NEEDBITS(3)
832 j = 3 + ((unsigned)b & 7);
833 DUMPBITS(3)
834 if ((unsigned)i + j > n)
835 return 1;
836 while (j--)
837 ll[i++] = 0;
838 l = 0;
840 else /* j == 18: 11 to 138 zero length codes */
842 NEEDBITS(7)
843 j = 11 + ((unsigned)b & 0x7f);
844 DUMPBITS(7)
845 if ((unsigned)i + j > n)
846 return 1;
847 while (j--)
848 ll[i++] = 0;
849 l = 0;
854 /* free decoding table for trees */
855 huft_free(tl);
858 /* restore the global bit buffer */
859 bb = b;
860 bk = k;
863 /* build the decoding tables for literal/length and distance codes */
864 bl = lbits;
865 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
867 if (i == 1) {
868 Trace ((stderr, " incomplete literal tree\n"));
869 huft_free(tl);
871 return i; /* incomplete code set */
873 bd = dbits;
874 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
876 if (i == 1) {
877 Trace ((stderr, " incomplete distance tree\n"));
878 #ifdef PKZIP_BUG_WORKAROUND
879 i = 0;
881 #else
882 huft_free(td);
884 huft_free(tl);
885 return i; /* incomplete code set */
886 #endif
891 /* decompress until an end-of-block code */
892 int err = inflate_codes(tl, td, bl, bd) ? 1 : 0;
894 /* free the decoding tables */
895 huft_free(tl);
896 huft_free(td);
898 return err;
904 int inflate_block(e)
905 int *e; /* last block flag */
906 /* decompress an inflated block */
908 unsigned t; /* block type */
909 unsigned w; /* current window position */
910 register ulg b; /* bit buffer */
911 register unsigned k; /* number of bits in bit buffer */
914 /* make local bit buffer */
915 b = bb;
916 k = bk;
917 w = wp;
920 /* read in last block bit */
921 NEEDBITS(1)
922 *e = (int)b & 1;
923 DUMPBITS(1)
926 /* read in block type */
927 NEEDBITS(2)
928 t = (unsigned)b & 3;
929 DUMPBITS(2)
932 /* restore the global bit buffer */
933 bb = b;
934 bk = k;
937 /* inflate that block type */
938 if (t == 2)
939 return inflate_dynamic();
940 if (t == 0)
941 return inflate_stored();
942 if (t == 1)
943 return inflate_fixed();
946 /* bad block type */
947 return 2;
952 int inflate()
953 /* decompress an inflated entry */
955 int e; /* last block flag */
956 int r; /* result code */
957 unsigned h; /* maximum struct huft's malloc'ed */
960 /* initialize window, bit buffer */
961 wp = 0;
962 bk = 0;
963 bb = 0;
966 /* decompress until the last block */
967 h = 0;
968 do {
969 hufts = 0;
970 if ((r = inflate_block(&e)) != 0)
971 return r;
972 if (hufts > h)
973 h = hufts;
974 } while (!e);
976 /* Undo too much lookahead. The next read will be byte aligned so we
977 * can discard unused bits in the last meaningful byte.
979 while (bk >= 8) {
980 bk -= 8;
981 inptr--;
984 /* flush out slide */
985 flush_output(wp);
988 /* return success */
989 Trace ((stderr, "<%u> ", h));
990 return 0;