2 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3 * MD5 Message-Digest Algorithm (RFC 1321).
6 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
9 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
11 * This software was written by Alexander Peslyak in 2001. No copyright is
12 * claimed, and the software is hereby placed in the public domain.
13 * In case this attempt to disclaim copyright and place the software in the
14 * public domain is deemed null and void, then the software is
15 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16 * general public under the following terms:
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted.
21 * There's ABSOLUTELY NO WARRANTY, express or implied.
23 * (This is a heavily cut-down "BSD license".)
25 * This differs from Colin Plumb's older public domain implementation in that
26 * no exactly 32-bit integer data type is required (any 32-bit or wider
27 * unsigned integer data type will do), there's no compile-time endianness
28 * configuration, and the function prototypes match OpenSSL's. No code from
29 * Colin Plumb's implementation has been reused; this comment merely compares
30 * the properties of the two independent implementations.
32 * The primary goals of this implementation are portability and ease of use.
33 * It is meant to be fast, but not as fast as possible. Some known
34 * optimizations are not included to reduce source code size and avoid
35 * compile-time configuration.
45 * The basic MD5 functions.
47 * F and G are optimized compared to their RFC 1321 definitions for
48 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
51 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
52 #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
53 #define H(x, y, z) ((x) ^ (y) ^ (z))
54 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
57 * The MD5 transformation for all four rounds.
59 #define STEP(f, a, b, c, d, x, t, s) \
60 (a) += f((b), (c), (d)) + (x) + (t); \
61 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
65 * SET reads 4 input bytes in little-endian byte order and stores them
66 * in a properly aligned word in host byte order.
68 * The check for little-endian architectures that tolerate unaligned
69 * memory accesses is just an optimization. Nothing will break if it
72 #if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
74 (*(MD5_u32plus *)&ptr[(n) * 4])
80 (MD5_u32plus)ptr[(n) * 4] | \
81 ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
82 ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
83 ((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
89 * This processes one or more 64-byte data blocks, but does NOT update
90 * the bit counters. There are no alignment requirements.
92 static void *body(MD5_CTX
*ctx
, void *data
, unsigned long size
)
95 MD5_u32plus a
, b
, c
, d
;
96 MD5_u32plus saved_a
, saved_b
, saved_c
, saved_d
;
112 STEP(F
, a
, b
, c
, d
, SET(0), 0xd76aa478, 7)
113 STEP(F
, d
, a
, b
, c
, SET(1), 0xe8c7b756, 12)
114 STEP(F
, c
, d
, a
, b
, SET(2), 0x242070db, 17)
115 STEP(F
, b
, c
, d
, a
, SET(3), 0xc1bdceee, 22)
116 STEP(F
, a
, b
, c
, d
, SET(4), 0xf57c0faf, 7)
117 STEP(F
, d
, a
, b
, c
, SET(5), 0x4787c62a, 12)
118 STEP(F
, c
, d
, a
, b
, SET(6), 0xa8304613, 17)
119 STEP(F
, b
, c
, d
, a
, SET(7), 0xfd469501, 22)
120 STEP(F
, a
, b
, c
, d
, SET(8), 0x698098d8, 7)
121 STEP(F
, d
, a
, b
, c
, SET(9), 0x8b44f7af, 12)
122 STEP(F
, c
, d
, a
, b
, SET(10), 0xffff5bb1, 17)
123 STEP(F
, b
, c
, d
, a
, SET(11), 0x895cd7be, 22)
124 STEP(F
, a
, b
, c
, d
, SET(12), 0x6b901122, 7)
125 STEP(F
, d
, a
, b
, c
, SET(13), 0xfd987193, 12)
126 STEP(F
, c
, d
, a
, b
, SET(14), 0xa679438e, 17)
127 STEP(F
, b
, c
, d
, a
, SET(15), 0x49b40821, 22)
130 STEP(G
, a
, b
, c
, d
, GET(1), 0xf61e2562, 5)
131 STEP(G
, d
, a
, b
, c
, GET(6), 0xc040b340, 9)
132 STEP(G
, c
, d
, a
, b
, GET(11), 0x265e5a51, 14)
133 STEP(G
, b
, c
, d
, a
, GET(0), 0xe9b6c7aa, 20)
134 STEP(G
, a
, b
, c
, d
, GET(5), 0xd62f105d, 5)
135 STEP(G
, d
, a
, b
, c
, GET(10), 0x02441453, 9)
136 STEP(G
, c
, d
, a
, b
, GET(15), 0xd8a1e681, 14)
137 STEP(G
, b
, c
, d
, a
, GET(4), 0xe7d3fbc8, 20)
138 STEP(G
, a
, b
, c
, d
, GET(9), 0x21e1cde6, 5)
139 STEP(G
, d
, a
, b
, c
, GET(14), 0xc33707d6, 9)
140 STEP(G
, c
, d
, a
, b
, GET(3), 0xf4d50d87, 14)
141 STEP(G
, b
, c
, d
, a
, GET(8), 0x455a14ed, 20)
142 STEP(G
, a
, b
, c
, d
, GET(13), 0xa9e3e905, 5)
143 STEP(G
, d
, a
, b
, c
, GET(2), 0xfcefa3f8, 9)
144 STEP(G
, c
, d
, a
, b
, GET(7), 0x676f02d9, 14)
145 STEP(G
, b
, c
, d
, a
, GET(12), 0x8d2a4c8a, 20)
148 STEP(H
, a
, b
, c
, d
, GET(5), 0xfffa3942, 4)
149 STEP(H
, d
, a
, b
, c
, GET(8), 0x8771f681, 11)
150 STEP(H
, c
, d
, a
, b
, GET(11), 0x6d9d6122, 16)
151 STEP(H
, b
, c
, d
, a
, GET(14), 0xfde5380c, 23)
152 STEP(H
, a
, b
, c
, d
, GET(1), 0xa4beea44, 4)
153 STEP(H
, d
, a
, b
, c
, GET(4), 0x4bdecfa9, 11)
154 STEP(H
, c
, d
, a
, b
, GET(7), 0xf6bb4b60, 16)
155 STEP(H
, b
, c
, d
, a
, GET(10), 0xbebfbc70, 23)
156 STEP(H
, a
, b
, c
, d
, GET(13), 0x289b7ec6, 4)
157 STEP(H
, d
, a
, b
, c
, GET(0), 0xeaa127fa, 11)
158 STEP(H
, c
, d
, a
, b
, GET(3), 0xd4ef3085, 16)
159 STEP(H
, b
, c
, d
, a
, GET(6), 0x04881d05, 23)
160 STEP(H
, a
, b
, c
, d
, GET(9), 0xd9d4d039, 4)
161 STEP(H
, d
, a
, b
, c
, GET(12), 0xe6db99e5, 11)
162 STEP(H
, c
, d
, a
, b
, GET(15), 0x1fa27cf8, 16)
163 STEP(H
, b
, c
, d
, a
, GET(2), 0xc4ac5665, 23)
166 STEP(I
, a
, b
, c
, d
, GET(0), 0xf4292244, 6)
167 STEP(I
, d
, a
, b
, c
, GET(7), 0x432aff97, 10)
168 STEP(I
, c
, d
, a
, b
, GET(14), 0xab9423a7, 15)
169 STEP(I
, b
, c
, d
, a
, GET(5), 0xfc93a039, 21)
170 STEP(I
, a
, b
, c
, d
, GET(12), 0x655b59c3, 6)
171 STEP(I
, d
, a
, b
, c
, GET(3), 0x8f0ccc92, 10)
172 STEP(I
, c
, d
, a
, b
, GET(10), 0xffeff47d, 15)
173 STEP(I
, b
, c
, d
, a
, GET(1), 0x85845dd1, 21)
174 STEP(I
, a
, b
, c
, d
, GET(8), 0x6fa87e4f, 6)
175 STEP(I
, d
, a
, b
, c
, GET(15), 0xfe2ce6e0, 10)
176 STEP(I
, c
, d
, a
, b
, GET(6), 0xa3014314, 15)
177 STEP(I
, b
, c
, d
, a
, GET(13), 0x4e0811a1, 21)
178 STEP(I
, a
, b
, c
, d
, GET(4), 0xf7537e82, 6)
179 STEP(I
, d
, a
, b
, c
, GET(11), 0xbd3af235, 10)
180 STEP(I
, c
, d
, a
, b
, GET(2), 0x2ad7d2bb, 15)
181 STEP(I
, b
, c
, d
, a
, GET(9), 0xeb86d391, 21)
189 } while (size
-= 64);
199 void MD5_Init(MD5_CTX
*ctx
)
210 void MD5_Update(MD5_CTX
*ctx
, void *data
, unsigned long size
)
212 MD5_u32plus saved_lo
;
213 unsigned long used
, free
;
216 if ((ctx
->lo
= (saved_lo
+ size
) & 0x1fffffff) < saved_lo
)
218 ctx
->hi
+= size
>> 29;
220 used
= saved_lo
& 0x3f;
226 memcpy(&ctx
->buffer
[used
], data
, size
);
230 memcpy(&ctx
->buffer
[used
], data
, free
);
231 data
= (unsigned char *)data
+ free
;
233 body(ctx
, ctx
->buffer
, 64);
237 data
= body(ctx
, data
, size
& ~(unsigned long)0x3f);
241 memcpy(ctx
->buffer
, data
, size
);
244 void MD5_Final(unsigned char *result
, MD5_CTX
*ctx
)
246 unsigned long used
, free
;
248 used
= ctx
->lo
& 0x3f;
250 ctx
->buffer
[used
++] = 0x80;
255 memset(&ctx
->buffer
[used
], 0, free
);
256 body(ctx
, ctx
->buffer
, 64);
261 memset(&ctx
->buffer
[used
], 0, free
- 8);
264 ctx
->buffer
[56] = ctx
->lo
;
265 ctx
->buffer
[57] = ctx
->lo
>> 8;
266 ctx
->buffer
[58] = ctx
->lo
>> 16;
267 ctx
->buffer
[59] = ctx
->lo
>> 24;
268 ctx
->buffer
[60] = ctx
->hi
;
269 ctx
->buffer
[61] = ctx
->hi
>> 8;
270 ctx
->buffer
[62] = ctx
->hi
>> 16;
271 ctx
->buffer
[63] = ctx
->hi
>> 24;
273 body(ctx
, ctx
->buffer
, 64);
276 result
[1] = ctx
->a
>> 8;
277 result
[2] = ctx
->a
>> 16;
278 result
[3] = ctx
->a
>> 24;
280 result
[5] = ctx
->b
>> 8;
281 result
[6] = ctx
->b
>> 16;
282 result
[7] = ctx
->b
>> 24;
284 result
[9] = ctx
->c
>> 8;
285 result
[10] = ctx
->c
>> 16;
286 result
[11] = ctx
->c
>> 24;
288 result
[13] = ctx
->d
>> 8;
289 result
[14] = ctx
->d
>> 16;
290 result
[15] = ctx
->d
>> 24;
292 memset(ctx
, 0, sizeof(*ctx
));