1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
29 /* We need this for `regex.h', and perhaps for the Emacs include files. */
30 #include <sys/types.h>
36 /* The `emacs' switch turns on certain matching commands
37 that make sense only in Emacs. */
44 /* Emacs uses `NULL' as a predicate. */
49 /* We used to test for `BSTRING' here, but only GCC and Emacs define
50 `BSTRING', as far as I know, and neither of them use this code. */
51 #if HAVE_STRING_H || STDC_HEADERS
54 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
57 #define bcopy(s, d, n) memcpy ((d), (s), (n))
60 #define bzero(s, n) memset ((s), 0, (n))
74 /* Define the syntax stuff for \<, \>, etc. */
76 /* This must be nonzero for the wordchar and notwordchar pattern
77 commands in re_match_2. */
84 extern char *re_syntax_table
;
86 #else /* not SYNTAX_TABLE */
88 /* How many characters in the character set. */
89 #define CHAR_SET_SIZE 256
91 static char re_syntax_table
[CHAR_SET_SIZE
];
102 bzero (re_syntax_table
, sizeof re_syntax_table
);
104 for (c
= 'a'; c
<= 'z'; c
++)
105 re_syntax_table
[c
] = Sword
;
107 for (c
= 'A'; c
<= 'Z'; c
++)
108 re_syntax_table
[c
] = Sword
;
110 for (c
= '0'; c
<= '9'; c
++)
111 re_syntax_table
[c
] = Sword
;
113 re_syntax_table
['_'] = Sword
;
118 #endif /* not SYNTAX_TABLE */
120 #define SYNTAX(c) re_syntax_table[c]
122 #endif /* not emacs */
124 /* Get the interface, including the syntax bits. */
127 /* isalpha etc. are used for the character classes. */
135 #define ISBLANK(c) (isascii (c) && isblank (c))
137 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
140 #define ISGRAPH(c) (isascii (c) && isgraph (c))
142 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
145 #define ISPRINT(c) (isascii (c) && isprint (c))
146 #define ISDIGIT(c) (isascii (c) && isdigit (c))
147 #define ISALNUM(c) (isascii (c) && isalnum (c))
148 #define ISALPHA(c) (isascii (c) && isalpha (c))
149 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
150 #define ISLOWER(c) (isascii (c) && islower (c))
151 #define ISPUNCT(c) (isascii (c) && ispunct (c))
152 #define ISSPACE(c) (isascii (c) && isspace (c))
153 #define ISUPPER(c) (isascii (c) && isupper (c))
154 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
160 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
161 since ours (we hope) works properly with all combinations of
162 machines, compilers, `char' and `unsigned char' argument types.
163 (Per Bothner suggested the basic approach.) */
164 #undef SIGN_EXTEND_CHAR
166 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
167 #else /* not __STDC__ */
168 /* As in Harbison and Steele. */
169 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
172 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
173 use `alloca' instead of `malloc'. This is because using malloc in
174 re_search* or re_match* could cause memory leaks when C-g is used in
175 Emacs; also, malloc is slower and causes storage fragmentation. On
176 the other hand, malloc is more portable, and easier to debug.
178 Because we sometimes use alloca, some routines have to be macros,
179 not functions -- `alloca'-allocated space disappears at the end of the
180 function it is called in. */
184 #define REGEX_ALLOCATE malloc
185 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
187 #else /* not REGEX_MALLOC */
189 /* Emacs already defines alloca, sometimes. */
192 /* Make alloca work the best possible way. */
194 #define alloca __builtin_alloca
195 #else /* not __GNUC__ */
198 #else /* not __GNUC__ or HAVE_ALLOCA_H */
199 #ifndef _AIX /* Already did AIX, up at the top. */
201 #endif /* not _AIX */
202 #endif /* not HAVE_ALLOCA_H */
203 #endif /* not __GNUC__ */
205 #endif /* not alloca */
207 #define REGEX_ALLOCATE alloca
209 /* Assumes a `char *destination' variable. */
210 #define REGEX_REALLOCATE(source, osize, nsize) \
211 (destination = (char *) alloca (nsize), \
212 bcopy (source, destination, osize), \
215 #endif /* not REGEX_MALLOC */
218 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
219 `string1' or just past its end. This works if PTR is NULL, which is
221 #define FIRST_STRING_P(ptr) \
222 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
224 /* (Re)Allocate N items of type T using malloc, or fail. */
225 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
226 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
227 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
229 #define BYTEWIDTH 8 /* In bits. */
231 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
233 #define MAX(a, b) ((a) > (b) ? (a) : (b))
234 #define MIN(a, b) ((a) < (b) ? (a) : (b))
236 typedef char boolean
;
240 /* These are the command codes that appear in compiled regular
241 expressions. Some opcodes are followed by argument bytes. A
242 command code can specify any interpretation whatsoever for its
243 arguments. Zero bytes may appear in the compiled regular expression.
245 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
246 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
247 `exactn' we use here must also be 1. */
253 /* Followed by one byte giving n, then by n literal bytes. */
256 /* Matches any (more or less) character. */
259 /* Matches any one char belonging to specified set. First
260 following byte is number of bitmap bytes. Then come bytes
261 for a bitmap saying which chars are in. Bits in each byte
262 are ordered low-bit-first. A character is in the set if its
263 bit is 1. A character too large to have a bit in the map is
264 automatically not in the set. */
267 /* Same parameters as charset, but match any character that is
268 not one of those specified. */
271 /* Start remembering the text that is matched, for storing in a
272 register. Followed by one byte with the register number, in
273 the range 0 to one less than the pattern buffer's re_nsub
274 field. Then followed by one byte with the number of groups
275 inner to this one. (This last has to be part of the
276 start_memory only because we need it in the on_failure_jump
280 /* Stop remembering the text that is matched and store it in a
281 memory register. Followed by one byte with the register
282 number, in the range 0 to one less than `re_nsub' in the
283 pattern buffer, and one byte with the number of inner groups,
284 just like `start_memory'. (We need the number of inner
285 groups here because we don't have any easy way of finding the
286 corresponding start_memory when we're at a stop_memory.) */
289 /* Match a duplicate of something remembered. Followed by one
290 byte containing the register number. */
293 /* Fail unless at beginning of line. */
296 /* Fail unless at end of line. */
299 /* Succeeds if at beginning of buffer (if emacs) or at beginning
300 of string to be matched (if not). */
303 /* Analogously, for end of buffer/string. */
306 /* Followed by two byte relative address to which to jump. */
309 /* Same as jump, but marks the end of an alternative. */
312 /* Followed by two-byte relative address of place to resume at
313 in case of failure. */
316 /* Like on_failure_jump, but pushes a placeholder instead of the
317 current string position when executed. */
318 on_failure_keep_string_jump
,
320 /* Throw away latest failure point and then jump to following
321 two-byte relative address. */
324 /* Change to pop_failure_jump if know won't have to backtrack to
325 match; otherwise change to jump. This is used to jump
326 back to the beginning of a repeat. If what follows this jump
327 clearly won't match what the repeat does, such that we can be
328 sure that there is no use backtracking out of repetitions
329 already matched, then we change it to a pop_failure_jump.
330 Followed by two-byte address. */
333 /* Jump to following two-byte address, and push a dummy failure
334 point. This failure point will be thrown away if an attempt
335 is made to use it for a failure. A `+' construct makes this
336 before the first repeat. Also used as an intermediary kind
337 of jump when compiling an alternative. */
340 /* Push a dummy failure point and continue. Used at the end of
344 /* Followed by two-byte relative address and two-byte number n.
345 After matching N times, jump to the address upon failure. */
348 /* Followed by two-byte relative address, and two-byte number n.
349 Jump to the address N times, then fail. */
352 /* Set the following two-byte relative address to the
353 subsequent two-byte number. The address *includes* the two
357 wordchar
, /* Matches any word-constituent character. */
358 notwordchar
, /* Matches any char that is not a word-constituent. */
360 wordbeg
, /* Succeeds if at word beginning. */
361 wordend
, /* Succeeds if at word end. */
363 wordbound
, /* Succeeds if at a word boundary. */
364 notwordbound
/* Succeeds if not at a word boundary. */
367 ,before_dot
, /* Succeeds if before point. */
368 at_dot
, /* Succeeds if at point. */
369 after_dot
, /* Succeeds if after point. */
371 /* Matches any character whose syntax is specified. Followed by
372 a byte which contains a syntax code, e.g., Sword. */
375 /* Matches any character whose syntax is not that specified. */
380 /* Common operations on the compiled pattern. */
382 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
384 #define STORE_NUMBER(destination, number) \
386 (destination)[0] = (number) & 0377; \
387 (destination)[1] = (number) >> 8; \
390 /* Same as STORE_NUMBER, except increment DESTINATION to
391 the byte after where the number is stored. Therefore, DESTINATION
392 must be an lvalue. */
394 #define STORE_NUMBER_AND_INCR(destination, number) \
396 STORE_NUMBER (destination, number); \
397 (destination) += 2; \
400 /* Put into DESTINATION a number stored in two contiguous bytes starting
403 #define EXTRACT_NUMBER(destination, source) \
405 (destination) = *(source) & 0377; \
406 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
411 extract_number (dest
, source
)
413 unsigned char *source
;
415 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
416 *dest
= *source
& 0377;
420 #ifndef EXTRACT_MACROS /* To debug the macros. */
421 #undef EXTRACT_NUMBER
422 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
423 #endif /* not EXTRACT_MACROS */
427 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
428 SOURCE must be an lvalue. */
430 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
432 EXTRACT_NUMBER (destination, source); \
438 extract_number_and_incr (destination
, source
)
440 unsigned char **source
;
442 extract_number (destination
, *source
);
446 #ifndef EXTRACT_MACROS
447 #undef EXTRACT_NUMBER_AND_INCR
448 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
449 extract_number_and_incr (&dest, &src)
450 #endif /* not EXTRACT_MACROS */
454 /* If DEBUG is defined, Regex prints many voluminous messages about what
455 it is doing (if the variable `debug' is nonzero). If linked with the
456 main program in `iregex.c', you can enter patterns and strings
457 interactively. And if linked with the main program in `main.c' and
458 the other test files, you can run the already-written tests. */
462 /* We use standard I/O for debugging. */
465 /* It is useful to test things that ``must'' be true when debugging. */
468 static int debug
= 0;
470 #define DEBUG_STATEMENT(e) e
471 #define DEBUG_PRINT1(x) if (debug) printf (x)
472 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
473 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
474 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
475 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
476 if (debug) print_partial_compiled_pattern (s, e)
477 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
478 if (debug) print_double_string (w, s1, sz1, s2, sz2)
481 extern void printchar ();
483 /* Print the fastmap in human-readable form. */
486 print_fastmap (fastmap
)
489 unsigned was_a_range
= 0;
492 while (i
< (1 << BYTEWIDTH
))
498 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
514 /* Print a compiled pattern string in human-readable form, starting at
515 the START pointer into it and ending just before the pointer END. */
518 print_partial_compiled_pattern (start
, end
)
519 unsigned char *start
;
523 unsigned char *p
= start
;
524 unsigned char *pend
= end
;
532 /* Loop over pattern commands. */
535 switch ((re_opcode_t
) *p
++)
543 printf ("/exactn/%d", mcnt
);
554 printf ("/start_memory/%d/%d", mcnt
, *p
++);
559 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
563 printf ("/duplicate/%d", *p
++);
575 printf ("/charset%s",
576 (re_opcode_t
) *(p
- 1) == charset_not
? "_not" : "");
578 assert (p
+ *p
< pend
);
580 for (c
= 0; c
< *p
; c
++)
583 unsigned char map_byte
= p
[1 + c
];
587 for (bit
= 0; bit
< BYTEWIDTH
; bit
++)
588 if (map_byte
& (1 << bit
))
589 printchar (c
* BYTEWIDTH
+ bit
);
603 case on_failure_jump
:
604 extract_number_and_incr (&mcnt
, &p
);
605 printf ("/on_failure_jump/0/%d", mcnt
);
608 case on_failure_keep_string_jump
:
609 extract_number_and_incr (&mcnt
, &p
);
610 printf ("/on_failure_keep_string_jump/0/%d", mcnt
);
613 case dummy_failure_jump
:
614 extract_number_and_incr (&mcnt
, &p
);
615 printf ("/dummy_failure_jump/0/%d", mcnt
);
618 case push_dummy_failure
:
619 printf ("/push_dummy_failure");
623 extract_number_and_incr (&mcnt
, &p
);
624 printf ("/maybe_pop_jump/0/%d", mcnt
);
627 case pop_failure_jump
:
628 extract_number_and_incr (&mcnt
, &p
);
629 printf ("/pop_failure_jump/0/%d", mcnt
);
633 extract_number_and_incr (&mcnt
, &p
);
634 printf ("/jump_past_alt/0/%d", mcnt
);
638 extract_number_and_incr (&mcnt
, &p
);
639 printf ("/jump/0/%d", mcnt
);
643 extract_number_and_incr (&mcnt
, &p
);
644 extract_number_and_incr (&mcnt2
, &p
);
645 printf ("/succeed_n/0/%d/0/%d", mcnt
, mcnt2
);
649 extract_number_and_incr (&mcnt
, &p
);
650 extract_number_and_incr (&mcnt2
, &p
);
651 printf ("/jump_n/0/%d/0/%d", mcnt
, mcnt2
);
655 extract_number_and_incr (&mcnt
, &p
);
656 extract_number_and_incr (&mcnt2
, &p
);
657 printf ("/set_number_at/0/%d/0/%d", mcnt
, mcnt2
);
661 printf ("/wordbound");
665 printf ("/notwordbound");
677 printf ("/before_dot");
685 printf ("/after_dot");
689 printf ("/syntaxspec");
691 printf ("/%d", mcnt
);
695 printf ("/notsyntaxspec");
697 printf ("/%d", mcnt
);
702 printf ("/wordchar");
706 printf ("/notwordchar");
718 printf ("?%d", *(p
-1));
726 print_compiled_pattern (bufp
)
727 struct re_pattern_buffer
*bufp
;
729 unsigned char *buffer
= bufp
->buffer
;
731 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
732 printf ("%d bytes used/%d bytes allocated.\n", bufp
->used
, bufp
->allocated
);
734 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
736 printf ("fastmap: ");
737 print_fastmap (bufp
->fastmap
);
740 printf ("re_nsub: %d\t", bufp
->re_nsub
);
741 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
742 printf ("can_be_null: %d\t", bufp
->can_be_null
);
743 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
744 printf ("no_sub: %d\t", bufp
->no_sub
);
745 printf ("not_bol: %d\t", bufp
->not_bol
);
746 printf ("not_eol: %d\t", bufp
->not_eol
);
747 printf ("syntax: %d\n", bufp
->syntax
);
748 /* Perhaps we should print the translate table? */
753 print_double_string (where
, string1
, size1
, string2
, size2
)
766 if (FIRST_STRING_P (where
))
768 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
769 printchar (string1
[this_char
]);
774 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
775 printchar (string2
[this_char
]);
779 #else /* not DEBUG */
784 #define DEBUG_STATEMENT(e)
785 #define DEBUG_PRINT1(x)
786 #define DEBUG_PRINT2(x1, x2)
787 #define DEBUG_PRINT3(x1, x2, x3)
788 #define DEBUG_PRINT4(x1, x2, x3, x4)
789 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
790 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
792 #endif /* not DEBUG */
794 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
795 also be assigned to arbitrarily: each pattern buffer stores its own
796 syntax, so it can be changed between regex compilations. */
797 reg_syntax_t re_syntax_options
= RE_SYNTAX_EMACS
;
800 /* Specify the precise syntax of regexps for compilation. This provides
801 for compatibility for various utilities which historically have
802 different, incompatible syntaxes.
804 The argument SYNTAX is a bit mask comprised of the various bits
805 defined in regex.h. We return the old syntax. */
808 re_set_syntax (syntax
)
811 reg_syntax_t ret
= re_syntax_options
;
813 re_syntax_options
= syntax
;
817 /* This table gives an error message for each of the error codes listed
818 in regex.h. Obviously the order here has to be same as there. */
820 static const char *re_error_msg
[] =
821 { NULL
, /* REG_NOERROR */
822 "No match", /* REG_NOMATCH */
823 "Invalid regular expression", /* REG_BADPAT */
824 "Invalid collation character", /* REG_ECOLLATE */
825 "Invalid character class name", /* REG_ECTYPE */
826 "Trailing backslash", /* REG_EESCAPE */
827 "Invalid back reference", /* REG_ESUBREG */
828 "Unmatched [ or [^", /* REG_EBRACK */
829 "Unmatched ( or \\(", /* REG_EPAREN */
830 "Unmatched \\{", /* REG_EBRACE */
831 "Invalid content of \\{\\}", /* REG_BADBR */
832 "Invalid range end", /* REG_ERANGE */
833 "Memory exhausted", /* REG_ESPACE */
834 "Invalid preceding regular expression", /* REG_BADRPT */
835 "Premature end of regular expression", /* REG_EEND */
836 "Regular expression too big", /* REG_ESIZE */
837 "Unmatched ) or \\)", /* REG_ERPAREN */
840 /* Subroutine declarations and macros for regex_compile. */
842 static void store_op1 (), store_op2 ();
843 static void insert_op1 (), insert_op2 ();
844 static boolean
at_begline_loc_p (), at_endline_loc_p ();
845 static boolean
group_in_compile_stack ();
846 static reg_errcode_t
compile_range ();
848 /* Fetch the next character in the uncompiled pattern---translating it
849 if necessary. Also cast from a signed character in the constant
850 string passed to us by the user to an unsigned char that we can use
851 as an array index (in, e.g., `translate'). */
852 #define PATFETCH(c) \
853 do {if (p == pend) return REG_EEND; \
854 c = (unsigned char) *p++; \
855 if (translate) c = translate[c]; \
858 /* Fetch the next character in the uncompiled pattern, with no
860 #define PATFETCH_RAW(c) \
861 do {if (p == pend) return REG_EEND; \
862 c = (unsigned char) *p++; \
865 /* Go backwards one character in the pattern. */
866 #define PATUNFETCH p--
869 /* If `translate' is non-null, return translate[D], else just D. We
870 cast the subscript to translate because some data is declared as
871 `char *', to avoid warnings when a string constant is passed. But
872 when we use a character as a subscript we must make it unsigned. */
873 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
876 /* Macros for outputting the compiled pattern into `buffer'. */
878 /* If the buffer isn't allocated when it comes in, use this. */
879 #define INIT_BUF_SIZE 32
881 /* Make sure we have at least N more bytes of space in buffer. */
882 #define GET_BUFFER_SPACE(n) \
883 while (b - bufp->buffer + (n) > bufp->allocated) \
886 /* Make sure we have one more byte of buffer space and then add C to it. */
887 #define BUF_PUSH(c) \
889 GET_BUFFER_SPACE (1); \
890 *b++ = (unsigned char) (c); \
894 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
895 #define BUF_PUSH_2(c1, c2) \
897 GET_BUFFER_SPACE (2); \
898 *b++ = (unsigned char) (c1); \
899 *b++ = (unsigned char) (c2); \
903 /* As with BUF_PUSH_2, except for three bytes. */
904 #define BUF_PUSH_3(c1, c2, c3) \
906 GET_BUFFER_SPACE (3); \
907 *b++ = (unsigned char) (c1); \
908 *b++ = (unsigned char) (c2); \
909 *b++ = (unsigned char) (c3); \
913 /* Store a jump with opcode OP at LOC to location TO. We store a
914 relative address offset by the three bytes the jump itself occupies. */
915 #define STORE_JUMP(op, loc, to) \
916 store_op1 (op, loc, (to) - (loc) - 3)
918 /* Likewise, for a two-argument jump. */
919 #define STORE_JUMP2(op, loc, to, arg) \
920 store_op2 (op, loc, (to) - (loc) - 3, arg)
922 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
923 #define INSERT_JUMP(op, loc, to) \
924 insert_op1 (op, loc, (to) - (loc) - 3, b)
926 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
927 #define INSERT_JUMP2(op, loc, to, arg) \
928 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
931 /* This is not an arbitrary limit: the arguments which represent offsets
932 into the pattern are two bytes long. So if 2^16 bytes turns out to
933 be too small, many things would have to change. */
934 #define MAX_BUF_SIZE (1L << 16)
937 /* Extend the buffer by twice its current size via realloc and
938 reset the pointers that pointed into the old block to point to the
939 correct places in the new one. If extending the buffer results in it
940 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
941 #define EXTEND_BUFFER() \
943 unsigned char *old_buffer = bufp->buffer; \
944 if (bufp->allocated == MAX_BUF_SIZE) \
946 bufp->allocated <<= 1; \
947 if (bufp->allocated > MAX_BUF_SIZE) \
948 bufp->allocated = MAX_BUF_SIZE; \
949 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
950 if (bufp->buffer == NULL) \
952 /* If the buffer moved, move all the pointers into it. */ \
953 if (old_buffer != bufp->buffer) \
955 b = (b - old_buffer) + bufp->buffer; \
956 begalt = (begalt - old_buffer) + bufp->buffer; \
957 if (fixup_alt_jump) \
958 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
960 laststart = (laststart - old_buffer) + bufp->buffer; \
962 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
967 /* Since we have one byte reserved for the register number argument to
968 {start,stop}_memory, the maximum number of groups we can report
969 things about is what fits in that byte. */
970 #define MAX_REGNUM 255
972 /* But patterns can have more than `MAX_REGNUM' registers. We just
973 ignore the excess. */
974 typedef unsigned regnum_t
;
977 /* Macros for the compile stack. */
979 /* Since offsets can go either forwards or backwards, this type needs to
980 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
981 typedef int pattern_offset_t
;
985 pattern_offset_t begalt_offset
;
986 pattern_offset_t fixup_alt_jump
;
987 pattern_offset_t inner_group_offset
;
988 pattern_offset_t laststart_offset
;
990 } compile_stack_elt_t
;
995 compile_stack_elt_t
*stack
;
997 unsigned avail
; /* Offset of next open position. */
998 } compile_stack_type
;
1001 #define INIT_COMPILE_STACK_SIZE 32
1003 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1004 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1006 /* The next available element. */
1007 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1010 /* Set the bit for character C in a list. */
1011 #define SET_LIST_BIT(c) \
1012 (b[((unsigned char) (c)) / BYTEWIDTH] \
1013 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1016 /* Get the next unsigned number in the uncompiled pattern. */
1017 #define GET_UNSIGNED_NUMBER(num) \
1021 while (ISDIGIT (c)) \
1025 num = num * 10 + c - '0'; \
1033 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1035 #define IS_CHAR_CLASS(string) \
1036 (STREQ (string, "alpha") || STREQ (string, "upper") \
1037 || STREQ (string, "lower") || STREQ (string, "digit") \
1038 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1039 || STREQ (string, "space") || STREQ (string, "print") \
1040 || STREQ (string, "punct") || STREQ (string, "graph") \
1041 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1043 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1044 Returns one of error codes defined in `regex.h', or zero for success.
1046 Assumes the `allocated' (and perhaps `buffer') and `translate'
1047 fields are set in BUFP on entry.
1049 If it succeeds, results are put in BUFP (if it returns an error, the
1050 contents of BUFP are undefined):
1051 `buffer' is the compiled pattern;
1052 `syntax' is set to SYNTAX;
1053 `used' is set to the length of the compiled pattern;
1054 `fastmap_accurate' is zero;
1055 `re_nsub' is the number of subexpressions in PATTERN;
1056 `not_bol' and `not_eol' are zero;
1058 The `fastmap' and `newline_anchor' fields are neither
1059 examined nor set. */
1061 static reg_errcode_t
1062 regex_compile (pattern
, size
, syntax
, bufp
)
1063 const char *pattern
;
1065 reg_syntax_t syntax
;
1066 struct re_pattern_buffer
*bufp
;
1068 /* We fetch characters from PATTERN here. Even though PATTERN is
1069 `char *' (i.e., signed), we declare these variables as unsigned, so
1070 they can be reliably used as array indices. */
1071 register unsigned char c
, c1
;
1073 /* A random tempory spot in PATTERN. */
1076 /* Points to the end of the buffer, where we should append. */
1077 register unsigned char *b
;
1079 /* Keeps track of unclosed groups. */
1080 compile_stack_type compile_stack
;
1082 /* Points to the current (ending) position in the pattern. */
1083 const char *p
= pattern
;
1084 const char *pend
= pattern
+ size
;
1086 /* How to translate the characters in the pattern. */
1087 char *translate
= bufp
->translate
;
1089 /* Address of the count-byte of the most recently inserted `exactn'
1090 command. This makes it possible to tell if a new exact-match
1091 character can be added to that command or if the character requires
1092 a new `exactn' command. */
1093 unsigned char *pending_exact
= 0;
1095 /* Address of start of the most recently finished expression.
1096 This tells, e.g., postfix * where to find the start of its
1097 operand. Reset at the beginning of groups and alternatives. */
1098 unsigned char *laststart
= 0;
1100 /* Address of beginning of regexp, or inside of last group. */
1101 unsigned char *begalt
;
1103 /* Place in the uncompiled pattern (i.e., the {) to
1104 which to go back if the interval is invalid. */
1105 const char *beg_interval
;
1107 /* Address of the place where a forward jump should go to the end of
1108 the containing expression. Each alternative of an `or' -- except the
1109 last -- ends with a forward jump of this sort. */
1110 unsigned char *fixup_alt_jump
= 0;
1112 /* Counts open-groups as they are encountered. Remembered for the
1113 matching close-group on the compile stack, so the same register
1114 number is put in the stop_memory as the start_memory. */
1115 regnum_t regnum
= 0;
1118 DEBUG_PRINT1 ("\nCompiling pattern: ");
1121 unsigned debug_count
;
1123 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1124 printchar (pattern
[debug_count
]);
1129 /* Initialize the compile stack. */
1130 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1131 if (compile_stack
.stack
== NULL
)
1134 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1135 compile_stack
.avail
= 0;
1137 /* Initialize the pattern buffer. */
1138 bufp
->syntax
= syntax
;
1139 bufp
->fastmap_accurate
= 0;
1140 bufp
->not_bol
= bufp
->not_eol
= 0;
1142 /* Set `used' to zero, so that if we return an error, the pattern
1143 printer (for debugging) will think there's no pattern. We reset it
1147 /* Always count groups, whether or not bufp->no_sub is set. */
1150 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1151 /* Initialize the syntax table. */
1152 init_syntax_once ();
1155 if (bufp
->allocated
== 0)
1158 { /* If zero allocated, but buffer is non-null, try to realloc
1159 enough space. This loses if buffer's address is bogus, but
1160 that is the user's responsibility. */
1161 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1164 { /* Caller did not allocate a buffer. Do it for them. */
1165 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1167 if (!bufp
->buffer
) return REG_ESPACE
;
1169 bufp
->allocated
= INIT_BUF_SIZE
;
1172 begalt
= b
= bufp
->buffer
;
1174 /* Loop through the uncompiled pattern until we're at the end. */
1183 if ( /* If at start of pattern, it's an operator. */
1185 /* If context independent, it's an operator. */
1186 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1187 /* Otherwise, depends on what's come before. */
1188 || at_begline_loc_p (pattern
, p
, syntax
))
1198 if ( /* If at end of pattern, it's an operator. */
1200 /* If context independent, it's an operator. */
1201 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1202 /* Otherwise, depends on what's next. */
1203 || at_endline_loc_p (p
, pend
, syntax
))
1213 if ((syntax
& RE_BK_PLUS_QM
)
1214 || (syntax
& RE_LIMITED_OPS
))
1218 /* If there is no previous pattern... */
1221 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1223 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1228 /* Are we optimizing this jump? */
1229 boolean keep_string_p
= false;
1231 /* 1 means zero (many) matches is allowed. */
1232 char zero_times_ok
= 0, many_times_ok
= 0;
1234 /* If there is a sequence of repetition chars, collapse it
1235 down to just one (the right one). We can't combine
1236 interval operators with these because of, e.g., `a{2}*',
1237 which should only match an even number of `a's. */
1241 zero_times_ok
|= c
!= '+';
1242 many_times_ok
|= c
!= '?';
1250 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1253 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1255 if (p
== pend
) return REG_EESCAPE
;
1258 if (!(c1
== '+' || c1
== '?'))
1273 /* If we get here, we found another repeat character. */
1276 /* Star, etc. applied to an empty pattern is equivalent
1277 to an empty pattern. */
1281 /* Now we know whether or not zero matches is allowed
1282 and also whether or not two or more matches is allowed. */
1284 { /* More than one repetition is allowed, so put in at the
1285 end a backward relative jump from `b' to before the next
1286 jump we're going to put in below (which jumps from
1287 laststart to after this jump).
1289 But if we are at the `*' in the exact sequence `.*\n',
1290 insert an unconditional jump backwards to the .,
1291 instead of the beginning of the loop. This way we only
1292 push a failure point once, instead of every time
1293 through the loop. */
1294 assert (p
- 1 > pattern
);
1296 /* Allocate the space for the jump. */
1297 GET_BUFFER_SPACE (3);
1299 /* We know we are not at the first character of the pattern,
1300 because laststart was nonzero. And we've already
1301 incremented `p', by the way, to be the character after
1302 the `*'. Do we have to do something analogous here
1303 for null bytes, because of RE_DOT_NOT_NULL? */
1304 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
1306 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
1307 && !(syntax
& RE_DOT_NEWLINE
))
1308 { /* We have .*\n. */
1309 STORE_JUMP (jump
, b
, laststart
);
1310 keep_string_p
= true;
1313 /* Anything else. */
1314 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
1316 /* We've added more stuff to the buffer. */
1320 /* On failure, jump from laststart to b + 3, which will be the
1321 end of the buffer after this jump is inserted. */
1322 GET_BUFFER_SPACE (3);
1323 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
1331 /* At least one repetition is required, so insert a
1332 `dummy_failure_jump' before the initial
1333 `on_failure_jump' instruction of the loop. This
1334 effects a skip over that instruction the first time
1335 we hit that loop. */
1336 GET_BUFFER_SPACE (3);
1337 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
1352 boolean had_char_class
= false;
1354 if (p
== pend
) return REG_EBRACK
;
1356 /* Ensure that we have enough space to push a charset: the
1357 opcode, the length count, and the bitset; 34 bytes in all. */
1358 GET_BUFFER_SPACE (34);
1362 /* We test `*p == '^' twice, instead of using an if
1363 statement, so we only need one BUF_PUSH. */
1364 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
1368 /* Remember the first position in the bracket expression. */
1371 /* Push the number of bytes in the bitmap. */
1372 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
1374 /* Clear the whole map. */
1375 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
1377 /* charset_not matches newline according to a syntax bit. */
1378 if ((re_opcode_t
) b
[-2] == charset_not
1379 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
1380 SET_LIST_BIT ('\n');
1382 /* Read in characters and ranges, setting map bits. */
1385 if (p
== pend
) return REG_EBRACK
;
1389 /* \ might escape characters inside [...] and [^...]. */
1390 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
1392 if (p
== pend
) return REG_EESCAPE
;
1399 /* Could be the end of the bracket expression. If it's
1400 not (i.e., when the bracket expression is `[]' so
1401 far), the ']' character bit gets set way below. */
1402 if (c
== ']' && p
!= p1
+ 1)
1405 /* Look ahead to see if it's a range when the last thing
1406 was a character class. */
1407 if (had_char_class
&& c
== '-' && *p
!= ']')
1410 /* Look ahead to see if it's a range when the last thing
1411 was a character: if this is a hyphen not at the
1412 beginning or the end of a list, then it's the range
1415 && !(p
- 2 >= pattern
&& p
[-2] == '[')
1416 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
1420 = compile_range (&p
, pend
, translate
, syntax
, b
);
1421 if (ret
!= REG_NOERROR
) return ret
;
1424 else if (p
[0] == '-' && p
[1] != ']')
1425 { /* This handles ranges made up of characters only. */
1428 /* Move past the `-'. */
1431 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
1432 if (ret
!= REG_NOERROR
) return ret
;
1435 /* See if we're at the beginning of a possible character
1438 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
1439 { /* Leave room for the null. */
1440 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
1445 /* If pattern is `[[:'. */
1446 if (p
== pend
) return REG_EBRACK
;
1451 if (c
== ':' || c
== ']' || p
== pend
1452 || c1
== CHAR_CLASS_MAX_LENGTH
)
1458 /* If isn't a word bracketed by `[:' and:`]':
1459 undo the ending character, the letters, and leave
1460 the leading `:' and `[' (but set bits for them). */
1461 if (c
== ':' && *p
== ']')
1464 boolean is_alnum
= STREQ (str
, "alnum");
1465 boolean is_alpha
= STREQ (str
, "alpha");
1466 boolean is_blank
= STREQ (str
, "blank");
1467 boolean is_cntrl
= STREQ (str
, "cntrl");
1468 boolean is_digit
= STREQ (str
, "digit");
1469 boolean is_graph
= STREQ (str
, "graph");
1470 boolean is_lower
= STREQ (str
, "lower");
1471 boolean is_print
= STREQ (str
, "print");
1472 boolean is_punct
= STREQ (str
, "punct");
1473 boolean is_space
= STREQ (str
, "space");
1474 boolean is_upper
= STREQ (str
, "upper");
1475 boolean is_xdigit
= STREQ (str
, "xdigit");
1477 if (!IS_CHAR_CLASS (str
)) return REG_ECTYPE
;
1479 /* Throw away the ] at the end of the character
1483 if (p
== pend
) return REG_EBRACK
;
1485 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
1487 if ( (is_alnum
&& ISALNUM (ch
))
1488 || (is_alpha
&& ISALPHA (ch
))
1489 || (is_blank
&& ISBLANK (ch
))
1490 || (is_cntrl
&& ISCNTRL (ch
))
1491 || (is_digit
&& ISDIGIT (ch
))
1492 || (is_graph
&& ISGRAPH (ch
))
1493 || (is_lower
&& ISLOWER (ch
))
1494 || (is_print
&& ISPRINT (ch
))
1495 || (is_punct
&& ISPUNCT (ch
))
1496 || (is_space
&& ISSPACE (ch
))
1497 || (is_upper
&& ISUPPER (ch
))
1498 || (is_xdigit
&& ISXDIGIT (ch
)))
1501 had_char_class
= true;
1510 had_char_class
= false;
1515 had_char_class
= false;
1520 /* Discard any (non)matching list bytes that are all 0 at the
1521 end of the map. Decrease the map-length byte too. */
1522 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
1530 if (syntax
& RE_NO_BK_PARENS
)
1537 if (syntax
& RE_NO_BK_PARENS
)
1544 if (syntax
& RE_NEWLINE_ALT
)
1551 if (syntax
& RE_NO_BK_VBAR
)
1558 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
1559 goto handle_interval
;
1565 if (p
== pend
) return REG_EESCAPE
;
1567 /* Do not translate the character after the \, so that we can
1568 distinguish, e.g., \B from \b, even if we normally would
1569 translate, e.g., B to b. */
1575 if (syntax
& RE_NO_BK_PARENS
)
1576 goto normal_backslash
;
1582 if (COMPILE_STACK_FULL
)
1584 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
1585 compile_stack_elt_t
);
1586 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
1588 compile_stack
.size
<<= 1;
1591 /* These are the values to restore when we hit end of this
1592 group. They are all relative offsets, so that if the
1593 whole pattern moves because of realloc, they will still
1595 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
1596 COMPILE_STACK_TOP
.fixup_alt_jump
1597 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
1598 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
1599 COMPILE_STACK_TOP
.regnum
= regnum
;
1601 /* We will eventually replace the 0 with the number of
1602 groups inner to this one. But do not push a
1603 start_memory for groups beyond the last one we can
1604 represent in the compiled pattern. */
1605 if (regnum
<= MAX_REGNUM
)
1607 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
1608 BUF_PUSH_3 (start_memory
, regnum
, 0);
1611 compile_stack
.avail
++;
1616 /* If we've reached MAX_REGNUM groups, then this open
1617 won't actually generate any code, so we'll have to
1618 clear pending_exact explicitly. */
1624 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
1626 if (COMPILE_STACK_EMPTY
)
1627 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
1628 goto normal_backslash
;
1634 { /* Push a dummy failure point at the end of the
1635 alternative for a possible future
1636 `pop_failure_jump' to pop. See comments at
1637 `push_dummy_failure' in `re_match_2'. */
1638 BUF_PUSH (push_dummy_failure
);
1640 /* We allocated space for this jump when we assigned
1641 to `fixup_alt_jump', in the `handle_alt' case below. */
1642 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
1645 /* See similar code for backslashed left paren above. */
1646 if (COMPILE_STACK_EMPTY
)
1647 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
1652 /* Since we just checked for an empty stack above, this
1653 ``can't happen''. */
1654 assert (compile_stack
.avail
!= 0);
1656 /* We don't just want to restore into `regnum', because
1657 later groups should continue to be numbered higher,
1658 as in `(ab)c(de)' -- the second group is #2. */
1659 regnum_t this_group_regnum
;
1661 compile_stack
.avail
--;
1662 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
1664 = COMPILE_STACK_TOP
.fixup_alt_jump
1665 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
1667 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
1668 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
1669 /* If we've reached MAX_REGNUM groups, then this open
1670 won't actually generate any code, so we'll have to
1671 clear pending_exact explicitly. */
1674 /* We're at the end of the group, so now we know how many
1675 groups were inside this one. */
1676 if (this_group_regnum
<= MAX_REGNUM
)
1678 unsigned char *inner_group_loc
1679 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
1681 *inner_group_loc
= regnum
- this_group_regnum
;
1682 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
1683 regnum
- this_group_regnum
);
1689 case '|': /* `\|'. */
1690 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
1691 goto normal_backslash
;
1693 if (syntax
& RE_LIMITED_OPS
)
1696 /* Insert before the previous alternative a jump which
1697 jumps to this alternative if the former fails. */
1698 GET_BUFFER_SPACE (3);
1699 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
1703 /* The alternative before this one has a jump after it
1704 which gets executed if it gets matched. Adjust that
1705 jump so it will jump to this alternative's analogous
1706 jump (put in below, which in turn will jump to the next
1707 (if any) alternative's such jump, etc.). The last such
1708 jump jumps to the correct final destination. A picture:
1714 If we are at `b', then fixup_alt_jump right now points to a
1715 three-byte space after `a'. We'll put in the jump, set
1716 fixup_alt_jump to right after `b', and leave behind three
1717 bytes which we'll fill in when we get to after `c'. */
1720 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
1722 /* Mark and leave space for a jump after this alternative,
1723 to be filled in later either by next alternative or
1724 when know we're at the end of a series of alternatives. */
1726 GET_BUFFER_SPACE (3);
1735 /* If \{ is a literal. */
1736 if (!(syntax
& RE_INTERVALS
)
1737 /* If we're at `\{' and it's not the open-interval
1739 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
1740 || (p
- 2 == pattern
&& p
== pend
))
1741 goto normal_backslash
;
1745 /* If got here, then the syntax allows intervals. */
1747 /* At least (most) this many matches must be made. */
1748 int lower_bound
= -1, upper_bound
= -1;
1750 beg_interval
= p
- 1;
1754 if (syntax
& RE_NO_BK_BRACES
)
1755 goto unfetch_interval
;
1760 GET_UNSIGNED_NUMBER (lower_bound
);
1764 GET_UNSIGNED_NUMBER (upper_bound
);
1765 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
1768 /* Interval such as `{1}' => match exactly once. */
1769 upper_bound
= lower_bound
;
1771 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
1772 || lower_bound
> upper_bound
)
1774 if (syntax
& RE_NO_BK_BRACES
)
1775 goto unfetch_interval
;
1780 if (!(syntax
& RE_NO_BK_BRACES
))
1782 if (c
!= '\\') return REG_EBRACE
;
1789 if (syntax
& RE_NO_BK_BRACES
)
1790 goto unfetch_interval
;
1795 /* We just parsed a valid interval. */
1797 /* If it's invalid to have no preceding re. */
1800 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1802 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
1805 goto unfetch_interval
;
1808 /* If the upper bound is zero, don't want to succeed at
1809 all; jump from `laststart' to `b + 3', which will be
1810 the end of the buffer after we insert the jump. */
1811 if (upper_bound
== 0)
1813 GET_BUFFER_SPACE (3);
1814 INSERT_JUMP (jump
, laststart
, b
+ 3);
1818 /* Otherwise, we have a nontrivial interval. When
1819 we're all done, the pattern will look like:
1820 set_number_at <jump count> <upper bound>
1821 set_number_at <succeed_n count> <lower bound>
1822 succeed_n <after jump addr> <succed_n count>
1824 jump_n <succeed_n addr> <jump count>
1825 (The upper bound and `jump_n' are omitted if
1826 `upper_bound' is 1, though.) */
1828 { /* If the upper bound is > 1, we need to insert
1829 more at the end of the loop. */
1830 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
1832 GET_BUFFER_SPACE (nbytes
);
1834 /* Initialize lower bound of the `succeed_n', even
1835 though it will be set during matching by its
1836 attendant `set_number_at' (inserted next),
1837 because `re_compile_fastmap' needs to know.
1838 Jump to the `jump_n' we might insert below. */
1839 INSERT_JUMP2 (succeed_n
, laststart
,
1840 b
+ 5 + (upper_bound
> 1) * 5,
1844 /* Code to initialize the lower bound. Insert
1845 before the `succeed_n'. The `5' is the last two
1846 bytes of this `set_number_at', plus 3 bytes of
1847 the following `succeed_n'. */
1848 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
1851 if (upper_bound
> 1)
1852 { /* More than one repetition is allowed, so
1853 append a backward jump to the `succeed_n'
1854 that starts this interval.
1856 When we've reached this during matching,
1857 we'll have matched the interval once, so
1858 jump back only `upper_bound - 1' times. */
1859 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
1863 /* The location we want to set is the second
1864 parameter of the `jump_n'; that is `b-2' as
1865 an absolute address. `laststart' will be
1866 the `set_number_at' we're about to insert;
1867 `laststart+3' the number to set, the source
1868 for the relative address. But we are
1869 inserting into the middle of the pattern --
1870 so everything is getting moved up by 5.
1871 Conclusion: (b - 2) - (laststart + 3) + 5,
1872 i.e., b - laststart.
1874 We insert this at the beginning of the loop
1875 so that if we fail during matching, we'll
1876 reinitialize the bounds. */
1877 insert_op2 (set_number_at
, laststart
, b
- laststart
,
1878 upper_bound
- 1, b
);
1883 beg_interval
= NULL
;
1888 /* If an invalid interval, match the characters as literals. */
1889 assert (beg_interval
);
1891 beg_interval
= NULL
;
1893 /* normal_char and normal_backslash need `c'. */
1896 if (!(syntax
& RE_NO_BK_BRACES
))
1898 if (p
> pattern
&& p
[-1] == '\\')
1899 goto normal_backslash
;
1904 /* There is no way to specify the before_dot and after_dot
1905 operators. rms says this is ok. --karl */
1913 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
1919 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
1926 BUF_PUSH (wordchar
);
1932 BUF_PUSH (notwordchar
);
1945 BUF_PUSH (wordbound
);
1949 BUF_PUSH (notwordbound
);
1960 case '1': case '2': case '3': case '4': case '5':
1961 case '6': case '7': case '8': case '9':
1962 if (syntax
& RE_NO_BK_REFS
)
1970 /* Can't back reference to a subexpression if inside of it. */
1971 if (group_in_compile_stack (compile_stack
, c1
))
1975 BUF_PUSH_2 (duplicate
, c1
);
1981 if (syntax
& RE_BK_PLUS_QM
)
1984 goto normal_backslash
;
1988 /* You might think it would be useful for \ to mean
1989 not to translate; but if we don't translate it
1990 it will never match anything. */
1998 /* Expects the character in `c'. */
2000 /* If no exactn currently being built. */
2003 /* If last exactn not at current position. */
2004 || pending_exact
+ *pending_exact
+ 1 != b
2006 /* We have only one byte following the exactn for the count. */
2007 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2009 /* If followed by a repetition operator. */
2010 || *p
== '*' || *p
== '^'
2011 || ((syntax
& RE_BK_PLUS_QM
)
2012 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2013 : (*p
== '+' || *p
== '?'))
2014 || ((syntax
& RE_INTERVALS
)
2015 && ((syntax
& RE_NO_BK_BRACES
)
2017 : (p
[0] == '\\' && p
[1] == '{'))))
2019 /* Start building a new exactn. */
2023 BUF_PUSH_2 (exactn
, 0);
2024 pending_exact
= b
- 1;
2031 } /* while p != pend */
2034 /* Through the pattern now. */
2037 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2039 if (!COMPILE_STACK_EMPTY
)
2042 free (compile_stack
.stack
);
2044 /* We have succeeded; set the length of the buffer. */
2045 bufp
->used
= b
- bufp
->buffer
;
2050 DEBUG_PRINT1 ("\nCompiled pattern: ");
2051 print_compiled_pattern (bufp
);
2056 } /* regex_compile */
2058 /* Subroutines for `regex_compile'. */
2060 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2063 store_op1 (op
, loc
, arg
)
2068 *loc
= (unsigned char) op
;
2069 STORE_NUMBER (loc
+ 1, arg
);
2073 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2076 store_op2 (op
, loc
, arg1
, arg2
)
2081 *loc
= (unsigned char) op
;
2082 STORE_NUMBER (loc
+ 1, arg1
);
2083 STORE_NUMBER (loc
+ 3, arg2
);
2087 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2088 for OP followed by two-byte integer parameter ARG. */
2091 insert_op1 (op
, loc
, arg
, end
)
2097 register unsigned char *pfrom
= end
;
2098 register unsigned char *pto
= end
+ 3;
2100 while (pfrom
!= loc
)
2103 store_op1 (op
, loc
, arg
);
2107 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2110 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2116 register unsigned char *pfrom
= end
;
2117 register unsigned char *pto
= end
+ 5;
2119 while (pfrom
!= loc
)
2122 store_op2 (op
, loc
, arg1
, arg2
);
2126 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2127 after an alternative or a begin-subexpression. We assume there is at
2128 least one character before the ^. */
2131 at_begline_loc_p (pattern
, p
, syntax
)
2132 const char *pattern
, *p
;
2133 reg_syntax_t syntax
;
2135 const char *prev
= p
- 2;
2136 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2139 /* After a subexpression? */
2140 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2141 /* After an alternative? */
2142 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2146 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2147 at least one character after the $, i.e., `P < PEND'. */
2150 at_endline_loc_p (p
, pend
, syntax
)
2151 const char *p
, *pend
;
2154 const char *next
= p
;
2155 boolean next_backslash
= *next
== '\\';
2156 const char *next_next
= p
+ 1 < pend
? p
+ 1 : NULL
;
2159 /* Before a subexpression? */
2160 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2161 : next_backslash
&& next_next
&& *next_next
== ')')
2162 /* Before an alternative? */
2163 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2164 : next_backslash
&& next_next
&& *next_next
== '|');
2168 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2169 false if it's not. */
2172 group_in_compile_stack (compile_stack
, regnum
)
2173 compile_stack_type compile_stack
;
2178 for (this_element
= compile_stack
.avail
- 1;
2181 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
2188 /* Read the ending character of a range (in a bracket expression) from the
2189 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2190 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2191 Then we set the translation of all bits between the starting and
2192 ending characters (inclusive) in the compiled pattern B.
2194 Return an error code.
2196 We use these short variable names so we can use the same macros as
2197 `regex_compile' itself. */
2199 static reg_errcode_t
2200 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
2201 const char **p_ptr
, *pend
;
2203 reg_syntax_t syntax
;
2208 const char *p
= *p_ptr
;
2209 int range_start
, range_end
;
2214 /* Even though the pattern is a signed `char *', we need to fetch
2215 with unsigned char *'s; if the high bit of the pattern character
2216 is set, the range endpoints will be negative if we fetch using a
2219 We also want to fetch the endpoints without translating them; the
2220 appropriate translation is done in the bit-setting loop below. */
2221 range_start
= ((unsigned char *) p
)[-2];
2222 range_end
= ((unsigned char *) p
)[0];
2224 /* Have to increment the pointer into the pattern string, so the
2225 caller isn't still at the ending character. */
2228 /* If the start is after the end, the range is empty. */
2229 if (range_start
> range_end
)
2230 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
2232 /* Here we see why `this_char' has to be larger than an `unsigned
2233 char' -- the range is inclusive, so if `range_end' == 0xff
2234 (assuming 8-bit characters), we would otherwise go into an infinite
2235 loop, since all characters <= 0xff. */
2236 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
2238 SET_LIST_BIT (TRANSLATE (this_char
));
2244 /* Failure stack declarations and macros; both re_compile_fastmap and
2245 re_match_2 use a failure stack. These have to be macros because of
2249 /* Number of failure points for which to initially allocate space
2250 when matching. If this number is exceeded, we allocate more
2251 space, so it is not a hard limit. */
2252 #ifndef INIT_FAILURE_ALLOC
2253 #define INIT_FAILURE_ALLOC 5
2256 /* Roughly the maximum number of failure points on the stack. Would be
2257 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2258 This is a variable only so users of regex can assign to it; we never
2259 change it ourselves. */
2260 int re_max_failures
= 2000;
2262 typedef const unsigned char *fail_stack_elt_t
;
2266 fail_stack_elt_t
*stack
;
2268 unsigned avail
; /* Offset of next open position. */
2271 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2272 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2273 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2274 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2277 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2279 #define INIT_FAIL_STACK() \
2281 fail_stack.stack = (fail_stack_elt_t *) \
2282 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2284 if (fail_stack.stack == NULL) \
2287 fail_stack.size = INIT_FAILURE_ALLOC; \
2288 fail_stack.avail = 0; \
2292 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2294 Return 1 if succeeds, and 0 if either ran out of memory
2295 allocating space for it or it was already too large.
2297 REGEX_REALLOCATE requires `destination' be declared. */
2299 #define DOUBLE_FAIL_STACK(fail_stack) \
2300 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2302 : ((fail_stack).stack = (fail_stack_elt_t *) \
2303 REGEX_REALLOCATE ((fail_stack).stack, \
2304 (fail_stack).size * sizeof (fail_stack_elt_t), \
2305 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2307 (fail_stack).stack == NULL \
2309 : ((fail_stack).size <<= 1, \
2313 /* Push PATTERN_OP on FAIL_STACK.
2315 Return 1 if was able to do so and 0 if ran out of memory allocating
2317 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2318 ((FAIL_STACK_FULL () \
2319 && !DOUBLE_FAIL_STACK (fail_stack)) \
2321 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2324 /* This pushes an item onto the failure stack. Must be a four-byte
2325 value. Assumes the variable `fail_stack'. Probably should only
2326 be called from within `PUSH_FAILURE_POINT'. */
2327 #define PUSH_FAILURE_ITEM(item) \
2328 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2330 /* The complement operation. Assumes `fail_stack' is nonempty. */
2331 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2333 /* Used to omit pushing failure point id's when we're not debugging. */
2335 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2336 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2338 #define DEBUG_PUSH(item)
2339 #define DEBUG_POP(item_addr)
2343 /* Push the information about the state we will need
2344 if we ever fail back to it.
2346 Requires variables fail_stack, regstart, regend, reg_info, and
2347 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2350 Does `return FAILURE_CODE' if runs out of memory. */
2352 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2354 char *destination; \
2355 /* Must be int, so when we don't save any registers, the arithmetic \
2356 of 0 + -1 isn't done as unsigned. */ \
2359 DEBUG_STATEMENT (failure_id++); \
2360 DEBUG_STATEMENT (nfailure_points_pushed++); \
2361 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2362 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2363 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2365 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2366 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2368 /* Ensure we have enough space allocated for what we will push. */ \
2369 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2371 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2372 return failure_code; \
2374 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2375 (fail_stack).size); \
2376 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2379 /* Push the info, starting with the registers. */ \
2380 DEBUG_PRINT1 ("\n"); \
2382 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2385 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2386 DEBUG_STATEMENT (num_regs_pushed++); \
2388 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2389 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2391 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2392 PUSH_FAILURE_ITEM (regend[this_reg]); \
2394 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2395 DEBUG_PRINT2 (" match_null=%d", \
2396 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2397 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2398 DEBUG_PRINT2 (" matched_something=%d", \
2399 MATCHED_SOMETHING (reg_info[this_reg])); \
2400 DEBUG_PRINT2 (" ever_matched=%d", \
2401 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2402 DEBUG_PRINT1 ("\n"); \
2403 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2406 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2407 PUSH_FAILURE_ITEM (lowest_active_reg); \
2409 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2410 PUSH_FAILURE_ITEM (highest_active_reg); \
2412 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2413 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2414 PUSH_FAILURE_ITEM (pattern_place); \
2416 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2417 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2419 DEBUG_PRINT1 ("'\n"); \
2420 PUSH_FAILURE_ITEM (string_place); \
2422 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2423 DEBUG_PUSH (failure_id); \
2426 /* This is the number of items that are pushed and popped on the stack
2427 for each register. */
2428 #define NUM_REG_ITEMS 3
2430 /* Individual items aside from the registers. */
2432 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2434 #define NUM_NONREG_ITEMS 4
2437 /* We push at most this many items on the stack. */
2438 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2440 /* We actually push this many items. */
2441 #define NUM_FAILURE_ITEMS \
2442 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2445 /* How many items can still be added to the stack without overflowing it. */
2446 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2449 /* Pops what PUSH_FAIL_STACK pushes.
2451 We restore into the parameters, all of which should be lvalues:
2452 STR -- the saved data position.
2453 PAT -- the saved pattern position.
2454 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2455 REGSTART, REGEND -- arrays of string positions.
2456 REG_INFO -- array of information about each subexpression.
2458 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2459 `pend', `string1', `size1', `string2', and `size2'. */
2461 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2463 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2465 const unsigned char *string_temp; \
2467 assert (!FAIL_STACK_EMPTY ()); \
2469 /* Remove failure points and point to how many regs pushed. */ \
2470 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2471 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2472 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2474 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2476 DEBUG_POP (&failure_id); \
2477 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2479 /* If the saved string location is NULL, it came from an \
2480 on_failure_keep_string_jump opcode, and we want to throw away the \
2481 saved NULL, thus retaining our current position in the string. */ \
2482 string_temp = POP_FAILURE_ITEM (); \
2483 if (string_temp != NULL) \
2484 str = (const char *) string_temp; \
2486 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2487 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2488 DEBUG_PRINT1 ("'\n"); \
2490 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2491 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2492 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2494 /* Restore register info. */ \
2495 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2496 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2498 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2499 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2501 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2503 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2505 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2506 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2508 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2509 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2511 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2512 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2515 DEBUG_STATEMENT (nfailure_points_popped++); \
2516 } /* POP_FAILURE_POINT */
2518 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2519 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2520 characters can start a string that matches the pattern. This fastmap
2521 is used by re_search to skip quickly over impossible starting points.
2523 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2524 area as BUFP->fastmap.
2526 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2529 Returns 0 if we succeed, -2 if an internal error. */
2532 re_compile_fastmap (bufp
)
2533 struct re_pattern_buffer
*bufp
;
2536 fail_stack_type fail_stack
;
2537 #ifndef REGEX_MALLOC
2540 /* We don't push any register information onto the failure stack. */
2541 unsigned num_regs
= 0;
2543 register char *fastmap
= bufp
->fastmap
;
2544 unsigned char *pattern
= bufp
->buffer
;
2545 unsigned long size
= bufp
->used
;
2546 const unsigned char *p
= pattern
;
2547 register unsigned char *pend
= pattern
+ size
;
2549 /* Assume that each path through the pattern can be null until
2550 proven otherwise. We set this false at the bottom of switch
2551 statement, to which we get only if a particular path doesn't
2552 match the empty string. */
2553 boolean path_can_be_null
= true;
2555 /* We aren't doing a `succeed_n' to begin with. */
2556 boolean succeed_n_p
= false;
2558 assert (fastmap
!= NULL
&& p
!= NULL
);
2561 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
2562 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
2563 bufp
->can_be_null
= 0;
2565 while (p
!= pend
|| !FAIL_STACK_EMPTY ())
2569 bufp
->can_be_null
|= path_can_be_null
;
2571 /* Reset for next path. */
2572 path_can_be_null
= true;
2574 p
= fail_stack
.stack
[--fail_stack
.avail
];
2577 /* We should never be about to go beyond the end of the pattern. */
2580 #ifdef SWITCH_ENUM_BUG
2581 switch ((int) ((re_opcode_t
) *p
++))
2583 switch ((re_opcode_t
) *p
++)
2587 /* I guess the idea here is to simply not bother with a fastmap
2588 if a backreference is used, since it's too hard to figure out
2589 the fastmap for the corresponding group. Setting
2590 `can_be_null' stops `re_search_2' from using the fastmap, so
2591 that is all we do. */
2593 bufp
->can_be_null
= 1;
2597 /* Following are the cases which match a character. These end
2606 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2607 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
2613 /* Chars beyond end of map must be allowed. */
2614 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
2617 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2618 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
2624 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2625 if (SYNTAX (j
) == Sword
)
2631 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2632 if (SYNTAX (j
) != Sword
)
2638 /* `.' matches anything ... */
2639 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2642 /* ... except perhaps newline. */
2643 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
2646 /* Return if we have already set `can_be_null'; if we have,
2647 then the fastmap is irrelevant. Something's wrong here. */
2648 else if (bufp
->can_be_null
)
2651 /* Otherwise, have to check alternative paths. */
2658 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2659 if (SYNTAX (j
) == (enum syntaxcode
) k
)
2666 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2667 if (SYNTAX (j
) != (enum syntaxcode
) k
)
2672 /* All cases after this match the empty string. These end with
2680 #endif /* not emacs */
2692 case push_dummy_failure
:
2697 case pop_failure_jump
:
2698 case maybe_pop_jump
:
2701 case dummy_failure_jump
:
2702 EXTRACT_NUMBER_AND_INCR (j
, p
);
2707 /* Jump backward implies we just went through the body of a
2708 loop and matched nothing. Opcode jumped to should be
2709 `on_failure_jump' or `succeed_n'. Just treat it like an
2710 ordinary jump. For a * loop, it has pushed its failure
2711 point already; if so, discard that as redundant. */
2712 if ((re_opcode_t
) *p
!= on_failure_jump
2713 && (re_opcode_t
) *p
!= succeed_n
)
2717 EXTRACT_NUMBER_AND_INCR (j
, p
);
2720 /* If what's on the stack is where we are now, pop it. */
2721 if (!FAIL_STACK_EMPTY ()
2722 && fail_stack
.stack
[fail_stack
.avail
- 1] == p
)
2728 case on_failure_jump
:
2729 case on_failure_keep_string_jump
:
2730 handle_on_failure_jump
:
2731 EXTRACT_NUMBER_AND_INCR (j
, p
);
2733 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2734 end of the pattern. We don't want to push such a point,
2735 since when we restore it above, entering the switch will
2736 increment `p' past the end of the pattern. We don't need
2737 to push such a point since we obviously won't find any more
2738 fastmap entries beyond `pend'. Such a pattern can match
2739 the null string, though. */
2742 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
2746 bufp
->can_be_null
= 1;
2750 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
2751 succeed_n_p
= false;
2758 /* Get to the number of times to succeed. */
2761 /* Increment p past the n for when k != 0. */
2762 EXTRACT_NUMBER_AND_INCR (k
, p
);
2766 succeed_n_p
= true; /* Spaghetti code alert. */
2767 goto handle_on_failure_jump
;
2784 abort (); /* We have listed all the cases. */
2787 /* Getting here means we have found the possible starting
2788 characters for one path of the pattern -- and that the empty
2789 string does not match. We need not follow this path further.
2790 Instead, look at the next alternative (remembered on the
2791 stack), or quit if no more. The test at the top of the loop
2792 does these things. */
2793 path_can_be_null
= false;
2797 /* Set `can_be_null' for the last path (also the first path, if the
2798 pattern is empty). */
2799 bufp
->can_be_null
|= path_can_be_null
;
2801 } /* re_compile_fastmap */
2803 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2804 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2805 this memory for recording register information. STARTS and ENDS
2806 must be allocated using the malloc library routine, and must each
2807 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2809 If NUM_REGS == 0, then subsequent matches should allocate their own
2812 Unless this function is called, the first search or match using
2813 PATTERN_BUFFER will allocate its own register data, without
2814 freeing the old data. */
2817 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
2818 struct re_pattern_buffer
*bufp
;
2819 struct re_registers
*regs
;
2821 regoff_t
*starts
, *ends
;
2825 bufp
->regs_allocated
= REGS_REALLOCATE
;
2826 regs
->num_regs
= num_regs
;
2827 regs
->start
= starts
;
2832 bufp
->regs_allocated
= REGS_UNALLOCATED
;
2834 regs
->start
= regs
->end
= (regoff_t
) 0;
2838 /* Searching routines. */
2840 /* Like re_search_2, below, but only one string is specified, and
2841 doesn't let you say where to stop matching. */
2844 re_search (bufp
, string
, size
, startpos
, range
, regs
)
2845 struct re_pattern_buffer
*bufp
;
2847 int size
, startpos
, range
;
2848 struct re_registers
*regs
;
2850 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
2855 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2856 virtual concatenation of STRING1 and STRING2, starting first at index
2857 STARTPOS, then at STARTPOS + 1, and so on.
2859 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2861 RANGE is how far to scan while trying to match. RANGE = 0 means try
2862 only at STARTPOS; in general, the last start tried is STARTPOS +
2865 In REGS, return the indices of the virtual concatenation of STRING1
2866 and STRING2 that matched the entire BUFP->buffer and its contained
2869 Do not consider matching one past the index STOP in the virtual
2870 concatenation of STRING1 and STRING2.
2872 We return either the position in the strings at which the match was
2873 found, -1 if no match, or -2 if error (such as failure
2877 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
2878 struct re_pattern_buffer
*bufp
;
2879 const char *string1
, *string2
;
2883 struct re_registers
*regs
;
2887 register char *fastmap
= bufp
->fastmap
;
2888 register char *translate
= bufp
->translate
;
2889 int total_size
= size1
+ size2
;
2890 int endpos
= startpos
+ range
;
2892 /* Check for out-of-range STARTPOS. */
2893 if (startpos
< 0 || startpos
> total_size
)
2896 /* Fix up RANGE if it might eventually take us outside
2897 the virtual concatenation of STRING1 and STRING2. */
2899 range
= -1 - startpos
;
2900 else if (endpos
> total_size
)
2901 range
= total_size
- startpos
;
2903 /* If the search isn't to be a backwards one, don't waste time in a
2904 search for a pattern that must be anchored. */
2905 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
2913 /* Update the fastmap now if not correct already. */
2914 if (fastmap
&& !bufp
->fastmap_accurate
)
2915 if (re_compile_fastmap (bufp
) == -2)
2918 /* Loop through the string, looking for a place to start matching. */
2921 /* If a fastmap is supplied, skip quickly over characters that
2922 cannot be the start of a match. If the pattern can match the
2923 null string, however, we don't need to skip characters; we want
2924 the first null string. */
2925 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
2927 if (range
> 0) /* Searching forwards. */
2929 register const char *d
;
2930 register int lim
= 0;
2933 if (startpos
< size1
&& startpos
+ range
>= size1
)
2934 lim
= range
- (size1
- startpos
);
2936 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
2938 /* Written out as an if-else to avoid testing `translate'
2942 && !fastmap
[(unsigned char)
2943 translate
[(unsigned char) *d
++]])
2946 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
2949 startpos
+= irange
- range
;
2951 else /* Searching backwards. */
2953 register char c
= (size1
== 0 || startpos
>= size1
2954 ? string2
[startpos
- size1
]
2955 : string1
[startpos
]);
2957 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
2962 /* If can't match the null string, and that's all we have left, fail. */
2963 if (range
>= 0 && startpos
== total_size
&& fastmap
2964 && !bufp
->can_be_null
)
2967 val
= re_match_2 (bufp
, string1
, size1
, string2
, size2
,
2968 startpos
, regs
, stop
);
2992 /* Declarations and macros for re_match_2. */
2994 static int bcmp_translate ();
2995 static boolean
alt_match_null_string_p (),
2996 common_op_match_null_string_p (),
2997 group_match_null_string_p ();
2999 /* Structure for per-register (a.k.a. per-group) information.
3000 This must not be longer than one word, because we push this value
3001 onto the failure stack. Other register information, such as the
3002 starting and ending positions (which are addresses), and the list of
3003 inner groups (which is a bits list) are maintained in separate
3006 We are making a (strictly speaking) nonportable assumption here: that
3007 the compiler will pack our bit fields into something that fits into
3008 the type of `word', i.e., is something that fits into one item on the
3012 fail_stack_elt_t word
;
3015 /* This field is one if this group can match the empty string,
3016 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
3017 #define MATCH_NULL_UNSET_VALUE 3
3018 unsigned match_null_string_p
: 2;
3019 unsigned is_active
: 1;
3020 unsigned matched_something
: 1;
3021 unsigned ever_matched_something
: 1;
3023 } register_info_type
;
3025 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3026 #define IS_ACTIVE(R) ((R).bits.is_active)
3027 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3028 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3031 /* Call this when have matched a real character; it sets `matched' flags
3032 for the subexpressions which we are currently inside. Also records
3033 that those subexprs have matched. */
3034 #define SET_REGS_MATCHED() \
3038 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3040 MATCHED_SOMETHING (reg_info[r]) \
3041 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3048 /* This converts PTR, a pointer into one of the search strings `string1'
3049 and `string2' into an offset from the beginning of that string. */
3050 #define POINTER_TO_OFFSET(ptr) \
3051 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3053 /* Registers are set to a sentinel when they haven't yet matched. */
3054 #define REG_UNSET_VALUE ((char *) -1)
3055 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3058 /* Macros for dealing with the split strings in re_match_2. */
3060 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3062 /* Call before fetching a character with *d. This switches over to
3063 string2 if necessary. */
3064 #define PREFETCH() \
3067 /* End of string2 => fail. */ \
3068 if (dend == end_match_2) \
3070 /* End of string1 => advance to string2. */ \
3072 dend = end_match_2; \
3076 /* Test if at very beginning or at very end of the virtual concatenation
3077 of `string1' and `string2'. If only one string, it's `string2'. */
3078 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3079 #define AT_STRINGS_END(d) ((d) == end2)
3082 /* Test if D points to a character which is word-constituent. We have
3083 two special cases to check for: if past the end of string1, look at
3084 the first character in string2; and if before the beginning of
3085 string2, look at the last character in string1. */
3086 #define WORDCHAR_P(d) \
3087 (SYNTAX ((d) == end1 ? *string2 \
3088 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3091 /* Test if the character before D and the one at D differ with respect
3092 to being word-constituent. */
3093 #define AT_WORD_BOUNDARY(d) \
3094 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3095 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3098 /* Free everything we malloc. */
3100 #define FREE_VAR(var) if (var) free (var); var = NULL
3101 #define FREE_VARIABLES() \
3103 FREE_VAR (fail_stack.stack); \
3104 FREE_VAR (regstart); \
3105 FREE_VAR (regend); \
3106 FREE_VAR (old_regstart); \
3107 FREE_VAR (old_regend); \
3108 FREE_VAR (best_regstart); \
3109 FREE_VAR (best_regend); \
3110 FREE_VAR (reg_info); \
3111 FREE_VAR (reg_dummy); \
3112 FREE_VAR (reg_info_dummy); \
3114 #else /* not REGEX_MALLOC */
3115 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3116 #define FREE_VARIABLES() alloca (0)
3117 #endif /* not REGEX_MALLOC */
3120 /* These values must meet several constraints. They must not be valid
3121 register values; since we have a limit of 255 registers (because
3122 we use only one byte in the pattern for the register number), we can
3123 use numbers larger than 255. They must differ by 1, because of
3124 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3125 be larger than the value for the highest register, so we do not try
3126 to actually save any registers when none are active. */
3127 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3128 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3130 /* Matching routines. */
3132 #ifndef emacs /* Emacs never uses this. */
3133 /* re_match is like re_match_2 except it takes only a single string. */
3136 re_match (bufp
, string
, size
, pos
, regs
)
3137 struct re_pattern_buffer
*bufp
;
3140 struct re_registers
*regs
;
3142 return re_match_2 (bufp
, NULL
, 0, string
, size
, pos
, regs
, size
);
3144 #endif /* not emacs */
3147 /* re_match_2 matches the compiled pattern in BUFP against the
3148 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3149 and SIZE2, respectively). We start matching at POS, and stop
3152 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3153 store offsets for the substring each group matched in REGS. See the
3154 documentation for exactly how many groups we fill.
3156 We return -1 if no match, -2 if an internal error (such as the
3157 failure stack overflowing). Otherwise, we return the length of the
3158 matched substring. */
3161 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3162 struct re_pattern_buffer
*bufp
;
3163 const char *string1
, *string2
;
3166 struct re_registers
*regs
;
3169 /* General temporaries. */
3173 /* Just past the end of the corresponding string. */
3174 const char *end1
, *end2
;
3176 /* Pointers into string1 and string2, just past the last characters in
3177 each to consider matching. */
3178 const char *end_match_1
, *end_match_2
;
3180 /* Where we are in the data, and the end of the current string. */
3181 const char *d
, *dend
;
3183 /* Where we are in the pattern, and the end of the pattern. */
3184 unsigned char *p
= bufp
->buffer
;
3185 register unsigned char *pend
= p
+ bufp
->used
;
3187 /* We use this to map every character in the string. */
3188 char *translate
= bufp
->translate
;
3190 /* Failure point stack. Each place that can handle a failure further
3191 down the line pushes a failure point on this stack. It consists of
3192 restart, regend, and reg_info for all registers corresponding to
3193 the subexpressions we're currently inside, plus the number of such
3194 registers, and, finally, two char *'s. The first char * is where
3195 to resume scanning the pattern; the second one is where to resume
3196 scanning the strings. If the latter is zero, the failure point is
3197 a ``dummy''; if a failure happens and the failure point is a dummy,
3198 it gets discarded and the next next one is tried. */
3199 fail_stack_type fail_stack
;
3201 static unsigned failure_id
= 0;
3202 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3205 /* We fill all the registers internally, independent of what we
3206 return, for use in backreferences. The number here includes
3207 an element for register zero. */
3208 unsigned num_regs
= bufp
->re_nsub
+ 1;
3210 /* The currently active registers. */
3211 unsigned lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3212 unsigned highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3214 /* Information on the contents of registers. These are pointers into
3215 the input strings; they record just what was matched (on this
3216 attempt) by a subexpression part of the pattern, that is, the
3217 regnum-th regstart pointer points to where in the pattern we began
3218 matching and the regnum-th regend points to right after where we
3219 stopped matching the regnum-th subexpression. (The zeroth register
3220 keeps track of what the whole pattern matches.) */
3221 const char **regstart
, **regend
;
3223 /* If a group that's operated upon by a repetition operator fails to
3224 match anything, then the register for its start will need to be
3225 restored because it will have been set to wherever in the string we
3226 are when we last see its open-group operator. Similarly for a
3228 const char **old_regstart
, **old_regend
;
3230 /* The is_active field of reg_info helps us keep track of which (possibly
3231 nested) subexpressions we are currently in. The matched_something
3232 field of reg_info[reg_num] helps us tell whether or not we have
3233 matched any of the pattern so far this time through the reg_num-th
3234 subexpression. These two fields get reset each time through any
3235 loop their register is in. */
3236 register_info_type
*reg_info
;
3238 /* The following record the register info as found in the above
3239 variables when we find a match better than any we've seen before.
3240 This happens as we backtrack through the failure points, which in
3241 turn happens only if we have not yet matched the entire string. */
3242 unsigned best_regs_set
= false;
3243 const char **best_regstart
, **best_regend
;
3245 /* Logically, this is `best_regend[0]'. But we don't want to have to
3246 allocate space for that if we're not allocating space for anything
3247 else (see below). Also, we never need info about register 0 for
3248 any of the other register vectors, and it seems rather a kludge to
3249 treat `best_regend' differently than the rest. So we keep track of
3250 the end of the best match so far in a separate variable. We
3251 initialize this to NULL so that when we backtrack the first time
3252 and need to test it, it's not garbage. */
3253 const char *match_end
= NULL
;
3255 /* Used when we pop values we don't care about. */
3256 const char **reg_dummy
;
3257 register_info_type
*reg_info_dummy
;
3260 /* Counts the total number of registers pushed. */
3261 unsigned num_regs_pushed
= 0;
3264 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3268 /* Do not bother to initialize all the register variables if there are
3269 no groups in the pattern, as it takes a fair amount of time. If
3270 there are groups, we include space for register 0 (the whole
3271 pattern), even though we never use it, since it simplifies the
3272 array indexing. We should fix this. */
3275 regstart
= REGEX_TALLOC (num_regs
, const char *);
3276 regend
= REGEX_TALLOC (num_regs
, const char *);
3277 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3278 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3279 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3280 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3281 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3282 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3283 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3285 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3286 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3295 /* We must initialize all our variables to NULL, so that
3296 `FREE_VARIABLES' doesn't try to free them. */
3297 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3298 = best_regend
= reg_dummy
= NULL
;
3299 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3301 #endif /* REGEX_MALLOC */
3303 /* The starting position is bogus. */
3304 if (pos
< 0 || pos
> size1
+ size2
)
3310 /* Initialize subexpression text positions to -1 to mark ones that no
3311 start_memory/stop_memory has been seen for. Also initialize the
3312 register information struct. */
3313 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3315 regstart
[mcnt
] = regend
[mcnt
]
3316 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3318 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3319 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3320 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3321 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3324 /* We move `string1' into `string2' if the latter's empty -- but not if
3325 `string1' is null. */
3326 if (size2
== 0 && string1
!= NULL
)
3333 end1
= string1
+ size1
;
3334 end2
= string2
+ size2
;
3336 /* Compute where to stop matching, within the two strings. */
3339 end_match_1
= string1
+ stop
;
3340 end_match_2
= string2
;
3345 end_match_2
= string2
+ stop
- size1
;
3348 /* `p' scans through the pattern as `d' scans through the data.
3349 `dend' is the end of the input string that `d' points within. `d'
3350 is advanced into the following input string whenever necessary, but
3351 this happens before fetching; therefore, at the beginning of the
3352 loop, `d' can be pointing at the end of a string, but it cannot
3354 if (size1
> 0 && pos
<= size1
)
3361 d
= string2
+ pos
- size1
;
3365 DEBUG_PRINT1 ("The compiled pattern is: ");
3366 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3367 DEBUG_PRINT1 ("The string to match is: `");
3368 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3369 DEBUG_PRINT1 ("'\n");
3371 /* This loops over pattern commands. It exits by returning from the
3372 function if the match is complete, or it drops through if the match
3373 fails at this starting point in the input data. */
3376 DEBUG_PRINT2 ("\n0x%x: ", p
);
3379 { /* End of pattern means we might have succeeded. */
3380 DEBUG_PRINT1 ("end of pattern ... ");
3382 /* If we haven't matched the entire string, and we want the
3383 longest match, try backtracking. */
3384 if (d
!= end_match_2
)
3386 DEBUG_PRINT1 ("backtracking.\n");
3388 if (!FAIL_STACK_EMPTY ())
3389 { /* More failure points to try. */
3390 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3391 == MATCHING_IN_FIRST_STRING
);
3393 /* If exceeds best match so far, save it. */
3395 || (same_str_p
&& d
> match_end
)
3396 || (!same_str_p
&& !MATCHING_IN_FIRST_STRING
))
3398 best_regs_set
= true;
3401 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3403 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3405 best_regstart
[mcnt
] = regstart
[mcnt
];
3406 best_regend
[mcnt
] = regend
[mcnt
];
3412 /* If no failure points, don't restore garbage. */
3413 else if (best_regs_set
)
3416 /* Restore best match. It may happen that `dend ==
3417 end_match_1' while the restored d is in string2.
3418 For example, the pattern `x.*y.*z' against the
3419 strings `x-' and `y-z-', if the two strings are
3420 not consecutive in memory. */
3421 DEBUG_PRINT1 ("Restoring best registers.\n");
3424 dend
= ((d
>= string1
&& d
<= end1
)
3425 ? end_match_1
: end_match_2
);
3427 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3429 regstart
[mcnt
] = best_regstart
[mcnt
];
3430 regend
[mcnt
] = best_regend
[mcnt
];
3433 } /* d != end_match_2 */
3435 DEBUG_PRINT1 ("Accepting match.\n");
3437 /* If caller wants register contents data back, do it. */
3438 if (regs
&& !bufp
->no_sub
)
3440 /* Have the register data arrays been allocated? */
3441 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
3442 { /* No. So allocate them with malloc. We need one
3443 extra element beyond `num_regs' for the `-1' marker
3445 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
3446 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
3447 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
3448 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3450 bufp
->regs_allocated
= REGS_REALLOCATE
;
3452 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
3453 { /* Yes. If we need more elements than were already
3454 allocated, reallocate them. If we need fewer, just
3456 if (regs
->num_regs
< num_regs
+ 1)
3458 regs
->num_regs
= num_regs
+ 1;
3459 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
3460 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
3461 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3466 assert (bufp
->regs_allocated
== REGS_FIXED
);
3468 /* Convert the pointer data in `regstart' and `regend' to
3469 indices. Register zero has to be set differently,
3470 since we haven't kept track of any info for it. */
3471 if (regs
->num_regs
> 0)
3473 regs
->start
[0] = pos
;
3474 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
? d
- string1
3475 : d
- string2
+ size1
);
3478 /* Go through the first `min (num_regs, regs->num_regs)'
3479 registers, since that is all we initialized. */
3480 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
3482 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
3483 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3486 regs
->start
[mcnt
] = POINTER_TO_OFFSET (regstart
[mcnt
]);
3487 regs
->end
[mcnt
] = POINTER_TO_OFFSET (regend
[mcnt
]);
3491 /* If the regs structure we return has more elements than
3492 were in the pattern, set the extra elements to -1. If
3493 we (re)allocated the registers, this is the case,
3494 because we always allocate enough to have at least one
3496 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
3497 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3498 } /* regs && !bufp->no_sub */
3501 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3502 nfailure_points_pushed
, nfailure_points_popped
,
3503 nfailure_points_pushed
- nfailure_points_popped
);
3504 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
3506 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
3510 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
3515 /* Otherwise match next pattern command. */
3516 #ifdef SWITCH_ENUM_BUG
3517 switch ((int) ((re_opcode_t
) *p
++))
3519 switch ((re_opcode_t
) *p
++)
3522 /* Ignore these. Used to ignore the n of succeed_n's which
3523 currently have n == 0. */
3525 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3529 /* Match the next n pattern characters exactly. The following
3530 byte in the pattern defines n, and the n bytes after that
3531 are the characters to match. */
3534 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
3536 /* This is written out as an if-else so we don't waste time
3537 testing `translate' inside the loop. */
3543 if (translate
[(unsigned char) *d
++] != (char) *p
++)
3553 if (*d
++ != (char) *p
++) goto fail
;
3557 SET_REGS_MATCHED ();
3561 /* Match any character except possibly a newline or a null. */
3563 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3567 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
3568 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
3571 SET_REGS_MATCHED ();
3572 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
3580 register unsigned char c
;
3581 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
3583 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3586 c
= TRANSLATE (*d
); /* The character to match. */
3588 /* Cast to `unsigned' instead of `unsigned char' in case the
3589 bit list is a full 32 bytes long. */
3590 if (c
< (unsigned) (*p
* BYTEWIDTH
)
3591 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
3596 if (!not) goto fail
;
3598 SET_REGS_MATCHED ();
3604 /* The beginning of a group is represented by start_memory.
3605 The arguments are the register number in the next byte, and the
3606 number of groups inner to this one in the next. The text
3607 matched within the group is recorded (in the internal
3608 registers data structure) under the register number. */
3610 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
3612 /* Find out if this group can match the empty string. */
3613 p1
= p
; /* To send to group_match_null_string_p. */
3615 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
3616 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3617 = group_match_null_string_p (&p1
, pend
, reg_info
);
3619 /* Save the position in the string where we were the last time
3620 we were at this open-group operator in case the group is
3621 operated upon by a repetition operator, e.g., with `(a*)*b'
3622 against `ab'; then we want to ignore where we are now in
3623 the string in case this attempt to match fails. */
3624 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3625 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
3627 DEBUG_PRINT2 (" old_regstart: %d\n",
3628 POINTER_TO_OFFSET (old_regstart
[*p
]));
3631 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
3633 IS_ACTIVE (reg_info
[*p
]) = 1;
3634 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3636 /* This is the new highest active register. */
3637 highest_active_reg
= *p
;
3639 /* If nothing was active before, this is the new lowest active
3641 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
3642 lowest_active_reg
= *p
;
3644 /* Move past the register number and inner group count. */
3649 /* The stop_memory opcode represents the end of a group. Its
3650 arguments are the same as start_memory's: the register
3651 number, and the number of inner groups. */
3653 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
3655 /* We need to save the string position the last time we were at
3656 this close-group operator in case the group is operated
3657 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3658 against `aba'; then we want to ignore where we are now in
3659 the string in case this attempt to match fails. */
3660 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3661 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
3663 DEBUG_PRINT2 (" old_regend: %d\n",
3664 POINTER_TO_OFFSET (old_regend
[*p
]));
3667 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
3669 /* This register isn't active anymore. */
3670 IS_ACTIVE (reg_info
[*p
]) = 0;
3672 /* If this was the only register active, nothing is active
3674 if (lowest_active_reg
== highest_active_reg
)
3676 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3677 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3680 { /* We must scan for the new highest active register, since
3681 it isn't necessarily one less than now: consider
3682 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3683 new highest active register is 1. */
3684 unsigned char r
= *p
- 1;
3685 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
3688 /* If we end up at register zero, that means that we saved
3689 the registers as the result of an `on_failure_jump', not
3690 a `start_memory', and we jumped to past the innermost
3691 `stop_memory'. For example, in ((.)*) we save
3692 registers 1 and 2 as a result of the *, but when we pop
3693 back to the second ), we are at the stop_memory 1.
3694 Thus, nothing is active. */
3697 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3698 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3701 highest_active_reg
= r
;
3704 /* If just failed to match something this time around with a
3705 group that's operated on by a repetition operator, try to
3706 force exit from the ``loop'', and restore the register
3707 information for this group that we had before trying this
3709 if ((!MATCHED_SOMETHING (reg_info
[*p
])
3710 || (re_opcode_t
) p
[-3] == start_memory
)
3713 boolean is_a_jump_n
= false;
3717 switch ((re_opcode_t
) *p1
++)
3721 case pop_failure_jump
:
3722 case maybe_pop_jump
:
3724 case dummy_failure_jump
:
3725 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3735 /* If the next operation is a jump backwards in the pattern
3736 to an on_failure_jump right before the start_memory
3737 corresponding to this stop_memory, exit from the loop
3738 by forcing a failure after pushing on the stack the
3739 on_failure_jump's jump in the pattern, and d. */
3740 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
3741 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
3743 /* If this group ever matched anything, then restore
3744 what its registers were before trying this last
3745 failed match, e.g., with `(a*)*b' against `ab' for
3746 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3747 against `aba' for regend[3].
3749 Also restore the registers for inner groups for,
3750 e.g., `((a*)(b*))*' against `aba' (register 3 would
3751 otherwise get trashed). */
3753 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
3757 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3759 /* Restore this and inner groups' (if any) registers. */
3760 for (r
= *p
; r
< *p
+ *(p
+ 1); r
++)
3762 regstart
[r
] = old_regstart
[r
];
3764 /* xx why this test? */
3765 if ((int) old_regend
[r
] >= (int) regstart
[r
])
3766 regend
[r
] = old_regend
[r
];
3770 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3771 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
3777 /* Move past the register number and the inner group count. */
3782 /* \<digit> has been turned into a `duplicate' command which is
3783 followed by the numeric value of <digit> as the register number. */
3786 register const char *d2
, *dend2
;
3787 int regno
= *p
++; /* Get which register to match against. */
3788 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
3790 /* Can't back reference a group which we've never matched. */
3791 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
3794 /* Where in input to try to start matching. */
3795 d2
= regstart
[regno
];
3797 /* Where to stop matching; if both the place to start and
3798 the place to stop matching are in the same string, then
3799 set to the place to stop, otherwise, for now have to use
3800 the end of the first string. */
3802 dend2
= ((FIRST_STRING_P (regstart
[regno
])
3803 == FIRST_STRING_P (regend
[regno
]))
3804 ? regend
[regno
] : end_match_1
);
3807 /* If necessary, advance to next segment in register
3811 if (dend2
== end_match_2
) break;
3812 if (dend2
== regend
[regno
]) break;
3814 /* End of string1 => advance to string2. */
3816 dend2
= regend
[regno
];
3818 /* At end of register contents => success */
3819 if (d2
== dend2
) break;
3821 /* If necessary, advance to next segment in data. */
3824 /* How many characters left in this segment to match. */
3827 /* Want how many consecutive characters we can match in
3828 one shot, so, if necessary, adjust the count. */
3829 if (mcnt
> dend2
- d2
)
3832 /* Compare that many; failure if mismatch, else move
3835 ? bcmp_translate (d
, d2
, mcnt
, translate
)
3836 : bcmp (d
, d2
, mcnt
))
3838 d
+= mcnt
, d2
+= mcnt
;
3844 /* begline matches the empty string at the beginning of the string
3845 (unless `not_bol' is set in `bufp'), and, if
3846 `newline_anchor' is set, after newlines. */
3848 DEBUG_PRINT1 ("EXECUTING begline.\n");
3850 if (AT_STRINGS_BEG (d
))
3852 if (!bufp
->not_bol
) break;
3854 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
3858 /* In all other cases, we fail. */
3862 /* endline is the dual of begline. */
3864 DEBUG_PRINT1 ("EXECUTING endline.\n");
3866 if (AT_STRINGS_END (d
))
3868 if (!bufp
->not_eol
) break;
3871 /* We have to ``prefetch'' the next character. */
3872 else if ((d
== end1
? *string2
: *d
) == '\n'
3873 && bufp
->newline_anchor
)
3880 /* Match at the very beginning of the data. */
3882 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3883 if (AT_STRINGS_BEG (d
))
3888 /* Match at the very end of the data. */
3890 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3891 if (AT_STRINGS_END (d
))
3896 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3897 pushes NULL as the value for the string on the stack. Then
3898 `pop_failure_point' will keep the current value for the
3899 string, instead of restoring it. To see why, consider
3900 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3901 then the . fails against the \n. But the next thing we want
3902 to do is match the \n against the \n; if we restored the
3903 string value, we would be back at the foo.
3905 Because this is used only in specific cases, we don't need to
3906 check all the things that `on_failure_jump' does, to make
3907 sure the right things get saved on the stack. Hence we don't
3908 share its code. The only reason to push anything on the
3909 stack at all is that otherwise we would have to change
3910 `anychar's code to do something besides goto fail in this
3911 case; that seems worse than this. */
3912 case on_failure_keep_string_jump
:
3913 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3915 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
3916 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
3918 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
3922 /* Uses of on_failure_jump:
3924 Each alternative starts with an on_failure_jump that points
3925 to the beginning of the next alternative. Each alternative
3926 except the last ends with a jump that in effect jumps past
3927 the rest of the alternatives. (They really jump to the
3928 ending jump of the following alternative, because tensioning
3929 these jumps is a hassle.)
3931 Repeats start with an on_failure_jump that points past both
3932 the repetition text and either the following jump or
3933 pop_failure_jump back to this on_failure_jump. */
3934 case on_failure_jump
:
3936 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3938 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
3939 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
3941 /* If this on_failure_jump comes right before a group (i.e.,
3942 the original * applied to a group), save the information
3943 for that group and all inner ones, so that if we fail back
3944 to this point, the group's information will be correct.
3945 For example, in \(a*\)*\1, we need the preceding group,
3946 and in \(\(a*\)b*\)\2, we need the inner group. */
3948 /* We can't use `p' to check ahead because we push
3949 a failure point to `p + mcnt' after we do this. */
3952 /* We need to skip no_op's before we look for the
3953 start_memory in case this on_failure_jump is happening as
3954 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3956 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
3959 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
3961 /* We have a new highest active register now. This will
3962 get reset at the start_memory we are about to get to,
3963 but we will have saved all the registers relevant to
3964 this repetition op, as described above. */
3965 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
3966 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
3967 lowest_active_reg
= *(p1
+ 1);
3970 DEBUG_PRINT1 (":\n");
3971 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
3975 /* A smart repeat ends with `maybe_pop_jump'.
3976 We change it to either `pop_failure_jump' or `jump'. */
3977 case maybe_pop_jump
:
3978 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
3979 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
3981 register unsigned char *p2
= p
;
3983 /* Compare the beginning of the repeat with what in the
3984 pattern follows its end. If we can establish that there
3985 is nothing that they would both match, i.e., that we
3986 would have to backtrack because of (as in, e.g., `a*a')
3987 then we can change to pop_failure_jump, because we'll
3988 never have to backtrack.
3990 This is not true in the case of alternatives: in
3991 `(a|ab)*' we do need to backtrack to the `ab' alternative
3992 (e.g., if the string was `ab'). But instead of trying to
3993 detect that here, the alternative has put on a dummy
3994 failure point which is what we will end up popping. */
3996 /* Skip over open/close-group commands. */
3997 while (p2
+ 2 < pend
3998 && ((re_opcode_t
) *p2
== stop_memory
3999 || (re_opcode_t
) *p2
== start_memory
))
4000 p2
+= 3; /* Skip over args, too. */
4002 /* If we're at the end of the pattern, we can change. */
4005 /* Consider what happens when matching ":\(.*\)"
4006 against ":/". I don't really understand this code
4008 p
[-3] = (unsigned char) pop_failure_jump
;
4010 (" End of pattern: change to `pop_failure_jump'.\n");
4013 else if ((re_opcode_t
) *p2
== exactn
4014 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4016 register unsigned char c
4017 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4020 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4021 to the `maybe_finalize_jump' of this case. Examine what
4023 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4025 p
[-3] = (unsigned char) pop_failure_jump
;
4026 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4030 else if ((re_opcode_t
) p1
[3] == charset
4031 || (re_opcode_t
) p1
[3] == charset_not
)
4033 int not = (re_opcode_t
) p1
[3] == charset_not
;
4035 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4036 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4039 /* `not' is equal to 1 if c would match, which means
4040 that we can't change to pop_failure_jump. */
4043 p
[-3] = (unsigned char) pop_failure_jump
;
4044 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4049 p
-= 2; /* Point at relative address again. */
4050 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4052 p
[-1] = (unsigned char) jump
;
4053 DEBUG_PRINT1 (" Match => jump.\n");
4054 goto unconditional_jump
;
4056 /* Note fall through. */
4059 /* The end of a simple repeat has a pop_failure_jump back to
4060 its matching on_failure_jump, where the latter will push a
4061 failure point. The pop_failure_jump takes off failure
4062 points put on by this pop_failure_jump's matching
4063 on_failure_jump; we got through the pattern to here from the
4064 matching on_failure_jump, so didn't fail. */
4065 case pop_failure_jump
:
4067 /* We need to pass separate storage for the lowest and
4068 highest registers, even though we don't care about the
4069 actual values. Otherwise, we will restore only one
4070 register from the stack, since lowest will == highest in
4071 `pop_failure_point'. */
4072 unsigned dummy_low_reg
, dummy_high_reg
;
4073 unsigned char *pdummy
;
4076 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4077 POP_FAILURE_POINT (sdummy
, pdummy
,
4078 dummy_low_reg
, dummy_high_reg
,
4079 reg_dummy
, reg_dummy
, reg_info_dummy
);
4081 /* Note fall through. */
4084 /* Unconditionally jump (without popping any failure points). */
4087 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4088 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4089 p
+= mcnt
; /* Do the jump. */
4090 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4094 /* We need this opcode so we can detect where alternatives end
4095 in `group_match_null_string_p' et al. */
4097 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4098 goto unconditional_jump
;
4101 /* Normally, the on_failure_jump pushes a failure point, which
4102 then gets popped at pop_failure_jump. We will end up at
4103 pop_failure_jump, also, and with a pattern of, say, `a+', we
4104 are skipping over the on_failure_jump, so we have to push
4105 something meaningless for pop_failure_jump to pop. */
4106 case dummy_failure_jump
:
4107 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4108 /* It doesn't matter what we push for the string here. What
4109 the code at `fail' tests is the value for the pattern. */
4110 PUSH_FAILURE_POINT (0, 0, -2);
4111 goto unconditional_jump
;
4114 /* At the end of an alternative, we need to push a dummy failure
4115 point in case we are followed by a `pop_failure_jump', because
4116 we don't want the failure point for the alternative to be
4117 popped. For example, matching `(a|ab)*' against `aab'
4118 requires that we match the `ab' alternative. */
4119 case push_dummy_failure
:
4120 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4121 /* See comments just above at `dummy_failure_jump' about the
4123 PUSH_FAILURE_POINT (0, 0, -2);
4126 /* Have to succeed matching what follows at least n times.
4127 After that, handle like `on_failure_jump'. */
4129 EXTRACT_NUMBER (mcnt
, p
+ 2);
4130 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4133 /* Originally, this is how many times we HAVE to succeed. */
4138 STORE_NUMBER_AND_INCR (p
, mcnt
);
4139 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
, mcnt
);
4143 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4144 p
[2] = (unsigned char) no_op
;
4145 p
[3] = (unsigned char) no_op
;
4151 EXTRACT_NUMBER (mcnt
, p
+ 2);
4152 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4154 /* Originally, this is how many times we CAN jump. */
4158 STORE_NUMBER (p
+ 2, mcnt
);
4159 goto unconditional_jump
;
4161 /* If don't have to jump any more, skip over the rest of command. */
4168 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4170 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4172 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4173 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4174 STORE_NUMBER (p1
, mcnt
);
4179 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4180 if (AT_WORD_BOUNDARY (d
))
4185 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4186 if (AT_WORD_BOUNDARY (d
))
4191 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4192 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4197 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4198 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4199 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4206 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4207 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4212 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4213 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4218 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4219 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
4222 #else /* not emacs19 */
4224 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4225 if (PTR_CHAR_POS ((unsigned char *) d
) + 1 != point
)
4228 #endif /* not emacs19 */
4231 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
4236 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4240 if (SYNTAX (*d
++) != (enum syntaxcode
) mcnt
)
4242 SET_REGS_MATCHED ();
4246 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
4248 goto matchnotsyntax
;
4251 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4255 if (SYNTAX (*d
++) == (enum syntaxcode
) mcnt
)
4257 SET_REGS_MATCHED ();
4260 #else /* not emacs */
4262 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4264 if (!WORDCHAR_P (d
))
4266 SET_REGS_MATCHED ();
4271 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4275 SET_REGS_MATCHED ();
4278 #endif /* not emacs */
4283 continue; /* Successfully executed one pattern command; keep going. */
4286 /* We goto here if a matching operation fails. */
4288 if (!FAIL_STACK_EMPTY ())
4289 { /* A restart point is known. Restore to that state. */
4290 DEBUG_PRINT1 ("\nFAIL:\n");
4291 POP_FAILURE_POINT (d
, p
,
4292 lowest_active_reg
, highest_active_reg
,
4293 regstart
, regend
, reg_info
);
4295 /* If this failure point is a dummy, try the next one. */
4299 /* If we failed to the end of the pattern, don't examine *p. */
4303 boolean is_a_jump_n
= false;
4305 /* If failed to a backwards jump that's part of a repetition
4306 loop, need to pop this failure point and use the next one. */
4307 switch ((re_opcode_t
) *p
)
4311 case maybe_pop_jump
:
4312 case pop_failure_jump
:
4315 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4318 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
4320 && (re_opcode_t
) *p1
== on_failure_jump
))
4328 if (d
>= string1
&& d
<= end1
)
4332 break; /* Matching at this starting point really fails. */
4336 goto restore_best_regs
;
4340 return -1; /* Failure to match. */
4343 /* Subroutine definitions for re_match_2. */
4346 /* We are passed P pointing to a register number after a start_memory.
4348 Return true if the pattern up to the corresponding stop_memory can
4349 match the empty string, and false otherwise.
4351 If we find the matching stop_memory, sets P to point to one past its number.
4352 Otherwise, sets P to an undefined byte less than or equal to END.
4354 We don't handle duplicates properly (yet). */
4357 group_match_null_string_p (p
, end
, reg_info
)
4358 unsigned char **p
, *end
;
4359 register_info_type
*reg_info
;
4362 /* Point to after the args to the start_memory. */
4363 unsigned char *p1
= *p
+ 2;
4367 /* Skip over opcodes that can match nothing, and return true or
4368 false, as appropriate, when we get to one that can't, or to the
4369 matching stop_memory. */
4371 switch ((re_opcode_t
) *p1
)
4373 /* Could be either a loop or a series of alternatives. */
4374 case on_failure_jump
:
4376 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4378 /* If the next operation is not a jump backwards in the
4383 /* Go through the on_failure_jumps of the alternatives,
4384 seeing if any of the alternatives cannot match nothing.
4385 The last alternative starts with only a jump,
4386 whereas the rest start with on_failure_jump and end
4387 with a jump, e.g., here is the pattern for `a|b|c':
4389 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4390 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4393 So, we have to first go through the first (n-1)
4394 alternatives and then deal with the last one separately. */
4397 /* Deal with the first (n-1) alternatives, which start
4398 with an on_failure_jump (see above) that jumps to right
4399 past a jump_past_alt. */
4401 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
4403 /* `mcnt' holds how many bytes long the alternative
4404 is, including the ending `jump_past_alt' and
4407 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
4411 /* Move to right after this alternative, including the
4415 /* Break if it's the beginning of an n-th alternative
4416 that doesn't begin with an on_failure_jump. */
4417 if ((re_opcode_t
) *p1
!= on_failure_jump
)
4420 /* Still have to check that it's not an n-th
4421 alternative that starts with an on_failure_jump. */
4423 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4424 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
4426 /* Get to the beginning of the n-th alternative. */
4432 /* Deal with the last alternative: go back and get number
4433 of the `jump_past_alt' just before it. `mcnt' contains
4434 the length of the alternative. */
4435 EXTRACT_NUMBER (mcnt
, p1
- 2);
4437 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
4440 p1
+= mcnt
; /* Get past the n-th alternative. */
4446 assert (p1
[1] == **p
);
4452 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4455 } /* while p1 < end */
4458 } /* group_match_null_string_p */
4461 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4462 It expects P to be the first byte of a single alternative and END one
4463 byte past the last. The alternative can contain groups. */
4466 alt_match_null_string_p (p
, end
, reg_info
)
4467 unsigned char *p
, *end
;
4468 register_info_type
*reg_info
;
4471 unsigned char *p1
= p
;
4475 /* Skip over opcodes that can match nothing, and break when we get
4476 to one that can't. */
4478 switch ((re_opcode_t
) *p1
)
4481 case on_failure_jump
:
4483 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4488 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4491 } /* while p1 < end */
4494 } /* alt_match_null_string_p */
4497 /* Deals with the ops common to group_match_null_string_p and
4498 alt_match_null_string_p.
4500 Sets P to one after the op and its arguments, if any. */
4503 common_op_match_null_string_p (p
, end
, reg_info
)
4504 unsigned char **p
, *end
;
4505 register_info_type
*reg_info
;
4510 unsigned char *p1
= *p
;
4512 switch ((re_opcode_t
) *p1
++)
4532 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
4533 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
4535 /* Have to set this here in case we're checking a group which
4536 contains a group and a back reference to it. */
4538 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
4539 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
4545 /* If this is an optimized succeed_n for zero times, make the jump. */
4547 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4555 /* Get to the number of times to succeed. */
4557 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4562 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4570 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
4578 /* All other opcodes mean we cannot match the empty string. */
4584 } /* common_op_match_null_string_p */
4587 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4588 bytes; nonzero otherwise. */
4591 bcmp_translate (s1
, s2
, len
, translate
)
4592 unsigned char *s1
, *s2
;
4596 register unsigned char *p1
= s1
, *p2
= s2
;
4599 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
4605 /* Entry points for GNU code. */
4607 /* re_compile_pattern is the GNU regular expression compiler: it
4608 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4609 Returns 0 if the pattern was valid, otherwise an error string.
4611 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4612 are set in BUFP on entry.
4614 We call regex_compile to do the actual compilation. */
4617 re_compile_pattern (pattern
, length
, bufp
)
4618 const char *pattern
;
4620 struct re_pattern_buffer
*bufp
;
4624 /* GNU code is written to assume at least RE_NREGS registers will be set
4625 (and at least one extra will be -1). */
4626 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4628 /* And GNU code determines whether or not to get register information
4629 by passing null for the REGS argument to re_match, etc., not by
4633 /* Match anchors at newline. */
4634 bufp
->newline_anchor
= 1;
4636 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
4638 return re_error_msg
[(int) ret
];
4641 /* Entry points compatible with 4.2 BSD regex library. We don't define
4642 them if this is an Emacs or POSIX compilation. */
4644 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4646 /* BSD has one and only one pattern buffer. */
4647 static struct re_pattern_buffer re_comp_buf
;
4657 if (!re_comp_buf
.buffer
)
4658 return "No previous regular expression";
4662 if (!re_comp_buf
.buffer
)
4664 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
4665 if (re_comp_buf
.buffer
== NULL
)
4666 return "Memory exhausted";
4667 re_comp_buf
.allocated
= 200;
4669 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
4670 if (re_comp_buf
.fastmap
== NULL
)
4671 return "Memory exhausted";
4674 /* Since `re_exec' always passes NULL for the `regs' argument, we
4675 don't need to initialize the pattern buffer fields which affect it. */
4677 /* Match anchors at newlines. */
4678 re_comp_buf
.newline_anchor
= 1;
4680 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
4682 /* Yes, we're discarding `const' here. */
4683 return (char *) re_error_msg
[(int) ret
];
4691 const int len
= strlen (s
);
4693 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
4695 #endif /* not emacs and not _POSIX_SOURCE */
4697 /* POSIX.2 functions. Don't define these for Emacs. */
4701 /* regcomp takes a regular expression as a string and compiles it.
4703 PREG is a regex_t *. We do not expect any fields to be initialized,
4704 since POSIX says we shouldn't. Thus, we set
4706 `buffer' to the compiled pattern;
4707 `used' to the length of the compiled pattern;
4708 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4709 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4710 RE_SYNTAX_POSIX_BASIC;
4711 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4712 `fastmap' and `fastmap_accurate' to zero;
4713 `re_nsub' to the number of subexpressions in PATTERN.
4715 PATTERN is the address of the pattern string.
4717 CFLAGS is a series of bits which affect compilation.
4719 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4720 use POSIX basic syntax.
4722 If REG_NEWLINE is set, then . and [^...] don't match newline.
4723 Also, regexec will try a match beginning after every newline.
4725 If REG_ICASE is set, then we considers upper- and lowercase
4726 versions of letters to be equivalent when matching.
4728 If REG_NOSUB is set, then when PREG is passed to regexec, that
4729 routine will report only success or failure, and nothing about the
4732 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4733 the return codes and their meanings.) */
4736 regcomp (preg
, pattern
, cflags
)
4738 const char *pattern
;
4743 = (cflags
& REG_EXTENDED
) ?
4744 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
4746 /* regex_compile will allocate the space for the compiled pattern. */
4748 preg
->allocated
= 0;
4750 /* Don't bother to use a fastmap when searching. This simplifies the
4751 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4752 characters after newlines into the fastmap. This way, we just try
4756 if (cflags
& REG_ICASE
)
4760 preg
->translate
= (char *) malloc (CHAR_SET_SIZE
);
4761 if (preg
->translate
== NULL
)
4762 return (int) REG_ESPACE
;
4764 /* Map uppercase characters to corresponding lowercase ones. */
4765 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
4766 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
4769 preg
->translate
= NULL
;
4771 /* If REG_NEWLINE is set, newlines are treated differently. */
4772 if (cflags
& REG_NEWLINE
)
4773 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4774 syntax
&= ~RE_DOT_NEWLINE
;
4775 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
4776 /* It also changes the matching behavior. */
4777 preg
->newline_anchor
= 1;
4780 preg
->newline_anchor
= 0;
4782 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
4784 /* POSIX says a null character in the pattern terminates it, so we
4785 can use strlen here in compiling the pattern. */
4786 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
4788 /* POSIX doesn't distinguish between an unmatched open-group and an
4789 unmatched close-group: both are REG_EPAREN. */
4790 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
4796 /* regexec searches for a given pattern, specified by PREG, in the
4799 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4800 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4801 least NMATCH elements, and we set them to the offsets of the
4802 corresponding matched substrings.
4804 EFLAGS specifies `execution flags' which affect matching: if
4805 REG_NOTBOL is set, then ^ does not match at the beginning of the
4806 string; if REG_NOTEOL is set, then $ does not match at the end.
4808 We return 0 if we find a match and REG_NOMATCH if not. */
4811 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
4812 const regex_t
*preg
;
4815 regmatch_t pmatch
[];
4819 struct re_registers regs
;
4820 regex_t private_preg
;
4821 int len
= strlen (string
);
4822 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
4824 private_preg
= *preg
;
4826 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
4827 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
4829 /* The user has told us exactly how many registers to return
4830 information about, via `nmatch'. We have to pass that on to the
4831 matching routines. */
4832 private_preg
.regs_allocated
= REGS_FIXED
;
4836 regs
.num_regs
= nmatch
;
4837 regs
.start
= TALLOC (nmatch
, regoff_t
);
4838 regs
.end
= TALLOC (nmatch
, regoff_t
);
4839 if (regs
.start
== NULL
|| regs
.end
== NULL
)
4840 return (int) REG_NOMATCH
;
4843 /* Perform the searching operation. */
4844 ret
= re_search (&private_preg
, string
, len
,
4845 /* start: */ 0, /* range: */ len
,
4846 want_reg_info
? ®s
: (struct re_registers
*) 0);
4848 /* Copy the register information to the POSIX structure. */
4855 for (r
= 0; r
< nmatch
; r
++)
4857 pmatch
[r
].rm_so
= regs
.start
[r
];
4858 pmatch
[r
].rm_eo
= regs
.end
[r
];
4862 /* If we needed the temporary register info, free the space now. */
4867 /* We want zero return to mean success, unlike `re_search'. */
4868 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
4872 /* Returns a message corresponding to an error code, ERRCODE, returned
4873 from either regcomp or regexec. We don't use PREG here. */
4876 regerror (errcode
, preg
, errbuf
, errbuf_size
)
4878 const regex_t
*preg
;
4886 || errcode
>= (sizeof (re_error_msg
) / sizeof (re_error_msg
[0])))
4887 /* Only error codes returned by the rest of the code should be passed
4888 to this routine. If we are given anything else, or if other regex
4889 code generates an invalid error code, then the program has a bug.
4890 Dump core so we can fix it. */
4893 msg
= re_error_msg
[errcode
];
4895 /* POSIX doesn't require that we do anything in this case, but why
4900 msg_size
= strlen (msg
) + 1; /* Includes the null. */
4902 if (errbuf_size
!= 0)
4904 if (msg_size
> errbuf_size
)
4906 strncpy (errbuf
, msg
, errbuf_size
- 1);
4907 errbuf
[errbuf_size
- 1] = 0;
4910 strcpy (errbuf
, msg
);
4917 /* Free dynamically allocated space used by PREG. */
4923 if (preg
->buffer
!= NULL
)
4924 free (preg
->buffer
);
4925 preg
->buffer
= NULL
;
4927 preg
->allocated
= 0;
4930 if (preg
->fastmap
!= NULL
)
4931 free (preg
->fastmap
);
4932 preg
->fastmap
= NULL
;
4933 preg
->fastmap_accurate
= 0;
4935 if (preg
->translate
!= NULL
)
4936 free (preg
->translate
);
4937 preg
->translate
= NULL
;
4940 #endif /* not emacs */
4944 make-backup-files: t
4946 trim-versions-without-asking: nil