btrfs: Attempt to fix GCC2 build.
[haiku.git] / src / system / kernel / thread.cpp
blob12203f06d1a13663d167b9528f297a78973973b9
1 /*
2 * Copyright 2005-2011, Ingo Weinhold, ingo_weinhold@gmx.de.
3 * Copyright 2002-2009, Axel Dörfler, axeld@pinc-software.de.
4 * Distributed under the terms of the MIT License.
6 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
7 * Distributed under the terms of the NewOS License.
8 */
11 /*! Threading routines */
14 #include <thread.h>
16 #include <errno.h>
17 #include <malloc.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <sys/resource.h>
23 #include <algorithm>
25 #include <OS.h>
27 #include <util/AutoLock.h>
29 #include <arch/debug.h>
30 #include <boot/kernel_args.h>
31 #include <condition_variable.h>
32 #include <cpu.h>
33 #include <int.h>
34 #include <kimage.h>
35 #include <kscheduler.h>
36 #include <ksignal.h>
37 #include <Notifications.h>
38 #include <real_time_clock.h>
39 #include <slab/Slab.h>
40 #include <smp.h>
41 #include <syscalls.h>
42 #include <syscall_restart.h>
43 #include <team.h>
44 #include <tls.h>
45 #include <user_runtime.h>
46 #include <user_thread.h>
47 #include <vfs.h>
48 #include <vm/vm.h>
49 #include <vm/VMAddressSpace.h>
50 #include <wait_for_objects.h>
52 #include "TeamThreadTables.h"
55 //#define TRACE_THREAD
56 #ifdef TRACE_THREAD
57 # define TRACE(x) dprintf x
58 #else
59 # define TRACE(x) ;
60 #endif
63 #define THREAD_MAX_MESSAGE_SIZE 65536
66 // #pragma mark - ThreadHashTable
69 typedef BKernel::TeamThreadTable<Thread> ThreadHashTable;
72 // thread list
73 static Thread sIdleThreads[SMP_MAX_CPUS];
74 static ThreadHashTable sThreadHash;
75 static spinlock sThreadHashLock = B_SPINLOCK_INITIALIZER;
76 static thread_id sNextThreadID = 2;
77 // ID 1 is allocated for the kernel by Team::Team() behind our back
79 // some arbitrarily chosen limits -- should probably depend on the available
80 // memory (the limit is not yet enforced)
81 static int32 sMaxThreads = 4096;
82 static int32 sUsedThreads = 0;
84 spinlock gThreadCreationLock = B_SPINLOCK_INITIALIZER;
87 struct UndertakerEntry : DoublyLinkedListLinkImpl<UndertakerEntry> {
88 Thread* thread;
89 team_id teamID;
91 UndertakerEntry(Thread* thread, team_id teamID)
93 thread(thread),
94 teamID(teamID)
100 struct ThreadEntryArguments {
101 status_t (*kernelFunction)(void* argument);
102 void* argument;
103 bool enterUserland;
106 struct UserThreadEntryArguments : ThreadEntryArguments {
107 addr_t userlandEntry;
108 void* userlandArgument1;
109 void* userlandArgument2;
110 pthread_t pthread;
111 arch_fork_arg* forkArgs;
112 uint32 flags;
116 class ThreadNotificationService : public DefaultNotificationService {
117 public:
118 ThreadNotificationService()
119 : DefaultNotificationService("threads")
123 void Notify(uint32 eventCode, team_id teamID, thread_id threadID,
124 Thread* thread = NULL)
126 char eventBuffer[180];
127 KMessage event;
128 event.SetTo(eventBuffer, sizeof(eventBuffer), THREAD_MONITOR);
129 event.AddInt32("event", eventCode);
130 event.AddInt32("team", teamID);
131 event.AddInt32("thread", threadID);
132 if (thread != NULL)
133 event.AddPointer("threadStruct", thread);
135 DefaultNotificationService::Notify(event, eventCode);
138 void Notify(uint32 eventCode, Thread* thread)
140 return Notify(eventCode, thread->id, thread->team->id, thread);
145 static DoublyLinkedList<UndertakerEntry> sUndertakerEntries;
146 static spinlock sUndertakerLock = B_SPINLOCK_INITIALIZER;
147 static ConditionVariable sUndertakerCondition;
148 static ThreadNotificationService sNotificationService;
151 // object cache to allocate thread structures from
152 static object_cache* sThreadCache;
155 // #pragma mark - Thread
158 /*! Constructs a thread.
160 \param name The thread's name.
161 \param threadID The ID to be assigned to the new thread. If
162 \code < 0 \endcode a fresh one is allocated.
163 \param cpu The CPU the thread shall be assigned.
165 Thread::Thread(const char* name, thread_id threadID, struct cpu_ent* cpu)
167 flags(0),
168 serial_number(-1),
169 hash_next(NULL),
170 team_next(NULL),
171 priority(-1),
172 io_priority(-1),
173 cpu(cpu),
174 previous_cpu(NULL),
175 pinned_to_cpu(0),
176 sig_block_mask(0),
177 sigsuspend_original_unblocked_mask(0),
178 user_signal_context(NULL),
179 signal_stack_base(0),
180 signal_stack_size(0),
181 signal_stack_enabled(false),
182 in_kernel(true),
183 has_yielded(false),
184 user_thread(NULL),
185 fault_handler(0),
186 page_faults_allowed(1),
187 team(NULL),
188 select_infos(NULL),
189 kernel_stack_area(-1),
190 kernel_stack_base(0),
191 user_stack_area(-1),
192 user_stack_base(0),
193 user_local_storage(0),
194 kernel_errno(0),
195 user_time(0),
196 kernel_time(0),
197 last_time(0),
198 cpu_clock_offset(0),
199 post_interrupt_callback(NULL),
200 post_interrupt_data(NULL)
202 id = threadID >= 0 ? threadID : allocate_thread_id();
203 visible = false;
205 // init locks
206 char lockName[32];
207 snprintf(lockName, sizeof(lockName), "Thread:%" B_PRId32, id);
208 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
210 B_INITIALIZE_SPINLOCK(&time_lock);
211 B_INITIALIZE_SPINLOCK(&scheduler_lock);
212 B_INITIALIZE_RW_SPINLOCK(&team_lock);
214 // init name
215 if (name != NULL)
216 strlcpy(this->name, name, B_OS_NAME_LENGTH);
217 else
218 strcpy(this->name, "unnamed thread");
220 exit.status = 0;
222 list_init(&exit.waiters);
224 exit.sem = -1;
225 msg.write_sem = -1;
226 msg.read_sem = -1;
228 // add to thread table -- yet invisible
229 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
230 sThreadHash.Insert(this);
234 Thread::~Thread()
236 // Delete resources that should actually be deleted by the thread itself,
237 // when it exited, but that might still exist, if the thread was never run.
239 if (user_stack_area >= 0)
240 delete_area(user_stack_area);
242 DeleteUserTimers(false);
244 // delete the resources, that may remain in either case
246 if (kernel_stack_area >= 0)
247 delete_area(kernel_stack_area);
249 fPendingSignals.Clear();
251 if (exit.sem >= 0)
252 delete_sem(exit.sem);
253 if (msg.write_sem >= 0)
254 delete_sem(msg.write_sem);
255 if (msg.read_sem >= 0)
256 delete_sem(msg.read_sem);
258 scheduler_on_thread_destroy(this);
260 mutex_destroy(&fLock);
262 // remove from thread table
263 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
264 sThreadHash.Remove(this);
268 /*static*/ status_t
269 Thread::Create(const char* name, Thread*& _thread)
271 Thread* thread = new Thread(name, -1, NULL);
272 if (thread == NULL)
273 return B_NO_MEMORY;
275 status_t error = thread->Init(false);
276 if (error != B_OK) {
277 delete thread;
278 return error;
281 _thread = thread;
282 return B_OK;
286 /*static*/ Thread*
287 Thread::Get(thread_id id)
289 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
290 Thread* thread = sThreadHash.Lookup(id);
291 if (thread != NULL)
292 thread->AcquireReference();
293 return thread;
297 /*static*/ Thread*
298 Thread::GetAndLock(thread_id id)
300 // look it up and acquire a reference
301 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
302 Thread* thread = sThreadHash.Lookup(id);
303 if (thread == NULL)
304 return NULL;
306 thread->AcquireReference();
307 threadHashLocker.Unlock();
309 // lock and check, if it is still in the hash table
310 thread->Lock();
311 threadHashLocker.Lock();
313 if (sThreadHash.Lookup(id) == thread)
314 return thread;
316 threadHashLocker.Unlock();
318 // nope, the thread is no longer in the hash table
319 thread->UnlockAndReleaseReference();
321 return NULL;
325 /*static*/ Thread*
326 Thread::GetDebug(thread_id id)
328 return sThreadHash.Lookup(id, false);
332 /*static*/ bool
333 Thread::IsAlive(thread_id id)
335 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
336 return sThreadHash.Lookup(id) != NULL;
340 void*
341 Thread::operator new(size_t size)
343 return object_cache_alloc(sThreadCache, 0);
347 void*
348 Thread::operator new(size_t, void* pointer)
350 return pointer;
354 void
355 Thread::operator delete(void* pointer, size_t size)
357 object_cache_free(sThreadCache, pointer, 0);
361 status_t
362 Thread::Init(bool idleThread)
364 status_t error = scheduler_on_thread_create(this, idleThread);
365 if (error != B_OK)
366 return error;
368 char temp[64];
369 snprintf(temp, sizeof(temp), "thread_%" B_PRId32 "_retcode_sem", id);
370 exit.sem = create_sem(0, temp);
371 if (exit.sem < 0)
372 return exit.sem;
374 snprintf(temp, sizeof(temp), "%s send", name);
375 msg.write_sem = create_sem(1, temp);
376 if (msg.write_sem < 0)
377 return msg.write_sem;
379 snprintf(temp, sizeof(temp), "%s receive", name);
380 msg.read_sem = create_sem(0, temp);
381 if (msg.read_sem < 0)
382 return msg.read_sem;
384 error = arch_thread_init_thread_struct(this);
385 if (error != B_OK)
386 return error;
388 return B_OK;
392 /*! Checks whether the thread is still in the thread hash table.
394 bool
395 Thread::IsAlive() const
397 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
399 return sThreadHash.Lookup(id) != NULL;
403 void
404 Thread::ResetSignalsOnExec()
406 // We are supposed keep the pending signals and the signal mask. Only the
407 // signal stack, if set, shall be unset.
409 sigsuspend_original_unblocked_mask = 0;
410 user_signal_context = NULL;
411 signal_stack_base = 0;
412 signal_stack_size = 0;
413 signal_stack_enabled = false;
417 /*! Adds the given user timer to the thread and, if user-defined, assigns it an
420 The caller must hold the thread's lock.
422 \param timer The timer to be added. If it doesn't have an ID yet, it is
423 considered user-defined and will be assigned an ID.
424 \return \c B_OK, if the timer was added successfully, another error code
425 otherwise.
427 status_t
428 Thread::AddUserTimer(UserTimer* timer)
430 // If the timer is user-defined, check timer limit and increment
431 // user-defined count.
432 if (timer->ID() < 0 && !team->CheckAddUserDefinedTimer())
433 return EAGAIN;
435 fUserTimers.AddTimer(timer);
437 return B_OK;
441 /*! Removes the given user timer from the thread.
443 The caller must hold the thread's lock.
445 \param timer The timer to be removed.
448 void
449 Thread::RemoveUserTimer(UserTimer* timer)
451 fUserTimers.RemoveTimer(timer);
453 if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID)
454 team->UserDefinedTimersRemoved(1);
458 /*! Deletes all (or all user-defined) user timers of the thread.
460 The caller must hold the thread's lock.
462 \param userDefinedOnly If \c true, only the user-defined timers are deleted,
463 otherwise all timers are deleted.
465 void
466 Thread::DeleteUserTimers(bool userDefinedOnly)
468 int32 count = fUserTimers.DeleteTimers(userDefinedOnly);
469 if (count > 0)
470 team->UserDefinedTimersRemoved(count);
474 void
475 Thread::DeactivateCPUTimeUserTimers()
477 while (ThreadTimeUserTimer* timer = fCPUTimeUserTimers.Head())
478 timer->Deactivate();
482 // #pragma mark - ThreadListIterator
485 ThreadListIterator::ThreadListIterator()
487 // queue the entry
488 InterruptsSpinLocker locker(sThreadHashLock);
489 sThreadHash.InsertIteratorEntry(&fEntry);
493 ThreadListIterator::~ThreadListIterator()
495 // remove the entry
496 InterruptsSpinLocker locker(sThreadHashLock);
497 sThreadHash.RemoveIteratorEntry(&fEntry);
501 Thread*
502 ThreadListIterator::Next()
504 // get the next team -- if there is one, get reference for it
505 InterruptsSpinLocker locker(sThreadHashLock);
506 Thread* thread = sThreadHash.NextElement(&fEntry);
507 if (thread != NULL)
508 thread->AcquireReference();
510 return thread;
514 // #pragma mark - ThreadCreationAttributes
517 ThreadCreationAttributes::ThreadCreationAttributes(thread_func function,
518 const char* name, int32 priority, void* arg, team_id team,
519 Thread* thread)
521 this->entry = NULL;
522 this->name = name;
523 this->priority = priority;
524 this->args1 = NULL;
525 this->args2 = NULL;
526 this->stack_address = NULL;
527 this->stack_size = 0;
528 this->guard_size = 0;
529 this->pthread = NULL;
530 this->flags = 0;
531 this->team = team >= 0 ? team : team_get_kernel_team()->id;
532 this->thread = thread;
533 this->signal_mask = 0;
534 this->additional_stack_size = 0;
535 this->kernelEntry = function;
536 this->kernelArgument = arg;
537 this->forkArgs = NULL;
541 /*! Initializes the structure from a userland structure.
542 \param userAttributes The userland structure (must be a userland address).
543 \param nameBuffer A character array of at least size B_OS_NAME_LENGTH,
544 which will be used for the \c name field, if the userland structure has
545 a name. The buffer must remain valid as long as this structure is in
546 use afterwards (or until it is reinitialized).
547 \return \c B_OK, if the initialization went fine, another error code
548 otherwise.
550 status_t
551 ThreadCreationAttributes::InitFromUserAttributes(
552 const thread_creation_attributes* userAttributes, char* nameBuffer)
554 if (userAttributes == NULL || !IS_USER_ADDRESS(userAttributes)
555 || user_memcpy((thread_creation_attributes*)this, userAttributes,
556 sizeof(thread_creation_attributes)) != B_OK) {
557 return B_BAD_ADDRESS;
560 if (stack_size != 0
561 && (stack_size < MIN_USER_STACK_SIZE
562 || stack_size > MAX_USER_STACK_SIZE)) {
563 return B_BAD_VALUE;
566 if (entry == NULL || !IS_USER_ADDRESS(entry)
567 || (stack_address != NULL && !IS_USER_ADDRESS(stack_address))
568 || (name != NULL && (!IS_USER_ADDRESS(name)
569 || user_strlcpy(nameBuffer, name, B_OS_NAME_LENGTH) < 0))) {
570 return B_BAD_ADDRESS;
573 name = name != NULL ? nameBuffer : "user thread";
575 // kernel only attributes (not in thread_creation_attributes):
576 Thread* currentThread = thread_get_current_thread();
577 team = currentThread->team->id;
578 thread = NULL;
579 signal_mask = currentThread->sig_block_mask;
580 // inherit the current thread's signal mask
581 additional_stack_size = 0;
582 kernelEntry = NULL;
583 kernelArgument = NULL;
584 forkArgs = NULL;
586 return B_OK;
590 // #pragma mark - private functions
593 /*! Inserts a thread into a team.
594 The caller must hold the team's lock, the thread's lock, and the scheduler
595 lock.
597 static void
598 insert_thread_into_team(Team *team, Thread *thread)
600 thread->team_next = team->thread_list;
601 team->thread_list = thread;
602 team->num_threads++;
604 if (team->num_threads == 1) {
605 // this was the first thread
606 team->main_thread = thread;
608 thread->team = team;
612 /*! Removes a thread from a team.
613 The caller must hold the team's lock, the thread's lock, and the scheduler
614 lock.
616 static void
617 remove_thread_from_team(Team *team, Thread *thread)
619 Thread *temp, *last = NULL;
621 for (temp = team->thread_list; temp != NULL; temp = temp->team_next) {
622 if (temp == thread) {
623 if (last == NULL)
624 team->thread_list = temp->team_next;
625 else
626 last->team_next = temp->team_next;
628 team->num_threads--;
629 break;
631 last = temp;
636 static status_t
637 enter_userspace(Thread* thread, UserThreadEntryArguments* args)
639 status_t error = arch_thread_init_tls(thread);
640 if (error != B_OK) {
641 dprintf("Failed to init TLS for new userland thread \"%s\" (%" B_PRId32
642 ")\n", thread->name, thread->id);
643 free(args->forkArgs);
644 return error;
647 user_debug_update_new_thread_flags(thread);
649 // init the thread's user_thread
650 user_thread* userThread = thread->user_thread;
651 userThread->pthread = args->pthread;
652 userThread->flags = 0;
653 userThread->wait_status = B_OK;
654 userThread->defer_signals
655 = (args->flags & THREAD_CREATION_FLAG_DEFER_SIGNALS) != 0 ? 1 : 0;
656 userThread->pending_signals = 0;
658 if (args->forkArgs != NULL) {
659 // This is a fork()ed thread. Copy the fork args onto the stack and
660 // free them.
661 arch_fork_arg archArgs = *args->forkArgs;
662 free(args->forkArgs);
664 arch_restore_fork_frame(&archArgs);
665 // this one won't return here
666 return B_ERROR;
669 // Jump to the entry point in user space. Only returns, if something fails.
670 return arch_thread_enter_userspace(thread, args->userlandEntry,
671 args->userlandArgument1, args->userlandArgument2);
675 status_t
676 thread_enter_userspace_new_team(Thread* thread, addr_t entryFunction,
677 void* argument1, void* argument2)
679 UserThreadEntryArguments entryArgs;
680 entryArgs.kernelFunction = NULL;
681 entryArgs.argument = NULL;
682 entryArgs.enterUserland = true;
683 entryArgs.userlandEntry = (addr_t)entryFunction;
684 entryArgs.userlandArgument1 = argument1;
685 entryArgs.userlandArgument2 = argument2;
686 entryArgs.pthread = NULL;
687 entryArgs.forkArgs = NULL;
688 entryArgs.flags = 0;
690 return enter_userspace(thread, &entryArgs);
694 static void
695 common_thread_entry(void* _args)
697 Thread* thread = thread_get_current_thread();
699 // The thread is new and has been scheduled the first time.
701 scheduler_new_thread_entry(thread);
703 // unlock the scheduler lock and enable interrupts
704 release_spinlock(&thread->scheduler_lock);
705 enable_interrupts();
707 // call the kernel function, if any
708 ThreadEntryArguments* args = (ThreadEntryArguments*)_args;
709 if (args->kernelFunction != NULL)
710 args->kernelFunction(args->argument);
712 // If requested, enter userland, now.
713 if (args->enterUserland) {
714 enter_userspace(thread, (UserThreadEntryArguments*)args);
715 // only returns or error
717 // If that's the team's main thread, init the team exit info.
718 if (thread == thread->team->main_thread)
719 team_init_exit_info_on_error(thread->team);
722 // we're done
723 thread_exit();
727 /*! Prepares the given thread's kernel stack for executing its entry function.
729 The data pointed to by \a data of size \a dataSize are copied to the
730 thread's kernel stack. A pointer to the copy's data is passed to the entry
731 function. The entry function is common_thread_entry().
733 \param thread The thread.
734 \param data Pointer to data to be copied to the thread's stack and passed
735 to the entry function.
736 \param dataSize The size of \a data.
738 static void
739 init_thread_kernel_stack(Thread* thread, const void* data, size_t dataSize)
741 uint8* stack = (uint8*)thread->kernel_stack_base;
742 uint8* stackTop = (uint8*)thread->kernel_stack_top;
744 // clear (or rather invalidate) the kernel stack contents, if compiled with
745 // debugging
746 #if KDEBUG > 0
747 # if defined(DEBUG_KERNEL_STACKS) && defined(STACK_GROWS_DOWNWARDS)
748 memset((void*)(stack + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE), 0xcc,
749 KERNEL_STACK_SIZE);
750 # else
751 memset(stack, 0xcc, KERNEL_STACK_SIZE);
752 # endif
753 #endif
755 // copy the data onto the stack, with 16-byte alignment to be on the safe
756 // side
757 void* clonedData;
758 #ifdef STACK_GROWS_DOWNWARDS
759 clonedData = (void*)ROUNDDOWN((addr_t)stackTop - dataSize, 16);
760 stackTop = (uint8*)clonedData;
761 #else
762 clonedData = (void*)ROUNDUP((addr_t)stack, 16);
763 stack = (uint8*)clonedData + ROUNDUP(dataSize, 16);
764 #endif
766 memcpy(clonedData, data, dataSize);
768 arch_thread_init_kthread_stack(thread, stack, stackTop,
769 &common_thread_entry, clonedData);
773 static status_t
774 create_thread_user_stack(Team* team, Thread* thread, void* _stackBase,
775 size_t stackSize, size_t additionalSize, size_t guardSize,
776 char* nameBuffer)
778 area_id stackArea = -1;
779 uint8* stackBase = (uint8*)_stackBase;
781 if (stackBase != NULL) {
782 // A stack has been specified. It must be large enough to hold the
783 // TLS space at least. Guard pages are ignored for existing stacks.
784 STATIC_ASSERT(TLS_SIZE < MIN_USER_STACK_SIZE);
785 if (stackSize < MIN_USER_STACK_SIZE)
786 return B_BAD_VALUE;
788 stackSize -= TLS_SIZE;
789 } else {
790 // No user-defined stack -- allocate one. For non-main threads the stack
791 // will be between USER_STACK_REGION and the main thread stack area. For
792 // a main thread the position is fixed.
794 guardSize = PAGE_ALIGN(guardSize);
796 if (stackSize == 0) {
797 // Use the default size (a different one for a main thread).
798 stackSize = thread->id == team->id
799 ? USER_MAIN_THREAD_STACK_SIZE : USER_STACK_SIZE;
800 } else {
801 // Verify that the given stack size is large enough.
802 if (stackSize < MIN_USER_STACK_SIZE)
803 return B_BAD_VALUE;
805 stackSize = PAGE_ALIGN(stackSize);
808 size_t areaSize = PAGE_ALIGN(guardSize + stackSize + TLS_SIZE
809 + additionalSize);
811 snprintf(nameBuffer, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_stack",
812 thread->name, thread->id);
814 stackBase = (uint8*)USER_STACK_REGION;
816 virtual_address_restrictions virtualRestrictions = {};
817 virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS;
818 virtualRestrictions.address = (void*)stackBase;
820 physical_address_restrictions physicalRestrictions = {};
822 stackArea = create_area_etc(team->id, nameBuffer,
823 areaSize, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA | B_STACK_AREA,
824 0, guardSize, &virtualRestrictions, &physicalRestrictions,
825 (void**)&stackBase);
826 if (stackArea < 0)
827 return stackArea;
830 // set the stack
831 ThreadLocker threadLocker(thread);
832 #ifdef STACK_GROWS_DOWNWARDS
833 thread->user_stack_base = (addr_t)stackBase + guardSize;
834 #else
835 thread->user_stack_base = (addr_t)stackBase;
836 #endif
837 thread->user_stack_size = stackSize;
838 thread->user_stack_area = stackArea;
840 return B_OK;
844 status_t
845 thread_create_user_stack(Team* team, Thread* thread, void* stackBase,
846 size_t stackSize, size_t additionalSize)
848 char nameBuffer[B_OS_NAME_LENGTH];
849 return create_thread_user_stack(team, thread, stackBase, stackSize,
850 additionalSize, USER_STACK_GUARD_SIZE, nameBuffer);
854 /*! Creates a new thread.
856 \param attributes The thread creation attributes, specifying the team in
857 which to create the thread, as well as a whole bunch of other arguments.
858 \param kernel \c true, if a kernel-only thread shall be created, \c false,
859 if the thread shall also be able to run in userland.
860 \return The ID of the newly created thread (>= 0) or an error code on
861 failure.
863 thread_id
864 thread_create_thread(const ThreadCreationAttributes& attributes, bool kernel)
866 status_t status = B_OK;
868 TRACE(("thread_create_thread(%s, thread = %p, %s)\n", attributes.name,
869 attributes.thread, kernel ? "kernel" : "user"));
871 // get the team
872 Team* team = Team::Get(attributes.team);
873 if (team == NULL)
874 return B_BAD_TEAM_ID;
875 BReference<Team> teamReference(team, true);
877 // If a thread object is given, acquire a reference to it, otherwise create
878 // a new thread object with the given attributes.
879 Thread* thread = attributes.thread;
880 if (thread != NULL) {
881 thread->AcquireReference();
882 } else {
883 status = Thread::Create(attributes.name, thread);
884 if (status != B_OK)
885 return status;
887 BReference<Thread> threadReference(thread, true);
889 thread->team = team;
890 // set already, so, if something goes wrong, the team pointer is
891 // available for deinitialization
892 thread->priority = attributes.priority == -1
893 ? B_NORMAL_PRIORITY : attributes.priority;
894 thread->priority = std::max(thread->priority,
895 (int32)THREAD_MIN_SET_PRIORITY);
896 thread->priority = std::min(thread->priority,
897 (int32)THREAD_MAX_SET_PRIORITY);
898 thread->state = B_THREAD_SUSPENDED;
900 thread->sig_block_mask = attributes.signal_mask;
902 // init debug structure
903 init_thread_debug_info(&thread->debug_info);
905 // create the kernel stack
906 char stackName[B_OS_NAME_LENGTH];
907 snprintf(stackName, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_kstack",
908 thread->name, thread->id);
909 virtual_address_restrictions virtualRestrictions = {};
910 virtualRestrictions.address_specification = B_ANY_KERNEL_ADDRESS;
911 physical_address_restrictions physicalRestrictions = {};
913 thread->kernel_stack_area = create_area_etc(B_SYSTEM_TEAM, stackName,
914 KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE,
915 B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA
916 | B_KERNEL_STACK_AREA, 0, KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE,
917 &virtualRestrictions, &physicalRestrictions,
918 (void**)&thread->kernel_stack_base);
920 if (thread->kernel_stack_area < 0) {
921 // we're not yet part of a team, so we can just bail out
922 status = thread->kernel_stack_area;
924 dprintf("create_thread: error creating kernel stack: %s!\n",
925 strerror(status));
927 return status;
930 thread->kernel_stack_top = thread->kernel_stack_base + KERNEL_STACK_SIZE
931 + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE;
933 if (kernel) {
934 // Init the thread's kernel stack. It will start executing
935 // common_thread_entry() with the arguments we prepare here.
936 ThreadEntryArguments entryArgs;
937 entryArgs.kernelFunction = attributes.kernelEntry;
938 entryArgs.argument = attributes.kernelArgument;
939 entryArgs.enterUserland = false;
941 init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs));
942 } else {
943 // create the userland stack, if the thread doesn't have one yet
944 if (thread->user_stack_base == 0) {
945 status = create_thread_user_stack(team, thread,
946 attributes.stack_address, attributes.stack_size,
947 attributes.additional_stack_size, attributes.guard_size,
948 stackName);
949 if (status != B_OK)
950 return status;
953 // Init the thread's kernel stack. It will start executing
954 // common_thread_entry() with the arguments we prepare here.
955 UserThreadEntryArguments entryArgs;
956 entryArgs.kernelFunction = attributes.kernelEntry;
957 entryArgs.argument = attributes.kernelArgument;
958 entryArgs.enterUserland = true;
959 entryArgs.userlandEntry = (addr_t)attributes.entry;
960 entryArgs.userlandArgument1 = attributes.args1;
961 entryArgs.userlandArgument2 = attributes.args2;
962 entryArgs.pthread = attributes.pthread;
963 entryArgs.forkArgs = attributes.forkArgs;
964 entryArgs.flags = attributes.flags;
966 init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs));
968 // create the pre-defined thread timers
969 status = user_timer_create_thread_timers(team, thread);
970 if (status != B_OK)
971 return status;
974 // lock the team and see, if it is still alive
975 TeamLocker teamLocker(team);
976 if (team->state >= TEAM_STATE_SHUTDOWN)
977 return B_BAD_TEAM_ID;
979 bool debugNewThread = false;
980 if (!kernel) {
981 // allocate the user_thread structure, if not already allocated
982 if (thread->user_thread == NULL) {
983 thread->user_thread = team_allocate_user_thread(team);
984 if (thread->user_thread == NULL)
985 return B_NO_MEMORY;
988 // If the new thread belongs to the same team as the current thread, it
989 // may inherit some of the thread debug flags.
990 Thread* currentThread = thread_get_current_thread();
991 if (currentThread != NULL && currentThread->team == team) {
992 // inherit all user flags...
993 int32 debugFlags = atomic_get(&currentThread->debug_info.flags)
994 & B_THREAD_DEBUG_USER_FLAG_MASK;
996 // ... save the syscall tracing flags, unless explicitely specified
997 if (!(debugFlags & B_THREAD_DEBUG_SYSCALL_TRACE_CHILD_THREADS)) {
998 debugFlags &= ~(B_THREAD_DEBUG_PRE_SYSCALL
999 | B_THREAD_DEBUG_POST_SYSCALL);
1002 thread->debug_info.flags = debugFlags;
1004 // stop the new thread, if desired
1005 debugNewThread = debugFlags & B_THREAD_DEBUG_STOP_CHILD_THREADS;
1009 // We're going to make the thread live, now. The thread itself will take
1010 // over a reference to its Thread object. We'll acquire another reference
1011 // for our own use (and threadReference remains armed).
1013 ThreadLocker threadLocker(thread);
1015 InterruptsSpinLocker threadCreationLocker(gThreadCreationLock);
1016 SpinLocker threadHashLocker(sThreadHashLock);
1018 // check the thread limit
1019 if (sUsedThreads >= sMaxThreads) {
1020 // Clean up the user_thread structure. It's a bit unfortunate that the
1021 // Thread destructor cannot do that, so we have to do that explicitly.
1022 threadHashLocker.Unlock();
1023 threadCreationLocker.Unlock();
1025 user_thread* userThread = thread->user_thread;
1026 thread->user_thread = NULL;
1028 threadLocker.Unlock();
1030 if (userThread != NULL)
1031 team_free_user_thread(team, userThread);
1033 return B_NO_MORE_THREADS;
1036 // make thread visible in global hash/list
1037 thread->visible = true;
1038 sUsedThreads++;
1040 scheduler_on_thread_init(thread);
1042 thread->AcquireReference();
1044 // Debug the new thread, if the parent thread required that (see above),
1045 // or the respective global team debug flag is set. But only, if a
1046 // debugger is installed for the team.
1047 if (!kernel) {
1048 int32 teamDebugFlags = atomic_get(&team->debug_info.flags);
1049 debugNewThread |= (teamDebugFlags & B_TEAM_DEBUG_STOP_NEW_THREADS) != 0;
1050 if (debugNewThread
1051 && (teamDebugFlags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) != 0) {
1052 thread->debug_info.flags |= B_THREAD_DEBUG_STOP;
1057 SpinLocker signalLocker(team->signal_lock);
1058 SpinLocker timeLocker(team->time_lock);
1060 // insert thread into team
1061 insert_thread_into_team(team, thread);
1064 threadHashLocker.Unlock();
1065 threadCreationLocker.Unlock();
1066 threadLocker.Unlock();
1067 teamLocker.Unlock();
1069 // notify listeners
1070 sNotificationService.Notify(THREAD_ADDED, thread);
1072 return thread->id;
1076 static status_t
1077 undertaker(void* /*args*/)
1079 while (true) {
1080 // wait for a thread to bury
1081 InterruptsSpinLocker locker(sUndertakerLock);
1083 while (sUndertakerEntries.IsEmpty()) {
1084 ConditionVariableEntry conditionEntry;
1085 sUndertakerCondition.Add(&conditionEntry);
1086 locker.Unlock();
1088 conditionEntry.Wait();
1090 locker.Lock();
1093 UndertakerEntry* _entry = sUndertakerEntries.RemoveHead();
1094 locker.Unlock();
1096 UndertakerEntry entry = *_entry;
1097 // we need a copy, since the original entry is on the thread's stack
1099 // we've got an entry
1100 Thread* thread = entry.thread;
1102 // make sure the thread isn't running anymore
1103 InterruptsSpinLocker schedulerLocker(thread->scheduler_lock);
1104 ASSERT(thread->state == THREAD_STATE_FREE_ON_RESCHED);
1105 schedulerLocker.Unlock();
1107 // remove this thread from from the kernel team -- this makes it
1108 // unaccessible
1109 Team* kernelTeam = team_get_kernel_team();
1110 TeamLocker kernelTeamLocker(kernelTeam);
1111 thread->Lock();
1113 InterruptsSpinLocker threadCreationLocker(gThreadCreationLock);
1114 SpinLocker signalLocker(kernelTeam->signal_lock);
1115 SpinLocker timeLocker(kernelTeam->time_lock);
1117 remove_thread_from_team(kernelTeam, thread);
1119 timeLocker.Unlock();
1120 signalLocker.Unlock();
1121 threadCreationLocker.Unlock();
1123 kernelTeamLocker.Unlock();
1125 // free the thread structure
1126 thread->UnlockAndReleaseReference();
1129 // can never get here
1130 return B_OK;
1134 /*! Returns the semaphore the thread is currently waiting on.
1136 The return value is purely informative.
1137 The caller must hold the scheduler lock.
1139 \param thread The thread.
1140 \return The ID of the semaphore the thread is currently waiting on or \c -1,
1141 if it isn't waiting on a semaphore.
1143 static sem_id
1144 get_thread_wait_sem(Thread* thread)
1146 if (thread->state == B_THREAD_WAITING
1147 && thread->wait.type == THREAD_BLOCK_TYPE_SEMAPHORE) {
1148 return (sem_id)(addr_t)thread->wait.object;
1150 return -1;
1154 /*! Fills the thread_info structure with information from the specified thread.
1155 The caller must hold the thread's lock and the scheduler lock.
1157 static void
1158 fill_thread_info(Thread *thread, thread_info *info, size_t size)
1160 info->thread = thread->id;
1161 info->team = thread->team->id;
1163 strlcpy(info->name, thread->name, B_OS_NAME_LENGTH);
1165 info->sem = -1;
1167 if (thread->state == B_THREAD_WAITING) {
1168 info->state = B_THREAD_WAITING;
1170 switch (thread->wait.type) {
1171 case THREAD_BLOCK_TYPE_SNOOZE:
1172 info->state = B_THREAD_ASLEEP;
1173 break;
1175 case THREAD_BLOCK_TYPE_SEMAPHORE:
1177 sem_id sem = (sem_id)(addr_t)thread->wait.object;
1178 if (sem == thread->msg.read_sem)
1179 info->state = B_THREAD_RECEIVING;
1180 else
1181 info->sem = sem;
1182 break;
1185 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE:
1186 default:
1187 break;
1189 } else
1190 info->state = (thread_state)thread->state;
1192 info->priority = thread->priority;
1193 info->stack_base = (void *)thread->user_stack_base;
1194 info->stack_end = (void *)(thread->user_stack_base
1195 + thread->user_stack_size);
1197 InterruptsSpinLocker threadTimeLocker(thread->time_lock);
1198 info->user_time = thread->user_time;
1199 info->kernel_time = thread->kernel_time;
1203 static status_t
1204 send_data_etc(thread_id id, int32 code, const void *buffer, size_t bufferSize,
1205 int32 flags)
1207 // get the thread
1208 Thread *target = Thread::Get(id);
1209 if (target == NULL)
1210 return B_BAD_THREAD_ID;
1211 BReference<Thread> targetReference(target, true);
1213 // get the write semaphore
1214 ThreadLocker targetLocker(target);
1215 sem_id cachedSem = target->msg.write_sem;
1216 targetLocker.Unlock();
1218 if (bufferSize > THREAD_MAX_MESSAGE_SIZE)
1219 return B_NO_MEMORY;
1221 status_t status = acquire_sem_etc(cachedSem, 1, flags, 0);
1222 if (status == B_INTERRUPTED) {
1223 // we got interrupted by a signal
1224 return status;
1226 if (status != B_OK) {
1227 // Any other acquisition problems may be due to thread deletion
1228 return B_BAD_THREAD_ID;
1231 void* data;
1232 if (bufferSize > 0) {
1233 data = malloc(bufferSize);
1234 if (data == NULL)
1235 return B_NO_MEMORY;
1236 if (user_memcpy(data, buffer, bufferSize) != B_OK) {
1237 free(data);
1238 return B_BAD_DATA;
1240 } else
1241 data = NULL;
1243 targetLocker.Lock();
1245 // The target thread could have been deleted at this point.
1246 if (!target->IsAlive()) {
1247 targetLocker.Unlock();
1248 free(data);
1249 return B_BAD_THREAD_ID;
1252 // Save message informations
1253 target->msg.sender = thread_get_current_thread()->id;
1254 target->msg.code = code;
1255 target->msg.size = bufferSize;
1256 target->msg.buffer = data;
1257 cachedSem = target->msg.read_sem;
1259 targetLocker.Unlock();
1261 release_sem(cachedSem);
1262 return B_OK;
1266 static int32
1267 receive_data_etc(thread_id *_sender, void *buffer, size_t bufferSize,
1268 int32 flags)
1270 Thread *thread = thread_get_current_thread();
1271 size_t size;
1272 int32 code;
1274 status_t status = acquire_sem_etc(thread->msg.read_sem, 1, flags, 0);
1275 if (status != B_OK) {
1276 // Actually, we're not supposed to return error codes
1277 // but since the only reason this can fail is that we
1278 // were killed, it's probably okay to do so (but also
1279 // meaningless).
1280 return status;
1283 if (buffer != NULL && bufferSize != 0 && thread->msg.buffer != NULL) {
1284 size = min_c(bufferSize, thread->msg.size);
1285 status = user_memcpy(buffer, thread->msg.buffer, size);
1286 if (status != B_OK) {
1287 free(thread->msg.buffer);
1288 release_sem(thread->msg.write_sem);
1289 return status;
1293 *_sender = thread->msg.sender;
1294 code = thread->msg.code;
1296 free(thread->msg.buffer);
1297 release_sem(thread->msg.write_sem);
1299 return code;
1303 static status_t
1304 common_getrlimit(int resource, struct rlimit * rlp)
1306 if (!rlp)
1307 return B_BAD_ADDRESS;
1309 switch (resource) {
1310 case RLIMIT_AS:
1311 rlp->rlim_cur = __HAIKU_ADDR_MAX;
1312 rlp->rlim_max = __HAIKU_ADDR_MAX;
1313 return B_OK;
1315 case RLIMIT_CORE:
1316 rlp->rlim_cur = 0;
1317 rlp->rlim_max = 0;
1318 return B_OK;
1320 case RLIMIT_DATA:
1321 rlp->rlim_cur = RLIM_INFINITY;
1322 rlp->rlim_max = RLIM_INFINITY;
1323 return B_OK;
1325 case RLIMIT_NOFILE:
1326 case RLIMIT_NOVMON:
1327 return vfs_getrlimit(resource, rlp);
1329 case RLIMIT_STACK:
1331 rlp->rlim_cur = USER_MAIN_THREAD_STACK_SIZE;
1332 rlp->rlim_max = USER_MAIN_THREAD_STACK_SIZE;
1333 return B_OK;
1336 default:
1337 return EINVAL;
1340 return B_OK;
1344 static status_t
1345 common_setrlimit(int resource, const struct rlimit * rlp)
1347 if (!rlp)
1348 return B_BAD_ADDRESS;
1350 switch (resource) {
1351 case RLIMIT_CORE:
1352 // We don't support core file, so allow settings to 0/0 only.
1353 if (rlp->rlim_cur != 0 || rlp->rlim_max != 0)
1354 return EINVAL;
1355 return B_OK;
1357 case RLIMIT_NOFILE:
1358 case RLIMIT_NOVMON:
1359 return vfs_setrlimit(resource, rlp);
1361 default:
1362 return EINVAL;
1365 return B_OK;
1369 static status_t
1370 common_snooze_etc(bigtime_t timeout, clockid_t clockID, uint32 flags,
1371 bigtime_t* _remainingTime)
1373 switch (clockID) {
1374 case CLOCK_REALTIME:
1375 // make sure the B_TIMEOUT_REAL_TIME_BASE flag is set and fall
1376 // through
1377 flags |= B_TIMEOUT_REAL_TIME_BASE;
1378 case CLOCK_MONOTONIC:
1380 // Store the start time, for the case that we get interrupted and
1381 // need to return the remaining time. For absolute timeouts we can
1382 // still get he time later, if needed.
1383 bigtime_t startTime
1384 = _remainingTime != NULL && (flags & B_RELATIVE_TIMEOUT) != 0
1385 ? system_time() : 0;
1387 Thread* thread = thread_get_current_thread();
1389 thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_SNOOZE,
1390 NULL);
1391 status_t status = thread_block_with_timeout(flags, timeout);
1393 if (status == B_TIMED_OUT || status == B_WOULD_BLOCK)
1394 return B_OK;
1396 // If interrupted, compute the remaining time, if requested.
1397 if (status == B_INTERRUPTED && _remainingTime != NULL) {
1398 if ((flags & B_RELATIVE_TIMEOUT) != 0) {
1399 *_remainingTime = std::max(
1400 startTime + timeout - system_time(), (bigtime_t)0);
1401 } else {
1402 bigtime_t now = (flags & B_TIMEOUT_REAL_TIME_BASE) != 0
1403 ? real_time_clock_usecs() : system_time();
1404 *_remainingTime = std::max(timeout - now, (bigtime_t)0);
1408 return status;
1411 case CLOCK_THREAD_CPUTIME_ID:
1412 // Waiting for ourselves to do something isn't particularly
1413 // productive.
1414 return B_BAD_VALUE;
1416 case CLOCK_PROCESS_CPUTIME_ID:
1417 default:
1418 // We don't have to support those, but we are allowed to. Could be
1419 // done be creating a UserTimer on the fly with a custom UserEvent
1420 // that would just wake us up.
1421 return ENOTSUP;
1426 // #pragma mark - debugger calls
1429 static int
1430 make_thread_unreal(int argc, char **argv)
1432 int32 id = -1;
1434 if (argc > 2) {
1435 print_debugger_command_usage(argv[0]);
1436 return 0;
1439 if (argc > 1)
1440 id = strtoul(argv[1], NULL, 0);
1442 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1443 Thread* thread = it.Next();) {
1444 if (id != -1 && thread->id != id)
1445 continue;
1447 if (thread->priority > B_DISPLAY_PRIORITY) {
1448 scheduler_set_thread_priority(thread, B_NORMAL_PRIORITY);
1449 kprintf("thread %" B_PRId32 " made unreal\n", thread->id);
1453 return 0;
1457 static int
1458 set_thread_prio(int argc, char **argv)
1460 int32 id;
1461 int32 prio;
1463 if (argc > 3 || argc < 2) {
1464 print_debugger_command_usage(argv[0]);
1465 return 0;
1468 prio = strtoul(argv[1], NULL, 0);
1469 if (prio > THREAD_MAX_SET_PRIORITY)
1470 prio = THREAD_MAX_SET_PRIORITY;
1471 if (prio < THREAD_MIN_SET_PRIORITY)
1472 prio = THREAD_MIN_SET_PRIORITY;
1474 if (argc > 2)
1475 id = strtoul(argv[2], NULL, 0);
1476 else
1477 id = thread_get_current_thread()->id;
1479 bool found = false;
1480 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1481 Thread* thread = it.Next();) {
1482 if (thread->id != id)
1483 continue;
1484 scheduler_set_thread_priority(thread, prio);
1485 kprintf("thread %" B_PRId32 " set to priority %" B_PRId32 "\n", id, prio);
1486 found = true;
1487 break;
1489 if (!found)
1490 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id);
1492 return 0;
1496 static int
1497 make_thread_suspended(int argc, char **argv)
1499 int32 id;
1501 if (argc > 2) {
1502 print_debugger_command_usage(argv[0]);
1503 return 0;
1506 if (argc == 1)
1507 id = thread_get_current_thread()->id;
1508 else
1509 id = strtoul(argv[1], NULL, 0);
1511 bool found = false;
1512 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1513 Thread* thread = it.Next();) {
1514 if (thread->id != id)
1515 continue;
1517 Signal signal(SIGSTOP, SI_USER, B_OK, team_get_kernel_team()->id);
1518 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE);
1520 kprintf("thread %" B_PRId32 " suspended\n", id);
1521 found = true;
1522 break;
1524 if (!found)
1525 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id);
1527 return 0;
1531 static int
1532 make_thread_resumed(int argc, char **argv)
1534 int32 id;
1536 if (argc != 2) {
1537 print_debugger_command_usage(argv[0]);
1538 return 0;
1541 // force user to enter a thread id, as using
1542 // the current thread is usually not intended
1543 id = strtoul(argv[1], NULL, 0);
1545 bool found = false;
1546 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1547 Thread* thread = it.Next();) {
1548 if (thread->id != id)
1549 continue;
1551 if (thread->state == B_THREAD_SUSPENDED) {
1552 scheduler_enqueue_in_run_queue(thread);
1553 kprintf("thread %" B_PRId32 " resumed\n", thread->id);
1555 found = true;
1556 break;
1558 if (!found)
1559 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id);
1561 return 0;
1565 static int
1566 drop_into_debugger(int argc, char **argv)
1568 status_t err;
1569 int32 id;
1571 if (argc > 2) {
1572 print_debugger_command_usage(argv[0]);
1573 return 0;
1576 if (argc == 1)
1577 id = thread_get_current_thread()->id;
1578 else
1579 id = strtoul(argv[1], NULL, 0);
1581 err = _user_debug_thread(id);
1582 // TODO: This is a non-trivial syscall doing some locking, so this is
1583 // really nasty and may go seriously wrong.
1584 if (err)
1585 kprintf("drop failed\n");
1586 else
1587 kprintf("thread %" B_PRId32 " dropped into user debugger\n", id);
1589 return 0;
1593 /*! Returns a user-readable string for a thread state.
1594 Only for use in the kernel debugger.
1596 static const char *
1597 state_to_text(Thread *thread, int32 state)
1599 switch (state) {
1600 case B_THREAD_READY:
1601 return "ready";
1603 case B_THREAD_RUNNING:
1604 return "running";
1606 case B_THREAD_WAITING:
1608 if (thread != NULL) {
1609 switch (thread->wait.type) {
1610 case THREAD_BLOCK_TYPE_SNOOZE:
1611 return "zzz";
1613 case THREAD_BLOCK_TYPE_SEMAPHORE:
1615 sem_id sem = (sem_id)(addr_t)thread->wait.object;
1616 if (sem == thread->msg.read_sem)
1617 return "receive";
1618 break;
1623 return "waiting";
1626 case B_THREAD_SUSPENDED:
1627 return "suspended";
1629 case THREAD_STATE_FREE_ON_RESCHED:
1630 return "death";
1632 default:
1633 return "UNKNOWN";
1638 static void
1639 print_thread_list_table_head()
1641 kprintf("%-*s id state wait for %-*s cpu pri %-*s team "
1642 "name\n",
1643 B_PRINTF_POINTER_WIDTH, "thread", B_PRINTF_POINTER_WIDTH, "object",
1644 B_PRINTF_POINTER_WIDTH, "stack");
1648 static void
1649 _dump_thread_info(Thread *thread, bool shortInfo)
1651 if (shortInfo) {
1652 kprintf("%p %6" B_PRId32 " %-10s", thread, thread->id,
1653 state_to_text(thread, thread->state));
1655 // does it block on a semaphore or a condition variable?
1656 if (thread->state == B_THREAD_WAITING) {
1657 switch (thread->wait.type) {
1658 case THREAD_BLOCK_TYPE_SEMAPHORE:
1660 sem_id sem = (sem_id)(addr_t)thread->wait.object;
1661 if (sem == thread->msg.read_sem)
1662 kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, "");
1663 else {
1664 kprintf("sem %-*" B_PRId32,
1665 B_PRINTF_POINTER_WIDTH + 5, sem);
1667 break;
1670 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE:
1671 kprintf("cvar %p ", thread->wait.object);
1672 break;
1674 case THREAD_BLOCK_TYPE_SNOOZE:
1675 kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, "");
1676 break;
1678 case THREAD_BLOCK_TYPE_SIGNAL:
1679 kprintf("signal%*s", B_PRINTF_POINTER_WIDTH + 9, "");
1680 break;
1682 case THREAD_BLOCK_TYPE_MUTEX:
1683 kprintf("mutex %p ", thread->wait.object);
1684 break;
1686 case THREAD_BLOCK_TYPE_RW_LOCK:
1687 kprintf("rwlock %p ", thread->wait.object);
1688 break;
1690 case THREAD_BLOCK_TYPE_OTHER:
1691 kprintf("other%*s", B_PRINTF_POINTER_WIDTH + 10, "");
1692 break;
1694 default:
1695 kprintf("??? %p ", thread->wait.object);
1696 break;
1698 } else
1699 kprintf("-%*s", B_PRINTF_POINTER_WIDTH + 14, "");
1701 // on which CPU does it run?
1702 if (thread->cpu)
1703 kprintf("%2d", thread->cpu->cpu_num);
1704 else
1705 kprintf(" -");
1707 kprintf("%4" B_PRId32 " %p%5" B_PRId32 " %s\n", thread->priority,
1708 (void *)thread->kernel_stack_base, thread->team->id,
1709 thread->name != NULL ? thread->name : "<NULL>");
1711 return;
1714 // print the long info
1716 struct thread_death_entry *death = NULL;
1718 kprintf("THREAD: %p\n", thread);
1719 kprintf("id: %" B_PRId32 " (%#" B_PRIx32 ")\n", thread->id,
1720 thread->id);
1721 kprintf("serial_number: %" B_PRId64 "\n", thread->serial_number);
1722 kprintf("name: \"%s\"\n", thread->name);
1723 kprintf("hash_next: %p\nteam_next: %p\n",
1724 thread->hash_next, thread->team_next);
1725 kprintf("priority: %" B_PRId32 " (I/O: %" B_PRId32 ")\n",
1726 thread->priority, thread->io_priority);
1727 kprintf("state: %s\n", state_to_text(thread, thread->state));
1728 kprintf("cpu: %p ", thread->cpu);
1729 if (thread->cpu)
1730 kprintf("(%d)\n", thread->cpu->cpu_num);
1731 else
1732 kprintf("\n");
1733 kprintf("sig_pending: %#" B_PRIx64 " (blocked: %#" B_PRIx64
1734 ", before sigsuspend(): %#" B_PRIx64 ")\n",
1735 (int64)thread->ThreadPendingSignals(),
1736 (int64)thread->sig_block_mask,
1737 (int64)thread->sigsuspend_original_unblocked_mask);
1738 kprintf("in_kernel: %d\n", thread->in_kernel);
1740 if (thread->state == B_THREAD_WAITING) {
1741 kprintf("waiting for: ");
1743 switch (thread->wait.type) {
1744 case THREAD_BLOCK_TYPE_SEMAPHORE:
1746 sem_id sem = (sem_id)(addr_t)thread->wait.object;
1747 if (sem == thread->msg.read_sem)
1748 kprintf("data\n");
1749 else
1750 kprintf("semaphore %" B_PRId32 "\n", sem);
1751 break;
1754 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE:
1755 kprintf("condition variable %p\n", thread->wait.object);
1756 break;
1758 case THREAD_BLOCK_TYPE_SNOOZE:
1759 kprintf("snooze()\n");
1760 break;
1762 case THREAD_BLOCK_TYPE_SIGNAL:
1763 kprintf("signal\n");
1764 break;
1766 case THREAD_BLOCK_TYPE_MUTEX:
1767 kprintf("mutex %p\n", thread->wait.object);
1768 break;
1770 case THREAD_BLOCK_TYPE_RW_LOCK:
1771 kprintf("rwlock %p\n", thread->wait.object);
1772 break;
1774 case THREAD_BLOCK_TYPE_OTHER:
1775 kprintf("other (%s)\n", (char*)thread->wait.object);
1776 break;
1778 default:
1779 kprintf("unknown (%p)\n", thread->wait.object);
1780 break;
1784 kprintf("fault_handler: %p\n", (void *)thread->fault_handler);
1785 kprintf("team: %p, \"%s\"\n", thread->team,
1786 thread->team->Name());
1787 kprintf(" exit.sem: %" B_PRId32 "\n", thread->exit.sem);
1788 kprintf(" exit.status: %#" B_PRIx32 " (%s)\n", thread->exit.status,
1789 strerror(thread->exit.status));
1790 kprintf(" exit.waiters:\n");
1791 while ((death = (struct thread_death_entry*)list_get_next_item(
1792 &thread->exit.waiters, death)) != NULL) {
1793 kprintf("\t%p (thread %" B_PRId32 ")\n", death, death->thread);
1796 kprintf("kernel_stack_area: %" B_PRId32 "\n", thread->kernel_stack_area);
1797 kprintf("kernel_stack_base: %p\n", (void *)thread->kernel_stack_base);
1798 kprintf("user_stack_area: %" B_PRId32 "\n", thread->user_stack_area);
1799 kprintf("user_stack_base: %p\n", (void *)thread->user_stack_base);
1800 kprintf("user_local_storage: %p\n", (void *)thread->user_local_storage);
1801 kprintf("user_thread: %p\n", (void *)thread->user_thread);
1802 kprintf("kernel_errno: %#x (%s)\n", thread->kernel_errno,
1803 strerror(thread->kernel_errno));
1804 kprintf("kernel_time: %" B_PRId64 "\n", thread->kernel_time);
1805 kprintf("user_time: %" B_PRId64 "\n", thread->user_time);
1806 kprintf("flags: 0x%" B_PRIx32 "\n", thread->flags);
1807 kprintf("architecture dependant section:\n");
1808 arch_thread_dump_info(&thread->arch_info);
1809 kprintf("scheduler data:\n");
1810 scheduler_dump_thread_data(thread);
1814 static int
1815 dump_thread_info(int argc, char **argv)
1817 bool shortInfo = false;
1818 int argi = 1;
1819 if (argi < argc && strcmp(argv[argi], "-s") == 0) {
1820 shortInfo = true;
1821 print_thread_list_table_head();
1822 argi++;
1825 if (argi == argc) {
1826 _dump_thread_info(thread_get_current_thread(), shortInfo);
1827 return 0;
1830 for (; argi < argc; argi++) {
1831 const char *name = argv[argi];
1832 ulong arg = strtoul(name, NULL, 0);
1834 if (IS_KERNEL_ADDRESS(arg)) {
1835 // semi-hack
1836 _dump_thread_info((Thread *)arg, shortInfo);
1837 continue;
1840 // walk through the thread list, trying to match name or id
1841 bool found = false;
1842 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1843 Thread* thread = it.Next();) {
1844 if (!strcmp(name, thread->name) || thread->id == (thread_id)arg) {
1845 _dump_thread_info(thread, shortInfo);
1846 found = true;
1847 break;
1851 if (!found)
1852 kprintf("thread \"%s\" (%" B_PRId32 ") doesn't exist!\n", name, (thread_id)arg);
1855 return 0;
1859 static int
1860 dump_thread_list(int argc, char **argv)
1862 bool realTimeOnly = false;
1863 bool calling = false;
1864 const char *callSymbol = NULL;
1865 addr_t callStart = 0;
1866 addr_t callEnd = 0;
1867 int32 requiredState = 0;
1868 team_id team = -1;
1869 sem_id sem = -1;
1871 if (!strcmp(argv[0], "realtime"))
1872 realTimeOnly = true;
1873 else if (!strcmp(argv[0], "ready"))
1874 requiredState = B_THREAD_READY;
1875 else if (!strcmp(argv[0], "running"))
1876 requiredState = B_THREAD_RUNNING;
1877 else if (!strcmp(argv[0], "waiting")) {
1878 requiredState = B_THREAD_WAITING;
1880 if (argc > 1) {
1881 sem = strtoul(argv[1], NULL, 0);
1882 if (sem == 0)
1883 kprintf("ignoring invalid semaphore argument.\n");
1885 } else if (!strcmp(argv[0], "calling")) {
1886 if (argc < 2) {
1887 kprintf("Need to give a symbol name or start and end arguments.\n");
1888 return 0;
1889 } else if (argc == 3) {
1890 callStart = parse_expression(argv[1]);
1891 callEnd = parse_expression(argv[2]);
1892 } else
1893 callSymbol = argv[1];
1895 calling = true;
1896 } else if (argc > 1) {
1897 team = strtoul(argv[1], NULL, 0);
1898 if (team == 0)
1899 kprintf("ignoring invalid team argument.\n");
1902 print_thread_list_table_head();
1904 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1905 Thread* thread = it.Next();) {
1906 // filter out threads not matching the search criteria
1907 if ((requiredState && thread->state != requiredState)
1908 || (calling && !arch_debug_contains_call(thread, callSymbol,
1909 callStart, callEnd))
1910 || (sem > 0 && get_thread_wait_sem(thread) != sem)
1911 || (team > 0 && thread->team->id != team)
1912 || (realTimeOnly && thread->priority < B_REAL_TIME_DISPLAY_PRIORITY))
1913 continue;
1915 _dump_thread_info(thread, true);
1917 return 0;
1921 // #pragma mark - private kernel API
1924 void
1925 thread_exit(void)
1927 cpu_status state;
1928 Thread* thread = thread_get_current_thread();
1929 Team* team = thread->team;
1930 Team* kernelTeam = team_get_kernel_team();
1931 status_t status;
1932 struct thread_debug_info debugInfo;
1933 team_id teamID = team->id;
1935 TRACE(("thread %" B_PRId32 " exiting w/return code %#" B_PRIx32 "\n",
1936 thread->id, thread->exit.status));
1938 if (!are_interrupts_enabled())
1939 panic("thread_exit() called with interrupts disabled!\n");
1941 // boost our priority to get this over with
1942 scheduler_set_thread_priority(thread, B_URGENT_DISPLAY_PRIORITY);
1944 if (team != kernelTeam) {
1945 // Delete all user timers associated with the thread.
1946 ThreadLocker threadLocker(thread);
1947 thread->DeleteUserTimers(false);
1949 // detach the thread's user thread
1950 user_thread* userThread = thread->user_thread;
1951 thread->user_thread = NULL;
1953 threadLocker.Unlock();
1955 // Delete the thread's user thread, if it's not the main thread. If it
1956 // is, we can save the work, since it will be deleted with the team's
1957 // address space.
1958 if (thread != team->main_thread)
1959 team_free_user_thread(team, userThread);
1962 // remember the user stack area -- we will delete it below
1963 area_id userStackArea = -1;
1964 if (team->address_space != NULL && thread->user_stack_area >= 0) {
1965 userStackArea = thread->user_stack_area;
1966 thread->user_stack_area = -1;
1969 struct job_control_entry *death = NULL;
1970 struct thread_death_entry* threadDeathEntry = NULL;
1971 bool deleteTeam = false;
1972 port_id debuggerPort = -1;
1974 if (team != kernelTeam) {
1975 user_debug_thread_exiting(thread);
1977 if (team->main_thread == thread) {
1978 // The main thread is exiting. Shut down the whole team.
1979 deleteTeam = true;
1981 // kill off all other threads and the user debugger facilities
1982 debuggerPort = team_shutdown_team(team);
1984 // acquire necessary locks, which are: process group lock, kernel
1985 // team lock, parent team lock, and the team lock
1986 team->LockProcessGroup();
1987 kernelTeam->Lock();
1988 team->LockTeamAndParent(true);
1989 } else {
1990 threadDeathEntry
1991 = (thread_death_entry*)malloc(sizeof(thread_death_entry));
1993 // acquire necessary locks, which are: kernel team lock and the team
1994 // lock
1995 kernelTeam->Lock();
1996 team->Lock();
1999 ThreadLocker threadLocker(thread);
2001 state = disable_interrupts();
2003 // swap address spaces, to make sure we're running on the kernel's pgdir
2004 vm_swap_address_space(team->address_space, VMAddressSpace::Kernel());
2006 WriteSpinLocker teamLocker(thread->team_lock);
2007 SpinLocker threadCreationLocker(gThreadCreationLock);
2008 // removing the thread and putting its death entry to the parent
2009 // team needs to be an atomic operation
2011 // remember how long this thread lasted
2012 bigtime_t now = system_time();
2014 InterruptsSpinLocker signalLocker(kernelTeam->signal_lock);
2015 SpinLocker teamTimeLocker(kernelTeam->time_lock);
2016 SpinLocker threadTimeLocker(thread->time_lock);
2018 thread->kernel_time += now - thread->last_time;
2019 thread->last_time = now;
2021 team->dead_threads_kernel_time += thread->kernel_time;
2022 team->dead_threads_user_time += thread->user_time;
2024 // stop/update thread/team CPU time user timers
2025 if (thread->HasActiveCPUTimeUserTimers()
2026 || team->HasActiveCPUTimeUserTimers()) {
2027 user_timer_stop_cpu_timers(thread, NULL);
2030 // deactivate CPU time user timers for the thread
2031 if (thread->HasActiveCPUTimeUserTimers())
2032 thread->DeactivateCPUTimeUserTimers();
2034 threadTimeLocker.Unlock();
2036 // put the thread into the kernel team until it dies
2037 remove_thread_from_team(team, thread);
2038 insert_thread_into_team(kernelTeam, thread);
2040 teamTimeLocker.Unlock();
2041 signalLocker.Unlock();
2043 teamLocker.Unlock();
2045 if (team->death_entry != NULL) {
2046 if (--team->death_entry->remaining_threads == 0)
2047 team->death_entry->condition.NotifyOne();
2050 if (deleteTeam) {
2051 Team* parent = team->parent;
2053 // Set the team job control state to "dead" and detach the job
2054 // control entry from our team struct.
2055 team_set_job_control_state(team, JOB_CONTROL_STATE_DEAD, NULL);
2056 death = team->job_control_entry;
2057 team->job_control_entry = NULL;
2059 if (death != NULL) {
2060 death->InitDeadState();
2062 // team_set_job_control_state() already moved our entry
2063 // into the parent's list. We just check the soft limit of
2064 // death entries.
2065 if (parent->dead_children.count > MAX_DEAD_CHILDREN) {
2066 death = parent->dead_children.entries.RemoveHead();
2067 parent->dead_children.count--;
2068 } else
2069 death = NULL;
2072 threadCreationLocker.Unlock();
2073 restore_interrupts(state);
2075 threadLocker.Unlock();
2077 // Get a temporary reference to the team's process group
2078 // -- team_remove_team() removes the team from the group, which
2079 // might destroy it otherwise and we wouldn't be able to unlock it.
2080 ProcessGroup* group = team->group;
2081 group->AcquireReference();
2083 pid_t foregroundGroupToSignal;
2084 team_remove_team(team, foregroundGroupToSignal);
2086 // unlock everything but the parent team
2087 team->Unlock();
2088 if (parent != kernelTeam)
2089 kernelTeam->Unlock();
2090 group->Unlock();
2091 group->ReleaseReference();
2093 // Send SIGCHLD to the parent as long as we still have its lock.
2094 // This makes job control state change + signalling atomic.
2095 Signal childSignal(SIGCHLD, team->exit.reason, B_OK, team->id);
2096 if (team->exit.reason == CLD_EXITED) {
2097 childSignal.SetStatus(team->exit.status);
2098 } else {
2099 childSignal.SetStatus(team->exit.signal);
2100 childSignal.SetSendingUser(team->exit.signaling_user);
2102 send_signal_to_team(parent, childSignal, B_DO_NOT_RESCHEDULE);
2104 // also unlock the parent
2105 parent->Unlock();
2107 // If the team was a session leader with controlling TTY, we have
2108 // to send SIGHUP to the foreground process group.
2109 if (foregroundGroupToSignal >= 0) {
2110 Signal groupSignal(SIGHUP, SI_USER, B_OK, team->id);
2111 send_signal_to_process_group(foregroundGroupToSignal,
2112 groupSignal, B_DO_NOT_RESCHEDULE);
2114 } else {
2115 // The thread is not the main thread. We store a thread death entry
2116 // for it, unless someone is already waiting for it.
2117 if (threadDeathEntry != NULL
2118 && list_is_empty(&thread->exit.waiters)) {
2119 threadDeathEntry->thread = thread->id;
2120 threadDeathEntry->status = thread->exit.status;
2122 // add entry -- remove an old one, if we hit the limit
2123 list_add_item(&team->dead_threads, threadDeathEntry);
2124 team->dead_threads_count++;
2125 threadDeathEntry = NULL;
2127 if (team->dead_threads_count > MAX_DEAD_THREADS) {
2128 threadDeathEntry
2129 = (thread_death_entry*)list_remove_head_item(
2130 &team->dead_threads);
2131 team->dead_threads_count--;
2135 threadCreationLocker.Unlock();
2136 restore_interrupts(state);
2138 threadLocker.Unlock();
2139 team->Unlock();
2140 kernelTeam->Unlock();
2143 TRACE(("thread_exit: thread %" B_PRId32 " now a kernel thread!\n",
2144 thread->id));
2147 free(threadDeathEntry);
2149 // delete the team if we're its main thread
2150 if (deleteTeam) {
2151 team_delete_team(team, debuggerPort);
2153 // we need to delete any death entry that made it to here
2154 delete death;
2157 ThreadLocker threadLocker(thread);
2159 state = disable_interrupts();
2160 SpinLocker threadCreationLocker(gThreadCreationLock);
2162 // mark invisible in global hash/list, so it's no longer accessible
2163 SpinLocker threadHashLocker(sThreadHashLock);
2164 thread->visible = false;
2165 sUsedThreads--;
2166 threadHashLocker.Unlock();
2168 // Stop debugging for this thread
2169 SpinLocker threadDebugInfoLocker(thread->debug_info.lock);
2170 debugInfo = thread->debug_info;
2171 clear_thread_debug_info(&thread->debug_info, true);
2172 threadDebugInfoLocker.Unlock();
2174 // Remove the select infos. We notify them a little later.
2175 select_info* selectInfos = thread->select_infos;
2176 thread->select_infos = NULL;
2178 threadCreationLocker.Unlock();
2179 restore_interrupts(state);
2181 threadLocker.Unlock();
2183 destroy_thread_debug_info(&debugInfo);
2185 // notify select infos
2186 select_info* info = selectInfos;
2187 while (info != NULL) {
2188 select_sync* sync = info->sync;
2190 notify_select_events(info, B_EVENT_INVALID);
2191 info = info->next;
2192 put_select_sync(sync);
2195 // notify listeners
2196 sNotificationService.Notify(THREAD_REMOVED, thread);
2198 // shutdown the thread messaging
2200 status = acquire_sem_etc(thread->msg.write_sem, 1, B_RELATIVE_TIMEOUT, 0);
2201 if (status == B_WOULD_BLOCK) {
2202 // there is data waiting for us, so let us eat it
2203 thread_id sender;
2205 delete_sem(thread->msg.write_sem);
2206 // first, let's remove all possibly waiting writers
2207 receive_data_etc(&sender, NULL, 0, B_RELATIVE_TIMEOUT);
2208 } else {
2209 // we probably own the semaphore here, and we're the last to do so
2210 delete_sem(thread->msg.write_sem);
2212 // now we can safely remove the msg.read_sem
2213 delete_sem(thread->msg.read_sem);
2215 // fill all death entries and delete the sem that others will use to wait
2216 // for us
2218 sem_id cachedExitSem = thread->exit.sem;
2220 ThreadLocker threadLocker(thread);
2222 // make sure no one will grab this semaphore again
2223 thread->exit.sem = -1;
2225 // fill all death entries
2226 thread_death_entry* entry = NULL;
2227 while ((entry = (thread_death_entry*)list_get_next_item(
2228 &thread->exit.waiters, entry)) != NULL) {
2229 entry->status = thread->exit.status;
2232 threadLocker.Unlock();
2234 delete_sem(cachedExitSem);
2237 // delete the user stack, if this was a user thread
2238 if (!deleteTeam && userStackArea >= 0) {
2239 // We postponed deleting the user stack until now, since this way all
2240 // notifications for the thread's death are out already and all other
2241 // threads waiting for this thread's death and some object on its stack
2242 // will wake up before we (try to) delete the stack area. Of most
2243 // relevance is probably the case where this is the main thread and
2244 // other threads use objects on its stack -- so we want them terminated
2245 // first.
2246 // When the team is deleted, all areas are deleted anyway, so we don't
2247 // need to do that explicitly in that case.
2248 vm_delete_area(teamID, userStackArea, true);
2251 // notify the debugger
2252 if (teamID != kernelTeam->id)
2253 user_debug_thread_deleted(teamID, thread->id);
2255 // enqueue in the undertaker list and reschedule for the last time
2256 UndertakerEntry undertakerEntry(thread, teamID);
2258 disable_interrupts();
2260 SpinLocker schedulerLocker(thread->scheduler_lock);
2262 SpinLocker undertakerLocker(sUndertakerLock);
2263 sUndertakerEntries.Add(&undertakerEntry);
2264 sUndertakerCondition.NotifyOne();
2265 undertakerLocker.Unlock();
2267 scheduler_reschedule(THREAD_STATE_FREE_ON_RESCHED);
2269 panic("never can get here\n");
2273 /*! Called in the interrupt handler code when a thread enters
2274 the kernel for any reason.
2275 Only tracks time for now.
2276 Interrupts are disabled.
2278 void
2279 thread_at_kernel_entry(bigtime_t now)
2281 Thread *thread = thread_get_current_thread();
2283 TRACE(("thread_at_kernel_entry: entry thread %" B_PRId32 "\n", thread->id));
2285 // track user time
2286 SpinLocker threadTimeLocker(thread->time_lock);
2287 thread->user_time += now - thread->last_time;
2288 thread->last_time = now;
2289 thread->in_kernel = true;
2290 threadTimeLocker.Unlock();
2294 /*! Called whenever a thread exits kernel space to user space.
2295 Tracks time, handles signals, ...
2296 Interrupts must be enabled. When the function returns, interrupts will be
2297 disabled.
2298 The function may not return. This e.g. happens when the thread has received
2299 a deadly signal.
2301 void
2302 thread_at_kernel_exit(void)
2304 Thread *thread = thread_get_current_thread();
2306 TRACE(("thread_at_kernel_exit: exit thread %" B_PRId32 "\n", thread->id));
2308 handle_signals(thread);
2310 disable_interrupts();
2312 // track kernel time
2313 bigtime_t now = system_time();
2314 SpinLocker threadTimeLocker(thread->time_lock);
2315 thread->in_kernel = false;
2316 thread->kernel_time += now - thread->last_time;
2317 thread->last_time = now;
2321 /*! The quick version of thread_kernel_exit(), in case no signals are pending
2322 and no debugging shall be done.
2323 Interrupts must be disabled.
2325 void
2326 thread_at_kernel_exit_no_signals(void)
2328 Thread *thread = thread_get_current_thread();
2330 TRACE(("thread_at_kernel_exit_no_signals: exit thread %" B_PRId32 "\n",
2331 thread->id));
2333 // track kernel time
2334 bigtime_t now = system_time();
2335 SpinLocker threadTimeLocker(thread->time_lock);
2336 thread->in_kernel = false;
2337 thread->kernel_time += now - thread->last_time;
2338 thread->last_time = now;
2342 void
2343 thread_reset_for_exec(void)
2345 Thread* thread = thread_get_current_thread();
2347 ThreadLocker threadLocker(thread);
2349 // delete user-defined timers
2350 thread->DeleteUserTimers(true);
2352 // cancel pre-defined timer
2353 if (UserTimer* timer = thread->UserTimerFor(USER_TIMER_REAL_TIME_ID))
2354 timer->Cancel();
2356 // reset user_thread and user stack
2357 thread->user_thread = NULL;
2358 thread->user_stack_area = -1;
2359 thread->user_stack_base = 0;
2360 thread->user_stack_size = 0;
2362 // reset signals
2363 thread->ResetSignalsOnExec();
2365 // reset thread CPU time clock
2366 InterruptsSpinLocker timeLocker(thread->time_lock);
2367 thread->cpu_clock_offset = -thread->CPUTime(false);
2371 thread_id
2372 allocate_thread_id()
2374 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
2376 // find the next unused ID
2377 thread_id id;
2378 do {
2379 id = sNextThreadID++;
2381 // deal with integer overflow
2382 if (sNextThreadID < 0)
2383 sNextThreadID = 2;
2385 // check whether the ID is already in use
2386 } while (sThreadHash.Lookup(id, false) != NULL);
2388 return id;
2392 thread_id
2393 peek_next_thread_id()
2395 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
2396 return sNextThreadID;
2400 /*! Yield the CPU to other threads.
2401 Thread will continue to run, if there's no other thread in ready
2402 state, and if it has a higher priority than the other ready threads, it
2403 still has a good chance to continue.
2405 void
2406 thread_yield(void)
2408 Thread *thread = thread_get_current_thread();
2409 if (thread == NULL)
2410 return;
2412 InterruptsSpinLocker _(thread->scheduler_lock);
2414 thread->has_yielded = true;
2415 scheduler_reschedule(B_THREAD_READY);
2419 void
2420 thread_map(void (*function)(Thread* thread, void* data), void* data)
2422 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
2424 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
2425 Thread* thread = it.Next();) {
2426 function(thread, data);
2431 /*! Kernel private thread creation function.
2433 thread_id
2434 spawn_kernel_thread_etc(thread_func function, const char *name, int32 priority,
2435 void *arg, team_id team)
2437 return thread_create_thread(
2438 ThreadCreationAttributes(function, name, priority, arg, team),
2439 true);
2443 status_t
2444 wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout,
2445 status_t *_returnCode)
2447 if (id < 0)
2448 return B_BAD_THREAD_ID;
2450 // get the thread, queue our death entry, and fetch the semaphore we have to
2451 // wait on
2452 sem_id exitSem = B_BAD_THREAD_ID;
2453 struct thread_death_entry death;
2455 Thread* thread = Thread::GetAndLock(id);
2456 if (thread != NULL) {
2457 // remember the semaphore we have to wait on and place our death entry
2458 exitSem = thread->exit.sem;
2459 if (exitSem >= 0)
2460 list_add_link_to_head(&thread->exit.waiters, &death);
2462 thread->UnlockAndReleaseReference();
2464 if (exitSem < 0)
2465 return B_BAD_THREAD_ID;
2466 } else {
2467 // we couldn't find this thread -- maybe it's already gone, and we'll
2468 // find its death entry in our team
2469 Team* team = thread_get_current_thread()->team;
2470 TeamLocker teamLocker(team);
2472 // check the child death entries first (i.e. main threads of child
2473 // teams)
2474 bool deleteEntry;
2475 job_control_entry* freeDeath
2476 = team_get_death_entry(team, id, &deleteEntry);
2477 if (freeDeath != NULL) {
2478 death.status = freeDeath->status;
2479 if (deleteEntry)
2480 delete freeDeath;
2481 } else {
2482 // check the thread death entries of the team (non-main threads)
2483 thread_death_entry* threadDeathEntry = NULL;
2484 while ((threadDeathEntry = (thread_death_entry*)list_get_next_item(
2485 &team->dead_threads, threadDeathEntry)) != NULL) {
2486 if (threadDeathEntry->thread == id) {
2487 list_remove_item(&team->dead_threads, threadDeathEntry);
2488 team->dead_threads_count--;
2489 death.status = threadDeathEntry->status;
2490 free(threadDeathEntry);
2491 break;
2495 if (threadDeathEntry == NULL)
2496 return B_BAD_THREAD_ID;
2499 // we found the thread's death entry in our team
2500 if (_returnCode)
2501 *_returnCode = death.status;
2503 return B_OK;
2506 // we need to wait for the death of the thread
2508 resume_thread(id);
2509 // make sure we don't wait forever on a suspended thread
2511 status_t status = acquire_sem_etc(exitSem, 1, flags, timeout);
2513 if (status == B_OK) {
2514 // this should never happen as the thread deletes the semaphore on exit
2515 panic("could acquire exit_sem for thread %" B_PRId32 "\n", id);
2516 } else if (status == B_BAD_SEM_ID) {
2517 // this is the way the thread normally exits
2518 status = B_OK;
2519 } else {
2520 // We were probably interrupted or the timeout occurred; we need to
2521 // remove our death entry now.
2522 thread = Thread::GetAndLock(id);
2523 if (thread != NULL) {
2524 list_remove_link(&death);
2525 thread->UnlockAndReleaseReference();
2526 } else {
2527 // The thread is already gone, so we need to wait uninterruptibly
2528 // for its exit semaphore to make sure our death entry stays valid.
2529 // It won't take long, since the thread is apparently already in the
2530 // middle of the cleanup.
2531 acquire_sem(exitSem);
2532 status = B_OK;
2536 if (status == B_OK && _returnCode != NULL)
2537 *_returnCode = death.status;
2539 return status;
2543 status_t
2544 select_thread(int32 id, struct select_info* info, bool kernel)
2546 // get and lock the thread
2547 Thread* thread = Thread::GetAndLock(id);
2548 if (thread == NULL)
2549 return B_BAD_THREAD_ID;
2550 BReference<Thread> threadReference(thread, true);
2551 ThreadLocker threadLocker(thread, true);
2553 // We support only B_EVENT_INVALID at the moment.
2554 info->selected_events &= B_EVENT_INVALID;
2556 // add info to list
2557 if (info->selected_events != 0) {
2558 info->next = thread->select_infos;
2559 thread->select_infos = info;
2561 // we need a sync reference
2562 atomic_add(&info->sync->ref_count, 1);
2565 return B_OK;
2569 status_t
2570 deselect_thread(int32 id, struct select_info* info, bool kernel)
2572 // get and lock the thread
2573 Thread* thread = Thread::GetAndLock(id);
2574 if (thread == NULL)
2575 return B_BAD_THREAD_ID;
2576 BReference<Thread> threadReference(thread, true);
2577 ThreadLocker threadLocker(thread, true);
2579 // remove info from list
2580 select_info** infoLocation = &thread->select_infos;
2581 while (*infoLocation != NULL && *infoLocation != info)
2582 infoLocation = &(*infoLocation)->next;
2584 if (*infoLocation != info)
2585 return B_OK;
2587 *infoLocation = info->next;
2589 threadLocker.Unlock();
2591 // surrender sync reference
2592 put_select_sync(info->sync);
2594 return B_OK;
2598 int32
2599 thread_max_threads(void)
2601 return sMaxThreads;
2605 int32
2606 thread_used_threads(void)
2608 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
2609 return sUsedThreads;
2613 /*! Returns a user-readable string for a thread state.
2614 Only for use in the kernel debugger.
2616 const char*
2617 thread_state_to_text(Thread* thread, int32 state)
2619 return state_to_text(thread, state);
2623 int32
2624 thread_get_io_priority(thread_id id)
2626 Thread* thread = Thread::GetAndLock(id);
2627 if (thread == NULL)
2628 return B_BAD_THREAD_ID;
2629 BReference<Thread> threadReference(thread, true);
2630 ThreadLocker threadLocker(thread, true);
2632 int32 priority = thread->io_priority;
2633 if (priority < 0) {
2634 // negative I/O priority means using the (CPU) priority
2635 priority = thread->priority;
2638 return priority;
2642 void
2643 thread_set_io_priority(int32 priority)
2645 Thread* thread = thread_get_current_thread();
2646 ThreadLocker threadLocker(thread);
2648 thread->io_priority = priority;
2652 status_t
2653 thread_init(kernel_args *args)
2655 TRACE(("thread_init: entry\n"));
2657 // create the thread hash table
2658 new(&sThreadHash) ThreadHashTable();
2659 if (sThreadHash.Init(128) != B_OK)
2660 panic("thread_init(): failed to init thread hash table!");
2662 // create the thread structure object cache
2663 sThreadCache = create_object_cache("threads", sizeof(Thread), 16, NULL,
2664 NULL, NULL);
2665 // Note: The x86 port requires 16 byte alignment of thread structures.
2666 if (sThreadCache == NULL)
2667 panic("thread_init(): failed to allocate thread object cache!");
2669 if (arch_thread_init(args) < B_OK)
2670 panic("arch_thread_init() failed!\n");
2672 // skip all thread IDs including B_SYSTEM_TEAM, which is reserved
2673 sNextThreadID = B_SYSTEM_TEAM + 1;
2675 // create an idle thread for each cpu
2676 for (uint32 i = 0; i < args->num_cpus; i++) {
2677 Thread *thread;
2678 area_info info;
2679 char name[64];
2681 sprintf(name, "idle thread %" B_PRIu32, i + 1);
2682 thread = new(&sIdleThreads[i]) Thread(name,
2683 i == 0 ? team_get_kernel_team_id() : -1, &gCPU[i]);
2684 if (thread == NULL || thread->Init(true) != B_OK) {
2685 panic("error creating idle thread struct\n");
2686 return B_NO_MEMORY;
2689 gCPU[i].running_thread = thread;
2691 thread->team = team_get_kernel_team();
2692 thread->priority = B_IDLE_PRIORITY;
2693 thread->state = B_THREAD_RUNNING;
2694 sprintf(name, "idle thread %" B_PRIu32 " kstack", i + 1);
2695 thread->kernel_stack_area = find_area(name);
2697 if (get_area_info(thread->kernel_stack_area, &info) != B_OK)
2698 panic("error finding idle kstack area\n");
2700 thread->kernel_stack_base = (addr_t)info.address;
2701 thread->kernel_stack_top = thread->kernel_stack_base + info.size;
2703 thread->visible = true;
2704 insert_thread_into_team(thread->team, thread);
2706 scheduler_on_thread_init(thread);
2708 sUsedThreads = args->num_cpus;
2710 // init the notification service
2711 new(&sNotificationService) ThreadNotificationService();
2713 sNotificationService.Register();
2715 // start the undertaker thread
2716 new(&sUndertakerEntries) DoublyLinkedList<UndertakerEntry>();
2717 sUndertakerCondition.Init(&sUndertakerEntries, "undertaker entries");
2719 thread_id undertakerThread = spawn_kernel_thread(&undertaker, "undertaker",
2720 B_DISPLAY_PRIORITY, NULL);
2721 if (undertakerThread < 0)
2722 panic("Failed to create undertaker thread!");
2723 resume_thread(undertakerThread);
2725 // set up some debugger commands
2726 add_debugger_command_etc("threads", &dump_thread_list, "List all threads",
2727 "[ <team> ]\n"
2728 "Prints a list of all existing threads, or, if a team ID is given,\n"
2729 "all threads of the specified team.\n"
2730 " <team> - The ID of the team whose threads shall be listed.\n", 0);
2731 add_debugger_command_etc("ready", &dump_thread_list,
2732 "List all ready threads",
2733 "\n"
2734 "Prints a list of all threads in ready state.\n", 0);
2735 add_debugger_command_etc("running", &dump_thread_list,
2736 "List all running threads",
2737 "\n"
2738 "Prints a list of all threads in running state.\n", 0);
2739 add_debugger_command_etc("waiting", &dump_thread_list,
2740 "List all waiting threads (optionally for a specific semaphore)",
2741 "[ <sem> ]\n"
2742 "Prints a list of all threads in waiting state. If a semaphore is\n"
2743 "specified, only the threads waiting on that semaphore are listed.\n"
2744 " <sem> - ID of the semaphore.\n", 0);
2745 add_debugger_command_etc("realtime", &dump_thread_list,
2746 "List all realtime threads",
2747 "\n"
2748 "Prints a list of all threads with realtime priority.\n", 0);
2749 add_debugger_command_etc("thread", &dump_thread_info,
2750 "Dump info about a particular thread",
2751 "[ -s ] ( <id> | <address> | <name> )*\n"
2752 "Prints information about the specified thread. If no argument is\n"
2753 "given the current thread is selected.\n"
2754 " -s - Print info in compact table form (like \"threads\").\n"
2755 " <id> - The ID of the thread.\n"
2756 " <address> - The address of the thread structure.\n"
2757 " <name> - The thread's name.\n", 0);
2758 add_debugger_command_etc("calling", &dump_thread_list,
2759 "Show all threads that have a specific address in their call chain",
2760 "{ <symbol-pattern> | <start> <end> }\n", 0);
2761 add_debugger_command_etc("unreal", &make_thread_unreal,
2762 "Set realtime priority threads to normal priority",
2763 "[ <id> ]\n"
2764 "Sets the priority of all realtime threads or, if given, the one\n"
2765 "with the specified ID to \"normal\" priority.\n"
2766 " <id> - The ID of the thread.\n", 0);
2767 add_debugger_command_etc("suspend", &make_thread_suspended,
2768 "Suspend a thread",
2769 "[ <id> ]\n"
2770 "Suspends the thread with the given ID. If no ID argument is given\n"
2771 "the current thread is selected.\n"
2772 " <id> - The ID of the thread.\n", 0);
2773 add_debugger_command_etc("resume", &make_thread_resumed, "Resume a thread",
2774 "<id>\n"
2775 "Resumes the specified thread, if it is currently suspended.\n"
2776 " <id> - The ID of the thread.\n", 0);
2777 add_debugger_command_etc("drop", &drop_into_debugger,
2778 "Drop a thread into the userland debugger",
2779 "<id>\n"
2780 "Drops the specified (userland) thread into the userland debugger\n"
2781 "after leaving the kernel debugger.\n"
2782 " <id> - The ID of the thread.\n", 0);
2783 add_debugger_command_etc("priority", &set_thread_prio,
2784 "Set a thread's priority",
2785 "<priority> [ <id> ]\n"
2786 "Sets the priority of the thread with the specified ID to the given\n"
2787 "priority. If no thread ID is given, the current thread is selected.\n"
2788 " <priority> - The thread's new priority (0 - 120)\n"
2789 " <id> - The ID of the thread.\n", 0);
2791 return B_OK;
2795 status_t
2796 thread_preboot_init_percpu(struct kernel_args *args, int32 cpuNum)
2798 // set up the cpu pointer in the not yet initialized per-cpu idle thread
2799 // so that get_current_cpu and friends will work, which is crucial for
2800 // a lot of low level routines
2801 sIdleThreads[cpuNum].cpu = &gCPU[cpuNum];
2802 arch_thread_set_current_thread(&sIdleThreads[cpuNum]);
2803 return B_OK;
2807 // #pragma mark - thread blocking API
2810 static status_t
2811 thread_block_timeout(timer* timer)
2813 Thread* thread = (Thread*)timer->user_data;
2814 thread_unblock(thread, B_TIMED_OUT);
2816 return B_HANDLED_INTERRUPT;
2820 /*! Blocks the current thread.
2822 The thread is blocked until someone else unblock it. Must be called after a
2823 call to thread_prepare_to_block(). If the thread has already been unblocked
2824 after the previous call to thread_prepare_to_block(), this function will
2825 return immediately. Cf. the documentation of thread_prepare_to_block() for
2826 more details.
2828 The caller must hold the scheduler lock.
2830 \param thread The current thread.
2831 \return The error code passed to the unblocking function. thread_interrupt()
2832 uses \c B_INTERRUPTED. By convention \c B_OK means that the wait was
2833 successful while another error code indicates a failure (what that means
2834 depends on the client code).
2836 static inline status_t
2837 thread_block_locked(Thread* thread)
2839 if (thread->wait.status == 1) {
2840 // check for signals, if interruptible
2841 if (thread_is_interrupted(thread, thread->wait.flags)) {
2842 thread->wait.status = B_INTERRUPTED;
2843 } else
2844 scheduler_reschedule(B_THREAD_WAITING);
2847 return thread->wait.status;
2851 /*! Blocks the current thread.
2853 The function acquires the scheduler lock and calls thread_block_locked().
2854 See there for more information.
2856 status_t
2857 thread_block()
2859 InterruptsSpinLocker _(thread_get_current_thread()->scheduler_lock);
2860 return thread_block_locked(thread_get_current_thread());
2864 /*! Blocks the current thread with a timeout.
2866 The thread is blocked until someone else unblock it or the specified timeout
2867 occurs. Must be called after a call to thread_prepare_to_block(). If the
2868 thread has already been unblocked after the previous call to
2869 thread_prepare_to_block(), this function will return immediately. See
2870 thread_prepare_to_block() for more details.
2872 The caller must not hold the scheduler lock.
2874 \param thread The current thread.
2875 \param timeoutFlags The standard timeout flags:
2876 - \c B_RELATIVE_TIMEOUT: \a timeout specifies the time to wait.
2877 - \c B_ABSOLUTE_TIMEOUT: \a timeout specifies the absolute end time when
2878 the timeout shall occur.
2879 - \c B_TIMEOUT_REAL_TIME_BASE: Only relevant when \c B_ABSOLUTE_TIMEOUT
2880 is specified, too. Specifies that \a timeout is a real time, not a
2881 system time.
2882 If neither \c B_RELATIVE_TIMEOUT nor \c B_ABSOLUTE_TIMEOUT are
2883 specified, an infinite timeout is implied and the function behaves like
2884 thread_block_locked().
2885 \return The error code passed to the unblocking function. thread_interrupt()
2886 uses \c B_INTERRUPTED. When the timeout occurred, \c B_TIMED_OUT is
2887 returned. By convention \c B_OK means that the wait was successful while
2888 another error code indicates a failure (what that means depends on the
2889 client code).
2891 status_t
2892 thread_block_with_timeout(uint32 timeoutFlags, bigtime_t timeout)
2894 Thread* thread = thread_get_current_thread();
2896 InterruptsSpinLocker locker(thread->scheduler_lock);
2898 if (thread->wait.status != 1)
2899 return thread->wait.status;
2901 bool useTimer = (timeoutFlags & (B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT))
2902 && timeout != B_INFINITE_TIMEOUT;
2904 if (useTimer) {
2905 // Timer flags: absolute/relative.
2906 uint32 timerFlags;
2907 if ((timeoutFlags & B_RELATIVE_TIMEOUT) != 0) {
2908 timerFlags = B_ONE_SHOT_RELATIVE_TIMER;
2909 } else {
2910 timerFlags = B_ONE_SHOT_ABSOLUTE_TIMER;
2911 if ((timeoutFlags & B_TIMEOUT_REAL_TIME_BASE) != 0)
2912 timerFlags |= B_TIMER_REAL_TIME_BASE;
2915 // install the timer
2916 thread->wait.unblock_timer.user_data = thread;
2917 add_timer(&thread->wait.unblock_timer, &thread_block_timeout, timeout,
2918 timerFlags);
2921 // block
2922 status_t error = thread_block_locked(thread);
2924 locker.Unlock();
2926 // cancel timer, if it didn't fire
2927 if (error != B_TIMED_OUT && useTimer)
2928 cancel_timer(&thread->wait.unblock_timer);
2930 return error;
2934 /*! Unblocks a thread.
2936 Acquires the scheduler lock and calls thread_unblock_locked().
2937 See there for more information.
2939 void
2940 thread_unblock(Thread* thread, status_t status)
2942 InterruptsSpinLocker locker(thread->scheduler_lock);
2943 thread_unblock_locked(thread, status);
2947 /*! Unblocks a userland-blocked thread.
2948 The caller must not hold any locks.
2950 static status_t
2951 user_unblock_thread(thread_id threadID, status_t status)
2953 // get the thread
2954 Thread* thread = Thread::GetAndLock(threadID);
2955 if (thread == NULL)
2956 return B_BAD_THREAD_ID;
2957 BReference<Thread> threadReference(thread, true);
2958 ThreadLocker threadLocker(thread, true);
2960 if (thread->user_thread == NULL)
2961 return B_NOT_ALLOWED;
2963 InterruptsSpinLocker locker(thread->scheduler_lock);
2965 if (thread->user_thread->wait_status > 0) {
2966 thread->user_thread->wait_status = status;
2967 thread_unblock_locked(thread, status);
2970 return B_OK;
2974 // #pragma mark - public kernel API
2977 void
2978 exit_thread(status_t returnValue)
2980 Thread *thread = thread_get_current_thread();
2981 Team* team = thread->team;
2983 thread->exit.status = returnValue;
2985 // if called from a kernel thread, we don't deliver the signal,
2986 // we just exit directly to keep the user space behaviour of
2987 // this function
2988 if (team != team_get_kernel_team()) {
2989 // If this is its main thread, set the team's exit status.
2990 if (thread == team->main_thread) {
2991 TeamLocker teamLocker(team);
2993 if (!team->exit.initialized) {
2994 team->exit.reason = CLD_EXITED;
2995 team->exit.signal = 0;
2996 team->exit.signaling_user = 0;
2997 team->exit.status = returnValue;
2998 team->exit.initialized = true;
3001 teamLocker.Unlock();
3004 Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id);
3005 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE);
3006 } else
3007 thread_exit();
3011 status_t
3012 kill_thread(thread_id id)
3014 if (id <= 0)
3015 return B_BAD_VALUE;
3017 Thread* currentThread = thread_get_current_thread();
3019 Signal signal(SIGKILLTHR, SI_USER, B_OK, currentThread->team->id);
3020 return send_signal_to_thread_id(id, signal, 0);
3024 status_t
3025 send_data(thread_id thread, int32 code, const void *buffer, size_t bufferSize)
3027 return send_data_etc(thread, code, buffer, bufferSize, 0);
3031 int32
3032 receive_data(thread_id *sender, void *buffer, size_t bufferSize)
3034 return receive_data_etc(sender, buffer, bufferSize, 0);
3038 bool
3039 has_data(thread_id thread)
3041 // TODO: The thread argument is ignored.
3042 int32 count;
3044 if (get_sem_count(thread_get_current_thread()->msg.read_sem,
3045 &count) != B_OK)
3046 return false;
3048 return count == 0 ? false : true;
3052 status_t
3053 _get_thread_info(thread_id id, thread_info *info, size_t size)
3055 if (info == NULL || size != sizeof(thread_info) || id < B_OK)
3056 return B_BAD_VALUE;
3058 // get the thread
3059 Thread* thread = Thread::GetAndLock(id);
3060 if (thread == NULL)
3061 return B_BAD_THREAD_ID;
3062 BReference<Thread> threadReference(thread, true);
3063 ThreadLocker threadLocker(thread, true);
3065 // fill the info -- also requires the scheduler lock to be held
3066 InterruptsSpinLocker locker(thread->scheduler_lock);
3068 fill_thread_info(thread, info, size);
3070 return B_OK;
3074 status_t
3075 _get_next_thread_info(team_id teamID, int32 *_cookie, thread_info *info,
3076 size_t size)
3078 if (info == NULL || size != sizeof(thread_info) || teamID < 0)
3079 return B_BAD_VALUE;
3081 int32 lastID = *_cookie;
3083 // get the team
3084 Team* team = Team::GetAndLock(teamID);
3085 if (team == NULL)
3086 return B_BAD_VALUE;
3087 BReference<Team> teamReference(team, true);
3088 TeamLocker teamLocker(team, true);
3090 Thread* thread = NULL;
3092 if (lastID == 0) {
3093 // We start with the main thread
3094 thread = team->main_thread;
3095 } else {
3096 // Find the one thread with an ID greater than ours (as long as the IDs
3097 // don't wrap they are always sorted from highest to lowest).
3098 // TODO: That is broken not only when the IDs wrap, but also for the
3099 // kernel team, to which threads are added when they are dying.
3100 for (Thread* next = team->thread_list; next != NULL;
3101 next = next->team_next) {
3102 if (next->id <= lastID)
3103 break;
3105 thread = next;
3109 if (thread == NULL)
3110 return B_BAD_VALUE;
3112 lastID = thread->id;
3113 *_cookie = lastID;
3115 ThreadLocker threadLocker(thread);
3116 InterruptsSpinLocker locker(thread->scheduler_lock);
3118 fill_thread_info(thread, info, size);
3120 return B_OK;
3124 thread_id
3125 find_thread(const char* name)
3127 if (name == NULL)
3128 return thread_get_current_thread_id();
3130 InterruptsSpinLocker threadHashLocker(sThreadHashLock);
3132 // TODO: Scanning the whole hash with the thread hash lock held isn't
3133 // exactly cheap -- although this function is probably used very rarely.
3135 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
3136 Thread* thread = it.Next();) {
3137 if (!thread->visible)
3138 continue;
3140 if (strcmp(thread->name, name) == 0)
3141 return thread->id;
3144 return B_NAME_NOT_FOUND;
3148 status_t
3149 rename_thread(thread_id id, const char* name)
3151 if (name == NULL)
3152 return B_BAD_VALUE;
3154 // get the thread
3155 Thread* thread = Thread::GetAndLock(id);
3156 if (thread == NULL)
3157 return B_BAD_THREAD_ID;
3158 BReference<Thread> threadReference(thread, true);
3159 ThreadLocker threadLocker(thread, true);
3161 // check whether the operation is allowed
3162 if (thread->team != thread_get_current_thread()->team)
3163 return B_NOT_ALLOWED;
3165 strlcpy(thread->name, name, B_OS_NAME_LENGTH);
3167 team_id teamID = thread->team->id;
3169 threadLocker.Unlock();
3171 // notify listeners
3172 sNotificationService.Notify(THREAD_NAME_CHANGED, teamID, id);
3173 // don't pass the thread structure, as it's unsafe, if it isn't ours
3175 return B_OK;
3179 status_t
3180 set_thread_priority(thread_id id, int32 priority)
3182 // make sure the passed in priority is within bounds
3183 if (priority > THREAD_MAX_SET_PRIORITY)
3184 priority = THREAD_MAX_SET_PRIORITY;
3185 if (priority < THREAD_MIN_SET_PRIORITY)
3186 priority = THREAD_MIN_SET_PRIORITY;
3188 // get the thread
3189 Thread* thread = Thread::GetAndLock(id);
3190 if (thread == NULL)
3191 return B_BAD_THREAD_ID;
3192 BReference<Thread> threadReference(thread, true);
3193 ThreadLocker threadLocker(thread, true);
3195 // check whether the change is allowed
3196 if (thread_is_idle_thread(thread))
3197 return B_NOT_ALLOWED;
3199 return scheduler_set_thread_priority(thread, priority);
3203 status_t
3204 snooze_etc(bigtime_t timeout, int timebase, uint32 flags)
3206 return common_snooze_etc(timeout, timebase, flags, NULL);
3210 /*! snooze() for internal kernel use only; doesn't interrupt on signals. */
3211 status_t
3212 snooze(bigtime_t timeout)
3214 return snooze_etc(timeout, B_SYSTEM_TIMEBASE, B_RELATIVE_TIMEOUT);
3218 /*! snooze_until() for internal kernel use only; doesn't interrupt on
3219 signals.
3221 status_t
3222 snooze_until(bigtime_t timeout, int timebase)
3224 return snooze_etc(timeout, timebase, B_ABSOLUTE_TIMEOUT);
3228 status_t
3229 wait_for_thread(thread_id thread, status_t *_returnCode)
3231 return wait_for_thread_etc(thread, 0, 0, _returnCode);
3235 status_t
3236 suspend_thread(thread_id id)
3238 if (id <= 0)
3239 return B_BAD_VALUE;
3241 Thread* currentThread = thread_get_current_thread();
3243 Signal signal(SIGSTOP, SI_USER, B_OK, currentThread->team->id);
3244 return send_signal_to_thread_id(id, signal, 0);
3248 status_t
3249 resume_thread(thread_id id)
3251 if (id <= 0)
3252 return B_BAD_VALUE;
3254 Thread* currentThread = thread_get_current_thread();
3256 // Using the kernel internal SIGNAL_CONTINUE_THREAD signal retains
3257 // compatibility to BeOS which documents the combination of suspend_thread()
3258 // and resume_thread() to interrupt threads waiting on semaphores.
3259 Signal signal(SIGNAL_CONTINUE_THREAD, SI_USER, B_OK,
3260 currentThread->team->id);
3261 return send_signal_to_thread_id(id, signal, 0);
3265 thread_id
3266 spawn_kernel_thread(thread_func function, const char *name, int32 priority,
3267 void *arg)
3269 return thread_create_thread(
3270 ThreadCreationAttributes(function, name, priority, arg),
3271 true);
3276 getrlimit(int resource, struct rlimit * rlp)
3278 status_t error = common_getrlimit(resource, rlp);
3279 if (error != B_OK) {
3280 errno = error;
3281 return -1;
3284 return 0;
3289 setrlimit(int resource, const struct rlimit * rlp)
3291 status_t error = common_setrlimit(resource, rlp);
3292 if (error != B_OK) {
3293 errno = error;
3294 return -1;
3297 return 0;
3301 // #pragma mark - syscalls
3304 void
3305 _user_exit_thread(status_t returnValue)
3307 exit_thread(returnValue);
3311 status_t
3312 _user_kill_thread(thread_id thread)
3314 // TODO: Don't allow kernel threads to be killed!
3315 return kill_thread(thread);
3319 status_t
3320 _user_cancel_thread(thread_id threadID, void (*cancelFunction)(int))
3322 // check the cancel function
3323 if (cancelFunction == NULL || !IS_USER_ADDRESS(cancelFunction))
3324 return B_BAD_VALUE;
3326 // get and lock the thread
3327 Thread* thread = Thread::GetAndLock(threadID);
3328 if (thread == NULL)
3329 return B_BAD_THREAD_ID;
3330 BReference<Thread> threadReference(thread, true);
3331 ThreadLocker threadLocker(thread, true);
3333 // only threads of the same team can be canceled
3334 if (thread->team != thread_get_current_thread()->team)
3335 return B_NOT_ALLOWED;
3337 // set the cancel function
3338 thread->cancel_function = cancelFunction;
3340 // send the cancellation signal to the thread
3341 InterruptsReadSpinLocker teamLocker(thread->team_lock);
3342 SpinLocker locker(thread->team->signal_lock);
3343 return send_signal_to_thread_locked(thread, SIGNAL_CANCEL_THREAD, NULL, 0);
3347 status_t
3348 _user_resume_thread(thread_id thread)
3350 // TODO: Don't allow kernel threads to be resumed!
3351 return resume_thread(thread);
3355 status_t
3356 _user_suspend_thread(thread_id thread)
3358 // TODO: Don't allow kernel threads to be suspended!
3359 return suspend_thread(thread);
3363 status_t
3364 _user_rename_thread(thread_id thread, const char *userName)
3366 char name[B_OS_NAME_LENGTH];
3368 if (!IS_USER_ADDRESS(userName)
3369 || userName == NULL
3370 || user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK)
3371 return B_BAD_ADDRESS;
3373 // TODO: Don't allow kernel threads to be renamed!
3374 return rename_thread(thread, name);
3378 int32
3379 _user_set_thread_priority(thread_id thread, int32 newPriority)
3381 // TODO: Don't allow setting priority of kernel threads!
3382 return set_thread_priority(thread, newPriority);
3386 thread_id
3387 _user_spawn_thread(thread_creation_attributes* userAttributes)
3389 // copy the userland structure to the kernel
3390 char nameBuffer[B_OS_NAME_LENGTH];
3391 ThreadCreationAttributes attributes;
3392 status_t error = attributes.InitFromUserAttributes(userAttributes,
3393 nameBuffer);
3394 if (error != B_OK)
3395 return error;
3397 // create the thread
3398 thread_id threadID = thread_create_thread(attributes, false);
3400 if (threadID >= 0)
3401 user_debug_thread_created(threadID);
3403 return threadID;
3407 status_t
3408 _user_snooze_etc(bigtime_t timeout, int timebase, uint32 flags,
3409 bigtime_t* userRemainingTime)
3411 // We need to store more syscall restart parameters than usual and need a
3412 // somewhat different handling. Hence we can't use
3413 // syscall_restart_handle_timeout_pre() but do the job ourselves.
3414 struct restart_parameters {
3415 bigtime_t timeout;
3416 clockid_t timebase;
3417 uint32 flags;
3420 Thread* thread = thread_get_current_thread();
3422 if ((thread->flags & THREAD_FLAGS_SYSCALL_RESTARTED) != 0) {
3423 // The syscall was restarted. Fetch the parameters from the stored
3424 // restart parameters.
3425 restart_parameters* restartParameters
3426 = (restart_parameters*)thread->syscall_restart.parameters;
3427 timeout = restartParameters->timeout;
3428 timebase = restartParameters->timebase;
3429 flags = restartParameters->flags;
3430 } else {
3431 // convert relative timeouts to absolute ones
3432 if ((flags & B_RELATIVE_TIMEOUT) != 0) {
3433 // not restarted yet and the flags indicate a relative timeout
3435 // Make sure we use the system time base, so real-time clock changes
3436 // won't affect our wait.
3437 flags &= ~(uint32)B_TIMEOUT_REAL_TIME_BASE;
3438 if (timebase == CLOCK_REALTIME)
3439 timebase = CLOCK_MONOTONIC;
3441 // get the current time and make the timeout absolute
3442 bigtime_t now;
3443 status_t error = user_timer_get_clock(timebase, now);
3444 if (error != B_OK)
3445 return error;
3447 timeout += now;
3449 // deal with overflow
3450 if (timeout < 0)
3451 timeout = B_INFINITE_TIMEOUT;
3453 flags = (flags & ~B_RELATIVE_TIMEOUT) | B_ABSOLUTE_TIMEOUT;
3454 } else
3455 flags |= B_ABSOLUTE_TIMEOUT;
3458 // snooze
3459 bigtime_t remainingTime;
3460 status_t error = common_snooze_etc(timeout, timebase,
3461 flags | B_CAN_INTERRUPT | B_CHECK_PERMISSION,
3462 userRemainingTime != NULL ? &remainingTime : NULL);
3464 // If interrupted, copy the remaining time back to userland and prepare the
3465 // syscall restart.
3466 if (error == B_INTERRUPTED) {
3467 if (userRemainingTime != NULL
3468 && (!IS_USER_ADDRESS(userRemainingTime)
3469 || user_memcpy(userRemainingTime, &remainingTime,
3470 sizeof(remainingTime)) != B_OK)) {
3471 return B_BAD_ADDRESS;
3474 // store the normalized values in the restart parameters
3475 restart_parameters* restartParameters
3476 = (restart_parameters*)thread->syscall_restart.parameters;
3477 restartParameters->timeout = timeout;
3478 restartParameters->timebase = timebase;
3479 restartParameters->flags = flags;
3481 // restart the syscall, if possible
3482 atomic_or(&thread->flags, THREAD_FLAGS_RESTART_SYSCALL);
3485 return error;
3489 void
3490 _user_thread_yield(void)
3492 thread_yield();
3496 status_t
3497 _user_get_thread_info(thread_id id, thread_info *userInfo)
3499 thread_info info;
3500 status_t status;
3502 if (!IS_USER_ADDRESS(userInfo))
3503 return B_BAD_ADDRESS;
3505 status = _get_thread_info(id, &info, sizeof(thread_info));
3507 if (status >= B_OK
3508 && user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK)
3509 return B_BAD_ADDRESS;
3511 return status;
3515 status_t
3516 _user_get_next_thread_info(team_id team, int32 *userCookie,
3517 thread_info *userInfo)
3519 status_t status;
3520 thread_info info;
3521 int32 cookie;
3523 if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo)
3524 || user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK)
3525 return B_BAD_ADDRESS;
3527 status = _get_next_thread_info(team, &cookie, &info, sizeof(thread_info));
3528 if (status < B_OK)
3529 return status;
3531 if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK
3532 || user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK)
3533 return B_BAD_ADDRESS;
3535 return status;
3539 thread_id
3540 _user_find_thread(const char *userName)
3542 char name[B_OS_NAME_LENGTH];
3544 if (userName == NULL)
3545 return find_thread(NULL);
3547 if (!IS_USER_ADDRESS(userName)
3548 || user_strlcpy(name, userName, sizeof(name)) < B_OK)
3549 return B_BAD_ADDRESS;
3551 return find_thread(name);
3555 status_t
3556 _user_wait_for_thread(thread_id id, status_t *userReturnCode)
3558 status_t returnCode;
3559 status_t status;
3561 if (userReturnCode != NULL && !IS_USER_ADDRESS(userReturnCode))
3562 return B_BAD_ADDRESS;
3564 status = wait_for_thread_etc(id, B_CAN_INTERRUPT, 0, &returnCode);
3566 if (status == B_OK && userReturnCode != NULL
3567 && user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK) {
3568 return B_BAD_ADDRESS;
3571 return syscall_restart_handle_post(status);
3575 bool
3576 _user_has_data(thread_id thread)
3578 return has_data(thread);
3582 status_t
3583 _user_send_data(thread_id thread, int32 code, const void *buffer,
3584 size_t bufferSize)
3586 if (!IS_USER_ADDRESS(buffer))
3587 return B_BAD_ADDRESS;
3589 return send_data_etc(thread, code, buffer, bufferSize,
3590 B_KILL_CAN_INTERRUPT);
3591 // supports userland buffers
3595 status_t
3596 _user_receive_data(thread_id *_userSender, void *buffer, size_t bufferSize)
3598 thread_id sender;
3599 status_t code;
3601 if ((!IS_USER_ADDRESS(_userSender) && _userSender != NULL)
3602 || !IS_USER_ADDRESS(buffer))
3603 return B_BAD_ADDRESS;
3605 code = receive_data_etc(&sender, buffer, bufferSize, B_KILL_CAN_INTERRUPT);
3606 // supports userland buffers
3608 if (_userSender != NULL)
3609 if (user_memcpy(_userSender, &sender, sizeof(thread_id)) < B_OK)
3610 return B_BAD_ADDRESS;
3612 return code;
3616 status_t
3617 _user_block_thread(uint32 flags, bigtime_t timeout)
3619 syscall_restart_handle_timeout_pre(flags, timeout);
3620 flags |= B_CAN_INTERRUPT;
3622 Thread* thread = thread_get_current_thread();
3623 ThreadLocker threadLocker(thread);
3625 // check, if already done
3626 if (thread->user_thread->wait_status <= 0)
3627 return thread->user_thread->wait_status;
3629 // nope, so wait
3630 thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_OTHER, "user");
3632 threadLocker.Unlock();
3634 status_t status = thread_block_with_timeout(flags, timeout);
3636 threadLocker.Lock();
3638 // Interruptions or timeouts can race with other threads unblocking us.
3639 // Favor a wake-up by another thread, i.e. if someone changed the wait
3640 // status, use that.
3641 status_t oldStatus = thread->user_thread->wait_status;
3642 if (oldStatus > 0)
3643 thread->user_thread->wait_status = status;
3644 else
3645 status = oldStatus;
3647 threadLocker.Unlock();
3649 return syscall_restart_handle_timeout_post(status, timeout);
3653 status_t
3654 _user_unblock_thread(thread_id threadID, status_t status)
3656 status_t error = user_unblock_thread(threadID, status);
3658 if (error == B_OK)
3659 scheduler_reschedule_if_necessary();
3661 return error;
3665 status_t
3666 _user_unblock_threads(thread_id* userThreads, uint32 count, status_t status)
3668 enum {
3669 MAX_USER_THREADS_TO_UNBLOCK = 128
3672 if (userThreads == NULL || !IS_USER_ADDRESS(userThreads))
3673 return B_BAD_ADDRESS;
3674 if (count > MAX_USER_THREADS_TO_UNBLOCK)
3675 return B_BAD_VALUE;
3677 thread_id threads[MAX_USER_THREADS_TO_UNBLOCK];
3678 if (user_memcpy(threads, userThreads, count * sizeof(thread_id)) != B_OK)
3679 return B_BAD_ADDRESS;
3681 for (uint32 i = 0; i < count; i++)
3682 user_unblock_thread(threads[i], status);
3684 scheduler_reschedule_if_necessary();
3686 return B_OK;
3690 // TODO: the following two functions don't belong here
3694 _user_getrlimit(int resource, struct rlimit *urlp)
3696 struct rlimit rl;
3697 int ret;
3699 if (urlp == NULL)
3700 return EINVAL;
3702 if (!IS_USER_ADDRESS(urlp))
3703 return B_BAD_ADDRESS;
3705 ret = common_getrlimit(resource, &rl);
3707 if (ret == 0) {
3708 ret = user_memcpy(urlp, &rl, sizeof(struct rlimit));
3709 if (ret < 0)
3710 return ret;
3712 return 0;
3715 return ret;
3720 _user_setrlimit(int resource, const struct rlimit *userResourceLimit)
3722 struct rlimit resourceLimit;
3724 if (userResourceLimit == NULL)
3725 return EINVAL;
3727 if (!IS_USER_ADDRESS(userResourceLimit)
3728 || user_memcpy(&resourceLimit, userResourceLimit,
3729 sizeof(struct rlimit)) < B_OK)
3730 return B_BAD_ADDRESS;
3732 return common_setrlimit(resource, &resourceLimit);