Make UEFI boot-platform build again
[haiku.git] / headers / libs / agg / agg_conv_curve.h
blobbc286910ff25b9c02c99c852c9d17bebf4ab4af7
1 //----------------------------------------------------------------------------
2 // Anti-Grain Geometry - Version 2.4
3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
4 //
5 // Permission to copy, use, modify, sell and distribute this software
6 // is granted provided this copyright notice appears in all copies.
7 // This software is provided "as is" without express or implied
8 // warranty, and with no claim as to its suitability for any purpose.
9 //
10 //----------------------------------------------------------------------------
11 // Contact: mcseem@antigrain.com
12 // mcseemagg@yahoo.com
13 // http://www.antigrain.com
14 //----------------------------------------------------------------------------
16 // classes conv_curve
18 //----------------------------------------------------------------------------
20 #ifndef AGG_CONV_CURVE_INCLUDED
21 #define AGG_CONV_CURVE_INCLUDED
23 #include "agg_basics.h"
24 #include "agg_curves.h"
26 #include <cmath>
29 namespace agg
33 //---------------------------------------------------------------conv_curve
34 // Curve converter class. Any path storage can have Bezier curves defined
35 // by their control points. There're two types of curves supported: curve3
36 // and curve4. Curve3 is a conic Bezier curve with 2 endpoints and 1 control
37 // point. Curve4 has 2 control points (4 points in total) and can be used
38 // to interpolate more complicated curves. Curve4, unlike curve3 can be used
39 // to approximate arcs, both circular and elliptical. Curves are approximated
40 // with straight lines and one of the approaches is just to store the whole
41 // sequence of vertices that approximate our curve. It takes additional
42 // memory, and at the same time the consecutive vertices can be calculated
43 // on demand.
45 // Initially, path storages are not suppose to keep all the vertices of the
46 // curves (although, nothing prevents us from doing so). Instead, path_storage
47 // keeps only vertices, needed to calculate a curve on demand. Those vertices
48 // are marked with special commands. So, if the path_storage contains curves
49 // (which are not real curves yet), and we render this storage directly,
50 // all we will see is only 2 or 3 straight line segments (for curve3 and
51 // curve4 respectively). If we need to see real curves drawn we need to
52 // include this class into the conversion pipeline.
54 // Class conv_curve recognizes commands path_cmd_curve3 and path_cmd_curve4
55 // and converts these vertices into a move_to/line_to sequence.
56 //-----------------------------------------------------------------------
57 template<class VertexSource,
58 class Curve3=curve3,
59 class Curve4=curve4> class conv_curve
61 public:
62 typedef Curve3 curve3_type;
63 typedef Curve4 curve4_type;
64 typedef conv_curve<VertexSource, Curve3, Curve4> self_type;
66 conv_curve(VertexSource& source) :
67 m_source(&source), m_last_x(0.0), m_last_y(0.0) {}
68 void attach(VertexSource& source) { m_source = &source; }
70 void approximation_method(curve_approximation_method_e v)
72 m_curve3.approximation_method(v);
73 m_curve4.approximation_method(v);
76 curve_approximation_method_e approximation_method() const
78 return m_curve4.approximation_method();
81 void approximation_scale(double s)
83 m_curve3.approximation_scale(s);
84 m_curve4.approximation_scale(s);
87 double approximation_scale() const
89 return m_curve4.approximation_scale();
92 void angle_tolerance(double v)
94 m_curve3.angle_tolerance(v);
95 m_curve4.angle_tolerance(v);
98 double angle_tolerance() const
100 return m_curve4.angle_tolerance();
103 void cusp_limit(double v)
105 m_curve3.cusp_limit(v);
106 m_curve4.cusp_limit(v);
109 double cusp_limit() const
111 return m_curve4.cusp_limit();
114 void rewind(unsigned path_id);
115 unsigned vertex(double* x, double* y);
117 private:
118 conv_curve(const self_type&);
119 const self_type& operator = (const self_type&);
121 VertexSource* m_source;
122 double m_last_x;
123 double m_last_y;
124 curve3_type m_curve3;
125 curve4_type m_curve4;
130 //------------------------------------------------------------------------
131 template<class VertexSource, class Curve3, class Curve4>
132 void conv_curve<VertexSource, Curve3, Curve4>::rewind(unsigned path_id)
134 m_source->rewind(path_id);
135 m_last_x = 0.0;
136 m_last_y = 0.0;
137 m_curve3.reset();
138 m_curve4.reset();
142 //------------------------------------------------------------------------
143 template<class VertexSource, class Curve3, class Curve4>
144 unsigned conv_curve<VertexSource, Curve3, Curve4>::vertex(double* x, double* y)
146 if(!is_stop(m_curve3.vertex(x, y)))
148 m_last_x = *x;
149 m_last_y = *y;
150 return path_cmd_line_to;
153 if(!is_stop(m_curve4.vertex(x, y)))
155 m_last_x = *x;
156 m_last_y = *y;
157 return path_cmd_line_to;
160 double ct2_x = 0;
161 double ct2_y = 0;
162 double end_x = 0;
163 double end_y = 0;
165 unsigned cmd = m_source->vertex(x, y);
166 switch(cmd)
168 case path_cmd_curve3:
169 m_source->vertex(&end_x, &end_y);
171 if (!std::isnan(m_last_x) && !std::isnan(m_last_y) && !std::isnan(*x)
172 && !std::isnan(*y) && !std::isnan(end_x) && !std::isnan(end_y)) {
173 m_curve3.init(m_last_x, m_last_y,
174 *x, *y,
175 end_x, end_y);
177 m_curve3.vertex(x, y); // First call returns path_cmd_move_to
178 m_curve3.vertex(x, y); // This is the first vertex of the curve
180 cmd = path_cmd_line_to;
181 break;
183 case path_cmd_curve4:
184 m_source->vertex(&ct2_x, &ct2_y);
185 m_source->vertex(&end_x, &end_y);
187 if (!std::isnan(m_last_x) && !std::isnan(m_last_y) && !std::isnan(*x)
188 && !std::isnan(*y) && !std::isnan(end_x) && !std::isnan(end_y)) {
189 m_curve4.init(m_last_x, m_last_y,
190 *x, *y,
191 ct2_x, ct2_y,
192 end_x, end_y);
194 m_curve4.vertex(x, y); // First call returns path_cmd_move_to
195 m_curve4.vertex(x, y); // This is the first vertex of the curve
197 cmd = path_cmd_line_to;
198 break;
200 m_last_x = *x;
201 m_last_y = *y;
202 return cmd;
210 #endif