Make UEFI boot-platform build again
[haiku.git] / src / bin / unzip / inflate.c
blob6df8de40abfb58c8368ed5a59192bbccb01076fb
1 /*
2 Copyright (c) 1990-2002 Info-ZIP. All rights reserved.
4 See the accompanying file LICENSE, version 2000-Apr-09 or later
5 (the contents of which are also included in unzip.h) for terms of use.
6 If, for some reason, all these files are missing, the Info-ZIP license
7 also may be found at: ftp://ftp.info-zip.org/pub/infozip/license.html
8 */
9 /* inflate.c -- by Mark Adler
10 version c17a, 04 Feb 2001 */
13 /* Copyright history:
14 - Starting with UnZip 5.41 of 16-April-2000, this source file
15 is covered by the Info-Zip LICENSE cited above.
16 - Prior versions of this source file, found in UnZip source packages
17 up to UnZip 5.40, were put in the public domain.
18 The original copyright note by Mark Adler was:
19 "You can do whatever you like with this source file,
20 though I would prefer that if you modify it and
21 redistribute it that you include comments to that effect
22 with your name and the date. Thank you."
24 History:
25 vers date who what
26 ---- --------- -------------- ------------------------------------
27 a ~~ Feb 92 M. Adler used full (large, one-step) lookup table
28 b1 21 Mar 92 M. Adler first version with partial lookup tables
29 b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks
30 b3 22 Mar 92 M. Adler sped up match copies, cleaned up some
31 b4 25 Mar 92 M. Adler added prototypes; removed window[] (now
32 is the responsibility of unzip.h--also
33 changed name to slide[]), so needs diffs
34 for unzip.c and unzip.h (this allows
35 compiling in the small model on MSDOS);
36 fixed cast of q in huft_build();
37 b5 26 Mar 92 M. Adler got rid of unintended macro recursion.
38 b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed
39 bug in inflate_fixed().
40 c1 30 Mar 92 M. Adler removed lbits, dbits environment variables.
41 changed BMAX to 16 for explode. Removed
42 OUTB usage, and replaced it with flush()--
43 this was a 20% speed improvement! Added
44 an explode.c (to replace unimplod.c) that
45 uses the huft routines here. Removed
46 register union.
47 c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k.
48 c3 10 Apr 92 M. Adler reduced memory of code tables made by
49 huft_build significantly (factor of two to
50 three).
51 c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy().
52 worked around a Turbo C optimization bug.
53 c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing
54 the 32K window size for specialized
55 applications.
56 c6 31 May 92 M. Adler added some typecasts to eliminate warnings
57 c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug).
58 c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug.
59 c9 9 Oct 92 M. Adler removed a memory error message (~line 416).
60 c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch,
61 removed old inflate, renamed inflate_entry
62 to inflate, added Mark's fix to a comment.
63 c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees.
64 c11 2 Jan 93 M. Adler fixed bug in detection of incomplete
65 tables, and removed assumption that EOB is
66 the longest code (bad assumption).
67 c12 3 Jan 93 M. Adler make tables for fixed blocks only once.
68 c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c
69 outputs one zero length code for an empty
70 distance tree).
71 c14 12 Mar 93 M. Adler made inflate.c standalone with the
72 introduction of inflate.h.
73 c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470.
74 c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays
75 to static for Amiga.
76 c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing.
77 c14e 8 Oct 93 G. Roelofs changed memset() to memzero().
78 c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace()
79 conditional; added inflate_free().
80 c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug)
81 c14h 7 Dec 93 C. Ghisler huft_build() optimizations.
82 c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing;
83 G. Roelofs check NEXTBYTE macro for EOF.
84 c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd
85 EOF check.
86 c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings.
87 c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines
88 to avoid bug in Encore compiler.
89 c14m 7 Jul 94 P. Kienitz modified to allow assembler version of
90 inflate_codes() (define ASM_INFLATECODES)
91 c14n 22 Jul 94 G. Roelofs changed fprintf to macro for DLL versions
92 c14o 23 Aug 94 C. Spieler added a newline to a debug statement;
93 G. Roelofs added another typecast to avoid MSC warning
94 c14p 4 Oct 94 G. Roelofs added (voidp *) cast to free() argument
95 c14q 30 Oct 94 G. Roelofs changed fprintf macro to MESSAGE()
96 c14r 1 Nov 94 G. Roelofs fixed possible redefinition of CHECK_EOF
97 c14s 7 May 95 S. Maxwell OS/2 DLL globals stuff incorporated;
98 P. Kienitz "fixed" ASM_INFLATECODES macro/prototype
99 c14t 18 Aug 95 G. Roelofs added UZinflate() to use zlib functions;
100 changed voidp to zvoid; moved huft_build()
101 and huft_free() to end of file
102 c14u 1 Oct 95 G. Roelofs moved G into definition of MESSAGE macro
103 c14v 8 Nov 95 P. Kienitz changed ASM_INFLATECODES to use a regular
104 call with __G__ instead of a macro
105 c15 3 Aug 96 M. Adler fixed bomb-bug on random input data (Adobe)
106 c15b 24 Aug 96 M. Adler more fixes for random input data
107 c15c 28 Mar 97 G. Roelofs changed USE_ZLIB fatal exit code from
108 PK_MEM2 to PK_MEM3
109 c16 20 Apr 97 J. Altman added memzero(v[]) in huft_build()
110 c16b 29 Mar 98 C. Spieler modified DLL code for slide redirection
111 c16c 04 Apr 99 C. Spieler fixed memory leaks when processing gets
112 stopped because of input data errors
113 c16d 05 Jul 99 C. Spieler take care of FLUSH() return values and
114 stop processing in case of errors
115 c17 31 Dec 00 C. Spieler added preliminary support for Deflate64
116 c17a 04 Feb 01 C. Spieler complete integration of Deflate64 support
117 c17b 16 Feb 02 C. Spieler changed type of "extra bits" arrays and
118 corresponding huft_buid() parameter e from
119 ush into uch, to save space
124 Inflate deflated (PKZIP's method 8 compressed) data. The compression
125 method searches for as much of the current string of bytes (up to a
126 length of 258) in the previous 32K bytes. If it doesn't find any
127 matches (of at least length 3), it codes the next byte. Otherwise, it
128 codes the length of the matched string and its distance backwards from
129 the current position. There is a single Huffman code that codes both
130 single bytes (called "literals") and match lengths. A second Huffman
131 code codes the distance information, which follows a length code. Each
132 length or distance code actually represents a base value and a number
133 of "extra" (sometimes zero) bits to get to add to the base value. At
134 the end of each deflated block is a special end-of-block (EOB) literal/
135 length code. The decoding process is basically: get a literal/length
136 code; if EOB then done; if a literal, emit the decoded byte; if a
137 length then get the distance and emit the referred-to bytes from the
138 sliding window of previously emitted data.
140 There are (currently) three kinds of inflate blocks: stored, fixed, and
141 dynamic. The compressor outputs a chunk of data at a time and decides
142 which method to use on a chunk-by-chunk basis. A chunk might typically
143 be 32K to 64K, uncompressed. If the chunk is uncompressible, then the
144 "stored" method is used. In this case, the bytes are simply stored as
145 is, eight bits per byte, with none of the above coding. The bytes are
146 preceded by a count, since there is no longer an EOB code.
148 If the data are compressible, then either the fixed or dynamic methods
149 are used. In the dynamic method, the compressed data are preceded by
150 an encoding of the literal/length and distance Huffman codes that are
151 to be used to decode this block. The representation is itself Huffman
152 coded, and so is preceded by a description of that code. These code
153 descriptions take up a little space, and so for small blocks, there is
154 a predefined set of codes, called the fixed codes. The fixed method is
155 used if the block ends up smaller that way (usually for quite small
156 chunks); otherwise the dynamic method is used. In the latter case, the
157 codes are customized to the probabilities in the current block and so
158 can code it much better than the pre-determined fixed codes can.
160 The Huffman codes themselves are decoded using a multi-level table
161 lookup, in order to maximize the speed of decoding plus the speed of
162 building the decoding tables. See the comments below that precede the
163 lbits and dbits tuning parameters.
165 GRR: return values(?)
166 0 OK
167 1 incomplete table
168 2 bad input
169 3 not enough memory
170 the following return codes are passed through from FLUSH() errors
171 50 (PK_DISK) "overflow of output space"
172 80 (IZ_CTRLC) "canceled by user's request"
177 Notes beyond the 1.93a appnote.txt:
179 1. Distance pointers never point before the beginning of the output
180 stream.
181 2. Distance pointers can point back across blocks, up to 32k away.
182 3. There is an implied maximum of 7 bits for the bit length table and
183 15 bits for the actual data.
184 4. If only one code exists, then it is encoded using one bit. (Zero
185 would be more efficient, but perhaps a little confusing.) If two
186 codes exist, they are coded using one bit each (0 and 1).
187 5. There is no way of sending zero distance codes--a dummy must be
188 sent if there are none. (History: a pre 2.0 version of PKZIP would
189 store blocks with no distance codes, but this was discovered to be
190 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
191 zero distance codes, which is sent as one code of zero bits in
192 length.
193 6. There are up to 286 literal/length codes. Code 256 represents the
194 end-of-block. Note however that the static length tree defines
195 288 codes just to fill out the Huffman codes. Codes 286 and 287
196 cannot be used though, since there is no length base or extra bits
197 defined for them. Similarily, there are up to 30 distance codes.
198 However, static trees define 32 codes (all 5 bits) to fill out the
199 Huffman codes, but the last two had better not show up in the data.
200 7. Unzip can check dynamic Huffman blocks for complete code sets.
201 The exception is that a single code would not be complete (see #4).
202 8. The five bits following the block type is really the number of
203 literal codes sent minus 257.
204 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
205 (1+6+6). Therefore, to output three times the length, you output
206 three codes (1+1+1), whereas to output four times the same length,
207 you only need two codes (1+3). Hmm.
208 10. In the tree reconstruction algorithm, Code = Code + Increment
209 only if BitLength(i) is not zero. (Pretty obvious.)
210 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
211 12. Note: length code 284 can represent 227-258, but length code 285
212 really is 258. The last length deserves its own, short code
213 since it gets used a lot in very redundant files. The length
214 258 is special since 258 - 3 (the min match length) is 255.
215 13. The literal/length and distance code bit lengths are read as a
216 single stream of lengths. It is possible (and advantageous) for
217 a repeat code (16, 17, or 18) to go across the boundary between
218 the two sets of lengths.
219 14. The Deflate64 (PKZIP method 9) variant of the compression algorithm
220 differs from "classic" deflate in the following 3 aspect:
221 a) The size of the sliding history window is expanded to 64 kByte.
222 b) The previously unused distance codes #30 and #31 code distances
223 from 32769 to 49152 and 49153 to 65536. Both codes take 14 bits
224 of extra data to determine the exact position in their 16 kByte
225 range.
226 c) The last lit/length code #285 gets a different meaning. Instead
227 of coding a fixed maximum match length of 258, it is used as a
228 "generic" match length code, capable of coding any length from
229 3 (min match length + 0) to 65538 (min match length + 65535).
230 This means that the length code #285 takes 16 bits (!) of uncoded
231 extra data, added to a fixed min length of 3.
232 Changes a) and b) would have been transparent for valid deflated
233 data, but change c) requires to switch decoder configurations between
234 Deflate and Deflate64 modes.
238 #define PKZIP_BUG_WORKAROUND /* PKZIP 1.93a problem--live with it */
241 inflate.h must supply the uch slide[WSIZE] array, the zvoid typedef
242 (void if (void *) is accepted, else char) and the NEXTBYTE,
243 FLUSH() and memzero macros. If the window size is not 32K, it
244 should also define WSIZE. If INFMOD is defined, it can include
245 compiled functions to support the NEXTBYTE and/or FLUSH() macros.
246 There are defaults for NEXTBYTE and FLUSH() below for use as
247 examples of what those functions need to do. Normally, you would
248 also want FLUSH() to compute a crc on the data. inflate.h also
249 needs to provide these typedefs:
251 typedef unsigned char uch;
252 typedef unsigned short ush;
253 typedef unsigned long ulg;
255 This module uses the external functions malloc() and free() (and
256 probably memset() or bzero() in the memzero() macro). Their
257 prototypes are normally found in <string.h> and <stdlib.h>.
260 #define __INFLATE_C /* identifies this source module */
262 /* #define DEBUG */
263 #define INFMOD /* tell inflate.h to include code to be compiled */
264 #include "inflate.h"
267 /* marker for "unused" huft code, and corresponding check macro */
268 #define INVALID_CODE 99
269 #define IS_INVALID_CODE(c) ((c) == INVALID_CODE)
271 #ifndef WSIZE /* default is 32K resp. 64K */
272 # ifdef USE_DEFLATE64
273 # define WSIZE 65536L /* window size--must be a power of two, and */
274 # else /* at least 64K for PKZip's deflate64 method */
275 # define WSIZE 0x8000 /* window size--must be a power of two, and */
276 # endif /* at least 32K for zip's deflate method */
277 #endif
279 /* some buffer counters must be capable of holding 64k for Deflate64 */
280 #if (defined(USE_DEFLATE64) && defined(INT_16BIT))
281 # define UINT_D64 ulg
282 #else
283 # define UINT_D64 unsigned
284 #endif
286 #if (defined(DLL) && !defined(NO_SLIDE_REDIR))
287 # define wsize G._wsize /* wsize is a variable */
288 #else
289 # define wsize WSIZE /* wsize is a constant */
290 #endif
293 #ifndef NEXTBYTE /* default is to simply get a byte from stdin */
294 # define NEXTBYTE getchar()
295 #endif
297 #ifndef MESSAGE /* only used twice, for fixed strings--NOT general-purpose */
298 # define MESSAGE(str,len,flag) fprintf(stderr,(char *)(str))
299 #endif
301 #ifndef FLUSH /* default is to simply write the buffer to stdout */
302 # define FLUSH(n) \
303 (((extent)fwrite(redirSlide, 1, (extent)(n), stdout) == (extent)(n)) ? \
304 0 : PKDISK)
305 #endif
306 /* Warning: the fwrite above might not work on 16-bit compilers, since
307 0x8000 might be interpreted as -32,768 by the library function. When
308 support for Deflate64 is enabled, the window size is 64K and the
309 simple fwrite statement is definitely broken for 16-bit compilers. */
311 #ifndef Trace
312 # ifdef DEBUG
313 # define Trace(x) fprintf x
314 # else
315 # define Trace(x)
316 # endif
317 #endif
320 /*---------------------------------------------------------------------------*/
321 #ifdef USE_ZLIB
325 GRR: return values for both original inflate() and UZinflate()
326 0 OK
327 1 incomplete table(?)
328 2 bad input
329 3 not enough memory
332 /**************************/
333 /* Function UZinflate() */
334 /**************************/
336 int UZinflate(__G__ is_defl64)
337 __GDEF
338 int is_defl64;
339 /* decompress an inflated entry using the zlib routines */
341 int retval = 0; /* return code: 0 = "no error" */
342 int err=Z_OK;
344 #if (defined(DLL) && !defined(NO_SLIDE_REDIR))
345 if (G.redirect_slide)
346 wsize = G.redirect_size, redirSlide = G.redirect_buffer;
347 else
348 wsize = WSIZE, redirSlide = slide;
349 #endif
351 G.dstrm.next_out = redirSlide;
352 G.dstrm.avail_out = wsize;
354 G.dstrm.next_in = G.inptr;
355 G.dstrm.avail_in = G.incnt;
357 if (!G.inflInit) {
358 unsigned i;
359 int windowBits;
361 /* only need to test this stuff once */
362 if (zlib_version[0] != ZLIB_VERSION[0]) {
363 Info(slide, 0x21, ((char *)slide,
364 "error: incompatible zlib version (expected %s, found %s)\n",
365 ZLIB_VERSION, zlib_version));
366 return 3;
367 } else if (strcmp(zlib_version, ZLIB_VERSION) != 0)
368 Info(slide, 0x21, ((char *)slide,
369 "warning: different zlib version (expected %s, using %s)\n",
370 ZLIB_VERSION, zlib_version));
372 /* windowBits = log2(wsize) */
373 for (i = (unsigned)wsize, windowBits = 0;
374 !(i & 1); i >>= 1, ++windowBits);
375 if ((unsigned)windowBits > (unsigned)15)
376 windowBits = 15;
377 else if (windowBits < 8)
378 windowBits = 8;
380 G.dstrm.zalloc = (alloc_func)Z_NULL;
381 G.dstrm.zfree = (free_func)Z_NULL;
383 Trace((stderr, "initializing inflate()\n"));
384 err = inflateInit2(&G.dstrm, -windowBits);
386 if (err == Z_MEM_ERROR)
387 return 3;
388 else if (err != Z_OK)
389 Trace((stderr, "oops! (inflateInit2() err = %d)\n", err));
390 G.inflInit = 1;
393 #ifdef FUNZIP
394 while (err != Z_STREAM_END) {
395 #else /* !FUNZIP */
396 while (G.csize > 0) {
397 Trace((stderr, "first loop: G.csize = %ld\n", G.csize));
398 #endif /* ?FUNZIP */
399 while (G.dstrm.avail_out > 0) {
400 err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
402 if (err == Z_DATA_ERROR) {
403 retval = 2; goto uzinflate_cleanup_exit;
404 } else if (err == Z_MEM_ERROR) {
405 retval = 3; goto uzinflate_cleanup_exit;
406 } else if (err != Z_OK && err != Z_STREAM_END)
407 Trace((stderr, "oops! (inflate(first loop) err = %d)\n", err));
409 #ifdef FUNZIP
410 if (err == Z_STREAM_END) /* "END-of-entry-condition" ? */
411 #else /* !FUNZIP */
412 if (G.csize <= 0L) /* "END-of-entry-condition" ? */
413 #endif /* ?FUNZIP */
414 break;
416 if (G.dstrm.avail_in <= 0) {
417 if (fillinbuf(__G) == 0) {
418 /* no "END-condition" yet, but no more data */
419 retval = 2; goto uzinflate_cleanup_exit;
422 G.dstrm.next_in = G.inptr;
423 G.dstrm.avail_in = G.incnt;
425 Trace((stderr, " avail_in = %d\n", G.dstrm.avail_in));
427 /* flush slide[] */
428 if ((retval = FLUSH(wsize - G.dstrm.avail_out)) != 0)
429 goto uzinflate_cleanup_exit;
430 Trace((stderr, "inside loop: flushing %ld bytes (ptr diff = %ld)\n",
431 (long)(wsize - G.dstrm.avail_out),
432 (long)(G.dstrm.next_out-(Bytef *)redirSlide)));
433 G.dstrm.next_out = redirSlide;
434 G.dstrm.avail_out = wsize;
437 /* no more input, so loop until we have all output */
438 Trace((stderr, "beginning final loop: err = %d\n", err));
439 while (err != Z_STREAM_END) {
440 err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
441 if (err == Z_DATA_ERROR) {
442 retval = 2; goto uzinflate_cleanup_exit;
443 } else if (err == Z_MEM_ERROR) {
444 retval = 3; goto uzinflate_cleanup_exit;
445 } else if (err == Z_BUF_ERROR) { /* DEBUG */
446 Trace((stderr,
447 "zlib inflate() did not detect stream end (%s, %s)\n",
448 G.zipfn, G.filename));
449 break;
450 } else if (err != Z_OK && err != Z_STREAM_END) {
451 Trace((stderr, "oops! (inflate(final loop) err = %d)\n", err));
452 DESTROYGLOBALS();
453 EXIT(PK_MEM3);
455 /* final flush of slide[] */
456 if ((retval = FLUSH(wsize - G.dstrm.avail_out)) != 0)
457 goto uzinflate_cleanup_exit;
458 Trace((stderr, "final loop: flushing %ld bytes (ptr diff = %ld)\n",
459 (long)(wsize - G.dstrm.avail_out),
460 (long)(G.dstrm.next_out-(Bytef *)redirSlide)));
461 G.dstrm.next_out = redirSlide;
462 G.dstrm.avail_out = wsize;
464 Trace((stderr, "total in = %ld, total out = %ld\n", G.dstrm.total_in,
465 G.dstrm.total_out));
467 G.inptr = (uch *)G.dstrm.next_in;
468 G.incnt = (G.inbuf + INBUFSIZ) - G.inptr; /* reset for other routines */
470 uzinflate_cleanup_exit:
471 err = inflateReset(&G.dstrm);
472 if (err != Z_OK)
473 Trace((stderr, "oops! (inflateReset() err = %d)\n", err));
475 return retval;
479 /*---------------------------------------------------------------------------*/
480 #else /* !USE_ZLIB */
483 /* Function prototypes */
484 #ifndef OF
485 # ifdef __STDC__
486 # define OF(a) a
487 # else
488 # define OF(a) ()
489 # endif
490 #endif /* !OF */
491 int inflate_codes OF((__GPRO__ struct huft *tl, struct huft *td,
492 int bl, int bd));
493 static int inflate_stored OF((__GPRO));
494 static int inflate_fixed OF((__GPRO));
495 static int inflate_dynamic OF((__GPRO));
496 static int inflate_block OF((__GPRO__ int *e));
499 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
500 stream to find repeated byte strings. This is implemented here as a
501 circular buffer. The index is updated simply by incrementing and then
502 and'ing with 0x7fff (32K-1). */
503 /* It is left to other modules to supply the 32K area. It is assumed
504 to be usable as if it were declared "uch slide[32768];" or as just
505 "uch *slide;" and then malloc'ed in the latter case. The definition
506 must be in unzip.h, included above. */
509 /* unsigned wp; moved to globals.h */ /* current position in slide */
511 /* Tables for deflate from PKZIP's appnote.txt. */
512 /* - Order of the bit length code lengths */
513 static ZCONST unsigned border[] = {
514 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
516 /* - Copy lengths for literal codes 257..285 */
517 #ifdef USE_DEFLATE64
518 static ZCONST ush cplens64[] = {
519 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
520 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 3, 0, 0};
521 /* For Deflate64, the code 285 is defined differently. */
522 #else
523 # define cplens32 cplens
524 #endif
525 static ZCONST ush cplens32[] = {
526 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
527 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
528 /* note: see note #13 above about the 258 in this list. */
529 /* - Extra bits for literal codes 257..285 */
530 #ifdef USE_DEFLATE64
531 static ZCONST uch cplext64[] = {
532 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
533 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 16, INVALID_CODE, INVALID_CODE};
534 #else
535 # define cplext32 cplext
536 #endif
537 static ZCONST uch cplext32[] = {
538 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
539 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, INVALID_CODE, INVALID_CODE};
541 /* - Copy offsets for distance codes 0..29 (0..31 for Deflate64) */
542 static ZCONST ush cpdist[] = {
543 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
544 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
545 #if (defined(USE_DEFLATE64) || defined(PKZIP_BUG_WORKAROUND))
546 8193, 12289, 16385, 24577, 32769, 49153};
547 #else
548 8193, 12289, 16385, 24577};
549 #endif
551 /* - Extra bits for distance codes 0..29 (0..31 for Deflate64) */
552 #ifdef USE_DEFLATE64
553 static ZCONST uch cpdext64[] = {
554 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
555 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
556 12, 12, 13, 13, 14, 14};
557 #else
558 # define cpdext32 cpdext
559 #endif
560 static ZCONST uch cpdext32[] = {
561 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
562 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
563 #ifdef PKZIP_BUG_WORKAROUND
564 12, 12, 13, 13, INVALID_CODE, INVALID_CODE};
565 #else
566 12, 12, 13, 13};
567 #endif
569 #ifdef PKZIP_BUG_WORKAROUND
570 # define MAXLITLENS 288
571 #else
572 # define MAXLITLENS 286
573 #endif
574 #if (defined(USE_DEFLATE64) || defined(PKZIP_BUG_WORKAROUND))
575 # define MAXDISTS 32
576 #else
577 # define MAXDISTS 30
578 #endif
581 /* moved to consts.h (included in unzip.c), resp. funzip.c */
582 #if 0
583 /* And'ing with mask_bits[n] masks the lower n bits */
584 ZCONST ush near mask_bits[] = {
585 0x0000,
586 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
587 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
589 #endif /* 0 */
592 /* Macros for inflate() bit peeking and grabbing.
593 The usage is:
595 NEEDBITS(j)
596 x = b & mask_bits[j];
597 DUMPBITS(j)
599 where NEEDBITS makes sure that b has at least j bits in it, and
600 DUMPBITS removes the bits from b. The macros use the variable k
601 for the number of bits in b. Normally, b and k are register
602 variables for speed and are initialized at the begining of a
603 routine that uses these macros from a global bit buffer and count.
605 In order to not ask for more bits than there are in the compressed
606 stream, the Huffman tables are constructed to only ask for just
607 enough bits to make up the end-of-block code (value 256). Then no
608 bytes need to be "returned" to the buffer at the end of the last
609 block. See the huft_build() routine.
612 /* These have been moved to globals.h */
613 #if 0
614 ulg bb; /* bit buffer */
615 unsigned bk; /* bits in bit buffer */
616 #endif
618 #ifndef CHECK_EOF
619 # define CHECK_EOF /* default as of 5.13/5.2 */
620 #endif
622 #ifndef CHECK_EOF
623 # define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}}
624 #else
625 # define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;\
626 if(c==EOF){retval=1;goto cleanup_and_exit;}\
627 b|=((ulg)c)<<k;k+=8;}}
628 #endif
630 #define DUMPBITS(n) {b>>=(n);k-=(n);}
634 Huffman code decoding is performed using a multi-level table lookup.
635 The fastest way to decode is to simply build a lookup table whose
636 size is determined by the longest code. However, the time it takes
637 to build this table can also be a factor if the data being decoded
638 are not very long. The most common codes are necessarily the
639 shortest codes, so those codes dominate the decoding time, and hence
640 the speed. The idea is you can have a shorter table that decodes the
641 shorter, more probable codes, and then point to subsidiary tables for
642 the longer codes. The time it costs to decode the longer codes is
643 then traded against the time it takes to make longer tables.
645 This results of this trade are in the variables lbits and dbits
646 below. lbits is the number of bits the first level table for literal/
647 length codes can decode in one step, and dbits is the same thing for
648 the distance codes. Subsequent tables are also less than or equal to
649 those sizes. These values may be adjusted either when all of the
650 codes are shorter than that, in which case the longest code length in
651 bits is used, or when the shortest code is *longer* than the requested
652 table size, in which case the length of the shortest code in bits is
653 used.
655 There are two different values for the two tables, since they code a
656 different number of possibilities each. The literal/length table
657 codes 286 possible values, or in a flat code, a little over eight
658 bits. The distance table codes 30 possible values, or a little less
659 than five bits, flat. The optimum values for speed end up being
660 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
661 The optimum values may differ though from machine to machine, and
662 possibly even between compilers. Your mileage may vary.
666 static ZCONST int lbits = 9; /* bits in base literal/length lookup table */
667 static ZCONST int dbits = 6; /* bits in base distance lookup table */
670 #ifndef ASM_INFLATECODES
672 int inflate_codes(__G__ tl, td, bl, bd)
673 __GDEF
674 struct huft *tl, *td; /* literal/length and distance decoder tables */
675 int bl, bd; /* number of bits decoded by tl[] and td[] */
676 /* inflate (decompress) the codes in a deflated (compressed) block.
677 Return an error code or zero if it all goes ok. */
679 register unsigned e; /* table entry flag/number of extra bits */
680 unsigned d; /* index for copy */
681 UINT_D64 n; /* length for copy (deflate64: might be 64k+2) */
682 UINT_D64 w; /* current window position (deflate64: up to 64k) */
683 struct huft *t; /* pointer to table entry */
684 unsigned ml, md; /* masks for bl and bd bits */
685 register ulg b; /* bit buffer */
686 register unsigned k; /* number of bits in bit buffer */
687 int retval = 0; /* error code returned: initialized to "no error" */
690 /* make local copies of globals */
691 b = G.bb; /* initialize bit buffer */
692 k = G.bk;
693 w = G.wp; /* initialize window position */
696 /* inflate the coded data */
697 ml = mask_bits[bl]; /* precompute masks for speed */
698 md = mask_bits[bd];
699 while (1) /* do until end of block */
701 NEEDBITS((unsigned)bl)
702 t = tl + ((unsigned)b & ml);
703 while (1) {
704 DUMPBITS(t->b)
706 if ((e = t->e) == 32) /* then it's a literal */
708 redirSlide[w++] = (uch)t->v.n;
709 if (w == wsize)
711 if ((retval = FLUSH(w)) != 0) goto cleanup_and_exit;
712 w = 0;
714 break;
717 if (e < 31) /* then it's a length */
719 /* get length of block to copy */
720 NEEDBITS(e)
721 n = t->v.n + ((unsigned)b & mask_bits[e]);
722 DUMPBITS(e)
724 /* decode distance of block to copy */
725 NEEDBITS((unsigned)bd)
726 t = td + ((unsigned)b & md);
727 while (1) {
728 DUMPBITS(t->b)
729 if ((e = t->e) < 32)
730 break;
731 if (IS_INVALID_CODE(e))
732 return 1;
733 e &= 31;
734 NEEDBITS(e)
735 t = t->v.t + ((unsigned)b & mask_bits[e]);
737 NEEDBITS(e)
738 d = (unsigned)w - t->v.n - ((unsigned)b & mask_bits[e]);
739 DUMPBITS(e)
741 /* do the copy */
742 do {
743 #if (defined(DLL) && !defined(NO_SLIDE_REDIR))
744 if (G.redirect_slide) {
745 /* &= w/ wsize unnecessary & wrong if redirect */
746 if ((UINT_D64)d >= wsize)
747 return 1; /* invalid compressed data */
748 e = (unsigned)(wsize - (d > (unsigned)w ? (UINT_D64)d : w));
750 else
751 #endif
752 e = (unsigned)(wsize -
753 ((d &= (unsigned)(wsize-1)) > (unsigned)w ?
754 (UINT_D64)d : w));
755 if ((UINT_D64)e > n) e = (unsigned)n;
756 n -= e;
757 #ifndef NOMEMCPY
758 if ((unsigned)w - d >= e)
759 /* (this test assumes unsigned comparison) */
761 memcpy(redirSlide + (unsigned)w, redirSlide + d, e);
762 w += e;
763 d += e;
765 else /* do it slowly to avoid memcpy() overlap */
766 #endif /* !NOMEMCPY */
767 do {
768 redirSlide[w++] = redirSlide[d++];
769 } while (--e);
770 if (w == wsize)
772 if ((retval = FLUSH(w)) != 0) goto cleanup_and_exit;
773 w = 0;
775 } while (n);
776 break;
779 if (e == 31) /* it's the EOB signal */
781 /* sorry for this goto, but we have to exit two loops at once */
782 goto cleanup_decode;
785 if (IS_INVALID_CODE(e))
786 return 1;
788 e &= 31;
789 NEEDBITS(e)
790 t = t->v.t + ((unsigned)b & mask_bits[e]);
793 cleanup_decode:
795 /* restore the globals from the locals */
796 G.wp = (unsigned)w; /* restore global window pointer */
797 G.bb = b; /* restore global bit buffer */
798 G.bk = k;
801 cleanup_and_exit:
802 /* done */
803 return retval;
806 #endif /* ASM_INFLATECODES */
810 static int inflate_stored(__G)
811 __GDEF
812 /* "decompress" an inflated type 0 (stored) block. */
814 UINT_D64 w; /* current window position (deflate64: up to 64k!) */
815 unsigned n; /* number of bytes in block */
816 register ulg b; /* bit buffer */
817 register unsigned k; /* number of bits in bit buffer */
818 int retval = 0; /* error code returned: initialized to "no error" */
821 /* make local copies of globals */
822 Trace((stderr, "\nstored block"));
823 b = G.bb; /* initialize bit buffer */
824 k = G.bk;
825 w = G.wp; /* initialize window position */
828 /* go to byte boundary */
829 n = k & 7;
830 DUMPBITS(n);
833 /* get the length and its complement */
834 NEEDBITS(16)
835 n = ((unsigned)b & 0xffff);
836 DUMPBITS(16)
837 NEEDBITS(16)
838 if (n != (unsigned)((~b) & 0xffff))
839 return 1; /* error in compressed data */
840 DUMPBITS(16)
843 /* read and output the compressed data */
844 while (n--)
846 NEEDBITS(8)
847 redirSlide[w++] = (uch)b;
848 if (w == wsize)
850 if ((retval = FLUSH(w)) != 0) goto cleanup_and_exit;
851 w = 0;
853 DUMPBITS(8)
857 /* restore the globals from the locals */
858 G.wp = (unsigned)w; /* restore global window pointer */
859 G.bb = b; /* restore global bit buffer */
860 G.bk = k;
862 cleanup_and_exit:
863 return retval;
867 /* Globals for literal tables (built once) */
868 /* Moved to globals.h */
869 #if 0
870 struct huft *fixed_tl = (struct huft *)NULL;
871 struct huft *fixed_td;
872 int fixed_bl, fixed_bd;
873 #endif
875 static int inflate_fixed(__G)
876 __GDEF
877 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
878 either replace this with a custom decoder, or at least precompute the
879 Huffman tables. */
881 /* if first time, set up tables for fixed blocks */
882 Trace((stderr, "\nliteral block"));
883 if (G.fixed_tl == (struct huft *)NULL)
885 int i; /* temporary variable */
886 unsigned l[288]; /* length list for huft_build */
888 /* literal table */
889 for (i = 0; i < 144; i++)
890 l[i] = 8;
891 for (; i < 256; i++)
892 l[i] = 9;
893 for (; i < 280; i++)
894 l[i] = 7;
895 for (; i < 288; i++) /* make a complete, but wrong code set */
896 l[i] = 8;
897 G.fixed_bl = 7;
898 #ifdef USE_DEFLATE64
899 if ((i = huft_build(__G__ l, 288, 257, G.cplens, G.cplext,
900 &G.fixed_tl, &G.fixed_bl)) != 0)
901 #else
902 if ((i = huft_build(__G__ l, 288, 257, cplens, cplext,
903 &G.fixed_tl, &G.fixed_bl)) != 0)
904 #endif
906 G.fixed_tl = (struct huft *)NULL;
907 return i;
910 /* distance table */
911 for (i = 0; i < MAXDISTS; i++) /* make an incomplete code set */
912 l[i] = 5;
913 G.fixed_bd = 5;
914 #ifdef USE_DEFLATE64
915 if ((i = huft_build(__G__ l, MAXDISTS, 0, cpdist, G.cpdext,
916 &G.fixed_td, &G.fixed_bd)) > 1)
917 #else
918 if ((i = huft_build(__G__ l, MAXDISTS, 0, cpdist, cpdext,
919 &G.fixed_td, &G.fixed_bd)) > 1)
920 #endif
922 huft_free(G.fixed_tl);
923 G.fixed_td = G.fixed_tl = (struct huft *)NULL;
924 return i;
928 /* decompress until an end-of-block code */
929 return inflate_codes(__G__ G.fixed_tl, G.fixed_td,
930 G.fixed_bl, G.fixed_bd);
935 static int inflate_dynamic(__G)
936 __GDEF
937 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
939 int i; /* temporary variables */
940 unsigned j;
941 unsigned l; /* last length */
942 unsigned m; /* mask for bit lengths table */
943 unsigned n; /* number of lengths to get */
944 struct huft *tl; /* literal/length code table */
945 struct huft *td; /* distance code table */
946 int bl; /* lookup bits for tl */
947 int bd; /* lookup bits for td */
948 unsigned nb; /* number of bit length codes */
949 unsigned nl; /* number of literal/length codes */
950 unsigned nd; /* number of distance codes */
951 unsigned ll[MAXLITLENS+MAXDISTS]; /* lit./length and distance code lengths */
952 register ulg b; /* bit buffer */
953 register unsigned k; /* number of bits in bit buffer */
954 int retval = 0; /* error code returned: initialized to "no error" */
957 /* make local bit buffer */
958 Trace((stderr, "\ndynamic block"));
959 b = G.bb;
960 k = G.bk;
963 /* read in table lengths */
964 NEEDBITS(5)
965 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
966 DUMPBITS(5)
967 NEEDBITS(5)
968 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
969 DUMPBITS(5)
970 NEEDBITS(4)
971 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
972 DUMPBITS(4)
973 if (nl > MAXLITLENS || nd > MAXDISTS)
974 return 1; /* bad lengths */
977 /* read in bit-length-code lengths */
978 for (j = 0; j < nb; j++)
980 NEEDBITS(3)
981 ll[border[j]] = (unsigned)b & 7;
982 DUMPBITS(3)
984 for (; j < 19; j++)
985 ll[border[j]] = 0;
988 /* build decoding table for trees--single level, 7 bit lookup */
989 bl = 7;
990 retval = huft_build(__G__ ll, 19, 19, NULL, NULL, &tl, &bl);
991 if (bl == 0) /* no bit lengths */
992 retval = 1;
993 if (retval)
995 if (retval == 1)
996 huft_free(tl);
997 return retval; /* incomplete code set */
1001 /* read in literal and distance code lengths */
1002 n = nl + nd;
1003 m = mask_bits[bl];
1004 i = l = 0;
1005 while ((unsigned)i < n)
1007 NEEDBITS((unsigned)bl)
1008 j = (td = tl + ((unsigned)b & m))->b;
1009 DUMPBITS(j)
1010 j = td->v.n;
1011 if (j < 16) /* length of code in bits (0..15) */
1012 ll[i++] = l = j; /* save last length in l */
1013 else if (j == 16) /* repeat last length 3 to 6 times */
1015 NEEDBITS(2)
1016 j = 3 + ((unsigned)b & 3);
1017 DUMPBITS(2)
1018 if ((unsigned)i + j > n)
1019 return 1;
1020 while (j--)
1021 ll[i++] = l;
1023 else if (j == 17) /* 3 to 10 zero length codes */
1025 NEEDBITS(3)
1026 j = 3 + ((unsigned)b & 7);
1027 DUMPBITS(3)
1028 if ((unsigned)i + j > n)
1029 return 1;
1030 while (j--)
1031 ll[i++] = 0;
1032 l = 0;
1034 else /* j == 18: 11 to 138 zero length codes */
1036 NEEDBITS(7)
1037 j = 11 + ((unsigned)b & 0x7f);
1038 DUMPBITS(7)
1039 if ((unsigned)i + j > n)
1040 return 1;
1041 while (j--)
1042 ll[i++] = 0;
1043 l = 0;
1048 /* free decoding table for trees */
1049 huft_free(tl);
1052 /* restore the global bit buffer */
1053 G.bb = b;
1054 G.bk = k;
1057 /* build the decoding tables for literal/length and distance codes */
1058 bl = lbits;
1059 #ifdef USE_DEFLATE64
1060 retval = huft_build(__G__ ll, nl, 257, G.cplens, G.cplext, &tl, &bl);
1061 #else
1062 retval = huft_build(__G__ ll, nl, 257, cplens, cplext, &tl, &bl);
1063 #endif
1064 if (bl == 0) /* no literals or lengths */
1065 retval = 1;
1066 if (retval)
1068 if (retval == 1) {
1069 if (!uO.qflag)
1070 MESSAGE((uch *)"(incomplete l-tree) ", 21L, 1);
1071 huft_free(tl);
1073 return retval; /* incomplete code set */
1075 bd = dbits;
1076 #ifdef USE_DEFLATE64
1077 retval = huft_build(__G__ ll + nl, nd, 0, cpdist, G.cpdext, &td, &bd);
1078 #else
1079 retval = huft_build(__G__ ll + nl, nd, 0, cpdist, cpdext, &td, &bd);
1080 #endif
1081 #ifdef PKZIP_BUG_WORKAROUND
1082 if (retval == 1)
1083 retval = 0;
1084 #endif
1085 if (bd == 0 && nl > 257) /* lengths but no distances */
1086 retval = 1;
1087 if (retval)
1089 if (retval == 1) {
1090 if (!uO.qflag)
1091 MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1);
1092 huft_free(td);
1094 huft_free(tl);
1095 return retval;
1098 /* decompress until an end-of-block code */
1099 retval = inflate_codes(__G__ tl, td, bl, bd);
1101 cleanup_and_exit:
1102 /* free the decoding tables, return */
1103 huft_free(tl);
1104 huft_free(td);
1105 return retval;
1110 static int inflate_block(__G__ e)
1111 __GDEF
1112 int *e; /* last block flag */
1113 /* decompress an inflated block */
1115 unsigned t; /* block type */
1116 register ulg b; /* bit buffer */
1117 register unsigned k; /* number of bits in bit buffer */
1118 int retval = 0; /* error code returned: initialized to "no error" */
1121 /* make local bit buffer */
1122 b = G.bb;
1123 k = G.bk;
1126 /* read in last block bit */
1127 NEEDBITS(1)
1128 *e = (int)b & 1;
1129 DUMPBITS(1)
1132 /* read in block type */
1133 NEEDBITS(2)
1134 t = (unsigned)b & 3;
1135 DUMPBITS(2)
1138 /* restore the global bit buffer */
1139 G.bb = b;
1140 G.bk = k;
1143 /* inflate that block type */
1144 if (t == 2)
1145 return inflate_dynamic(__G);
1146 if (t == 0)
1147 return inflate_stored(__G);
1148 if (t == 1)
1149 return inflate_fixed(__G);
1152 /* bad block type */
1153 retval = 2;
1155 cleanup_and_exit:
1156 return retval;
1161 int inflate(__G__ is_defl64)
1162 __GDEF
1163 int is_defl64;
1164 /* decompress an inflated entry */
1166 int e; /* last block flag */
1167 int r; /* result code */
1168 #ifdef DEBUG
1169 unsigned h = 0; /* maximum struct huft's malloc'ed */
1170 #endif
1172 #if (defined(DLL) && !defined(NO_SLIDE_REDIR))
1173 if (G.redirect_slide)
1174 wsize = G.redirect_size, redirSlide = G.redirect_buffer;
1175 else
1176 wsize = WSIZE, redirSlide = slide; /* how they're #defined if !DLL */
1177 #endif
1179 /* initialize window, bit buffer */
1180 G.wp = 0;
1181 G.bk = 0;
1182 G.bb = 0;
1184 #ifdef USE_DEFLATE64
1185 if (is_defl64) {
1186 G.cplens = cplens64;
1187 G.cplext = cplext64;
1188 G.cpdext = cpdext64;
1189 G.fixed_tl = G.fixed_tl64;
1190 G.fixed_bl = G.fixed_bl64;
1191 G.fixed_td = G.fixed_td64;
1192 G.fixed_bd = G.fixed_bd64;
1193 } else {
1194 G.cplens = cplens32;
1195 G.cplext = cplext32;
1196 G.cpdext = cpdext32;
1197 G.fixed_tl = G.fixed_tl32;
1198 G.fixed_bl = G.fixed_bl32;
1199 G.fixed_td = G.fixed_td32;
1200 G.fixed_bd = G.fixed_bd32;
1202 #else /* !USE_DEFLATE64 */
1203 if (is_defl64) {
1204 /* This should not happen unless UnZip is built from object files
1205 * compiled with inconsistent option setting. Handle this by
1206 * returning with "bad input" error code.
1208 Trace((stderr, "\nThis inflate() cannot handle Deflate64!\n"));
1209 return 2;
1211 #endif /* ?USE_DEFLATE64 */
1213 /* decompress until the last block */
1214 do {
1215 #ifdef DEBUG
1216 G.hufts = 0;
1217 #endif
1218 if ((r = inflate_block(__G__ &e)) != 0)
1219 return r;
1220 #ifdef DEBUG
1221 if (G.hufts > h)
1222 h = G.hufts;
1223 #endif
1224 } while (!e);
1226 Trace((stderr, "\n%u bytes in Huffman tables (%u/entry)\n",
1227 h * (unsigned)sizeof(struct huft), (unsigned)sizeof(struct huft)));
1229 #ifdef USE_DEFLATE64
1230 if (is_defl64) {
1231 G.fixed_tl64 = G.fixed_tl;
1232 G.fixed_bl64 = G.fixed_bl;
1233 G.fixed_td64 = G.fixed_td;
1234 G.fixed_bd64 = G.fixed_bd;
1235 } else {
1236 G.fixed_tl32 = G.fixed_tl;
1237 G.fixed_bl32 = G.fixed_bl;
1238 G.fixed_td32 = G.fixed_td;
1239 G.fixed_bd32 = G.fixed_bd;
1241 #endif
1243 /* flush out redirSlide and return (success, unless final FLUSH failed) */
1244 return (FLUSH(G.wp));
1249 int inflate_free(__G)
1250 __GDEF
1252 if (G.fixed_tl != (struct huft *)NULL)
1254 huft_free(G.fixed_td);
1255 huft_free(G.fixed_tl);
1256 G.fixed_td = G.fixed_tl = (struct huft *)NULL;
1258 return 0;
1261 #endif /* ?USE_ZLIB */
1265 * GRR: moved huft_build() and huft_free() down here; used by explode()
1266 * and fUnZip regardless of whether USE_ZLIB defined or not
1270 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
1271 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
1272 #define N_MAX 288 /* maximum number of codes in any set */
1275 int huft_build(__G__ b, n, s, d, e, t, m)
1276 __GDEF
1277 ZCONST unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
1278 unsigned n; /* number of codes (assumed <= N_MAX) */
1279 unsigned s; /* number of simple-valued codes (0..s-1) */
1280 ZCONST ush *d; /* list of base values for non-simple codes */
1281 ZCONST uch *e; /* list of extra bits for non-simple codes */
1282 struct huft **t; /* result: starting table */
1283 int *m; /* maximum lookup bits, returns actual */
1284 /* Given a list of code lengths and a maximum table size, make a set of
1285 tables to decode that set of codes. Return zero on success, one if
1286 the given code set is incomplete (the tables are still built in this
1287 case), two if the input is invalid (all zero length codes or an
1288 oversubscribed set of lengths), and three if not enough memory.
1289 The code with value 256 is special, and the tables are constructed
1290 so that no bits beyond that code are fetched when that code is
1291 decoded. */
1293 unsigned a; /* counter for codes of length k */
1294 unsigned c[BMAX+1]; /* bit length count table */
1295 unsigned el; /* length of EOB code (value 256) */
1296 unsigned f; /* i repeats in table every f entries */
1297 int g; /* maximum code length */
1298 int h; /* table level */
1299 register unsigned i; /* counter, current code */
1300 register unsigned j; /* counter */
1301 register int k; /* number of bits in current code */
1302 int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */
1303 int *l = lx+1; /* stack of bits per table */
1304 register unsigned *p; /* pointer into c[], b[], or v[] */
1305 register struct huft *q; /* points to current table */
1306 struct huft r; /* table entry for structure assignment */
1307 struct huft *u[BMAX]; /* table stack */
1308 unsigned v[N_MAX]; /* values in order of bit length */
1309 register int w; /* bits before this table == (l * h) */
1310 unsigned x[BMAX+1]; /* bit offsets, then code stack */
1311 unsigned *xp; /* pointer into x */
1312 int y; /* number of dummy codes added */
1313 unsigned z; /* number of entries in current table */
1316 /* Generate counts for each bit length */
1317 el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
1318 memzero((char *)c, sizeof(c));
1319 p = (unsigned *)b; i = n;
1320 do {
1321 c[*p]++; p++; /* assume all entries <= BMAX */
1322 } while (--i);
1323 if (c[0] == n) /* null input--all zero length codes */
1325 *t = (struct huft *)NULL;
1326 *m = 0;
1327 return 0;
1331 /* Find minimum and maximum length, bound *m by those */
1332 for (j = 1; j <= BMAX; j++)
1333 if (c[j])
1334 break;
1335 k = j; /* minimum code length */
1336 if ((unsigned)*m < j)
1337 *m = j;
1338 for (i = BMAX; i; i--)
1339 if (c[i])
1340 break;
1341 g = i; /* maximum code length */
1342 if ((unsigned)*m > i)
1343 *m = i;
1346 /* Adjust last length count to fill out codes, if needed */
1347 for (y = 1 << j; j < i; j++, y <<= 1)
1348 if ((y -= c[j]) < 0)
1349 return 2; /* bad input: more codes than bits */
1350 if ((y -= c[i]) < 0)
1351 return 2;
1352 c[i] += y;
1355 /* Generate starting offsets into the value table for each length */
1356 x[1] = j = 0;
1357 p = c + 1; xp = x + 2;
1358 while (--i) { /* note that i == g from above */
1359 *xp++ = (j += *p++);
1363 /* Make a table of values in order of bit lengths */
1364 memzero((char *)v, sizeof(v));
1365 p = (unsigned *)b; i = 0;
1366 do {
1367 if ((j = *p++) != 0)
1368 v[x[j]++] = i;
1369 } while (++i < n);
1370 n = x[g]; /* set n to length of v */
1373 /* Generate the Huffman codes and for each, make the table entries */
1374 x[0] = i = 0; /* first Huffman code is zero */
1375 p = v; /* grab values in bit order */
1376 h = -1; /* no tables yet--level -1 */
1377 w = l[-1] = 0; /* no bits decoded yet */
1378 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
1379 q = (struct huft *)NULL; /* ditto */
1380 z = 0; /* ditto */
1382 /* go through the bit lengths (k already is bits in shortest code) */
1383 for (; k <= g; k++)
1385 a = c[k];
1386 while (a--)
1388 /* here i is the Huffman code of length k bits for value *p */
1389 /* make tables up to required level */
1390 while (k > w + l[h])
1392 w += l[h++]; /* add bits already decoded */
1394 /* compute minimum size table less than or equal to *m bits */
1395 z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */
1396 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
1397 { /* too few codes for k-w bit table */
1398 f -= a + 1; /* deduct codes from patterns left */
1399 xp = c + k;
1400 while (++j < z) /* try smaller tables up to z bits */
1402 if ((f <<= 1) <= *++xp)
1403 break; /* enough codes to use up j bits */
1404 f -= *xp; /* else deduct codes from patterns */
1407 if ((unsigned)w + j > el && (unsigned)w < el)
1408 j = el - w; /* make EOB code end at table */
1409 z = 1 << j; /* table entries for j-bit table */
1410 l[h] = j; /* set table size in stack */
1412 /* allocate and link in new table */
1413 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
1414 (struct huft *)NULL)
1416 if (h)
1417 huft_free(u[0]);
1418 return 3; /* not enough memory */
1420 #ifdef DEBUG
1421 G.hufts += z + 1; /* track memory usage */
1422 #endif
1423 *t = q + 1; /* link to list for huft_free() */
1424 *(t = &(q->v.t)) = (struct huft *)NULL;
1425 u[h] = ++q; /* table starts after link */
1427 /* connect to last table, if there is one */
1428 if (h)
1430 x[h] = i; /* save pattern for backing up */
1431 r.b = (uch)l[h-1]; /* bits to dump before this table */
1432 r.e = (uch)(32 + j); /* bits in this table */
1433 r.v.t = q; /* pointer to this table */
1434 j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
1435 u[h-1][j] = r; /* connect to last table */
1439 /* set up table entry in r */
1440 r.b = (uch)(k - w);
1441 if (p >= v + n)
1442 r.e = INVALID_CODE; /* out of values--invalid code */
1443 else if (*p < s)
1445 r.e = (uch)(*p < 256 ? 32 : 31); /* 256 is end-of-block code */
1446 r.v.n = (ush)*p++; /* simple code is just the value */
1448 else
1450 r.e = e[*p - s]; /* non-simple--look up in lists */
1451 r.v.n = d[*p++ - s];
1454 /* fill code-like entries with r */
1455 f = 1 << (k - w);
1456 for (j = i >> w; j < z; j += f)
1457 q[j] = r;
1459 /* backwards increment the k-bit code i */
1460 for (j = 1 << (k - 1); i & j; j >>= 1)
1461 i ^= j;
1462 i ^= j;
1464 /* backup over finished tables */
1465 while ((i & ((1 << w) - 1)) != x[h])
1466 w -= l[--h]; /* don't need to update q */
1471 /* return actual size of base table */
1472 *m = l[0];
1475 /* Return true (1) if we were given an incomplete table */
1476 return y != 0 && g != 1;
1481 int huft_free(t)
1482 struct huft *t; /* table to free */
1483 /* Free the malloc'ed tables built by huft_build(), which makes a linked
1484 list of the tables it made, with the links in a dummy first entry of
1485 each table. */
1487 register struct huft *p, *q;
1490 /* Go through linked list, freeing from the malloced (t[-1]) address. */
1491 p = t;
1492 while (p != (struct huft *)NULL)
1494 q = (--p)->v.t;
1495 free((zvoid *)p);
1496 p = q;
1498 return 0;