vfs: check userland buffers before reading them.
[haiku.git] / src / add-ons / kernel / drivers / audio / ac97 / auich / queue.h
blob396c70fb2e51dbdedb1eb7f85ff662828c2fa254
1 /* $NetBSD: queue.h,v 1.31 2002/06/01 23:51:05 lukem Exp $ */
3 /*
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 * @(#)queue.h 8.5 (Berkeley) 8/20/94
38 #ifndef _SYS_QUEUE_H_
39 #define _SYS_QUEUE_H_
42 * This file defines five types of data structures: singly-linked lists,
43 * lists, simple queues, tail queues, and circular queues.
45 * A singly-linked list is headed by a single forward pointer. The
46 * elements are singly linked for minimum space and pointer manipulation
47 * overhead at the expense of O(n) removal for arbitrary elements. New
48 * elements can be added to the list after an existing element or at the
49 * head of the list. Elements being removed from the head of the list
50 * should use the explicit macro for this purpose for optimum
51 * efficiency. A singly-linked list may only be traversed in the forward
52 * direction. Singly-linked lists are ideal for applications with large
53 * datasets and few or no removals or for implementing a LIFO queue.
55 * A list is headed by a single forward pointer (or an array of forward
56 * pointers for a hash table header). The elements are doubly linked
57 * so that an arbitrary element can be removed without a need to
58 * traverse the list. New elements can be added to the list before
59 * or after an existing element or at the head of the list. A list
60 * may only be traversed in the forward direction.
62 * A simple queue is headed by a pair of pointers, one the head of the
63 * list and the other to the tail of the list. The elements are singly
64 * linked to save space, so only elements can only be removed from the
65 * head of the list. New elements can be added to the list after
66 * an existing element, at the head of the list, or at the end of the
67 * list. A simple queue may only be traversed in the forward direction.
69 * A tail queue is headed by a pair of pointers, one to the head of the
70 * list and the other to the tail of the list. The elements are doubly
71 * linked so that an arbitrary element can be removed without a need to
72 * traverse the list. New elements can be added to the list before or
73 * after an existing element, at the head of the list, or at the end of
74 * the list. A tail queue may be traversed in either direction.
76 * A circle queue is headed by a pair of pointers, one to the head of the
77 * list and the other to the tail of the list. The elements are doubly
78 * linked so that an arbitrary element can be removed without a need to
79 * traverse the list. New elements can be added to the list before or after
80 * an existing element, at the head of the list, or at the end of the list.
81 * A circle queue may be traversed in either direction, but has a more
82 * complex end of list detection.
84 * For details on the use of these macros, see the queue(3) manual page.
88 * List definitions.
90 #define LIST_HEAD(name, type) \
91 struct name { \
92 struct type *lh_first; /* first element */ \
95 #define LIST_HEAD_INITIALIZER(head) \
96 { NULL }
98 #define LIST_ENTRY(type) \
99 struct { \
100 struct type *le_next; /* next element */ \
101 struct type **le_prev; /* address of previous next element */ \
105 * List functions.
107 #if defined(_KERNEL) && defined(QUEUEDEBUG)
108 #define QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field) \
109 if ((head)->lh_first && \
110 (head)->lh_first->field.le_prev != &(head)->lh_first) \
111 panic("LIST_INSERT_HEAD %p %s:%d", (head), __FILE__, __LINE__);
112 #define QUEUEDEBUG_LIST_OP(elm, field) \
113 if ((elm)->field.le_next && \
114 (elm)->field.le_next->field.le_prev != \
115 &(elm)->field.le_next) \
116 panic("LIST_* forw %p %s:%d", (elm), __FILE__, __LINE__);\
117 if (*(elm)->field.le_prev != (elm)) \
118 panic("LIST_* back %p %s:%d", (elm), __FILE__, __LINE__);
119 #define QUEUEDEBUG_LIST_POSTREMOVE(elm, field) \
120 (elm)->field.le_next = (void *)1L; \
121 (elm)->field.le_prev = (void *)1L;
122 #else
123 #define QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field)
124 #define QUEUEDEBUG_LIST_OP(elm, field)
125 #define QUEUEDEBUG_LIST_POSTREMOVE(elm, field)
126 #endif
128 #define LIST_INIT(head) do { \
129 (head)->lh_first = NULL; \
130 } while (/*CONSTCOND*/0)
132 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
133 QUEUEDEBUG_LIST_OP((listelm), field) \
134 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
135 (listelm)->field.le_next->field.le_prev = \
136 &(elm)->field.le_next; \
137 (listelm)->field.le_next = (elm); \
138 (elm)->field.le_prev = &(listelm)->field.le_next; \
139 } while (/*CONSTCOND*/0)
141 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
142 QUEUEDEBUG_LIST_OP((listelm), field) \
143 (elm)->field.le_prev = (listelm)->field.le_prev; \
144 (elm)->field.le_next = (listelm); \
145 *(listelm)->field.le_prev = (elm); \
146 (listelm)->field.le_prev = &(elm)->field.le_next; \
147 } while (/*CONSTCOND*/0)
149 #define LIST_INSERT_HEAD(head, elm, field) do { \
150 QUEUEDEBUG_LIST_INSERT_HEAD((head), (elm), field) \
151 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
152 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
153 (head)->lh_first = (elm); \
154 (elm)->field.le_prev = &(head)->lh_first; \
155 } while (/*CONSTCOND*/0)
157 #define LIST_REMOVE(elm, field) do { \
158 QUEUEDEBUG_LIST_OP((elm), field) \
159 if ((elm)->field.le_next != NULL) \
160 (elm)->field.le_next->field.le_prev = \
161 (elm)->field.le_prev; \
162 *(elm)->field.le_prev = (elm)->field.le_next; \
163 QUEUEDEBUG_LIST_POSTREMOVE((elm), field) \
164 } while (/*CONSTCOND*/0)
166 #define LIST_FOREACH(var, head, field) \
167 for ((var) = ((head)->lh_first); \
168 (var); \
169 (var) = ((var)->field.le_next))
172 * List access methods.
174 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
175 #define LIST_FIRST(head) ((head)->lh_first)
176 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
179 * Singly-linked List definitions.
181 #define SLIST_HEAD(name, type) \
182 struct name { \
183 struct type *slh_first; /* first element */ \
186 #define SLIST_HEAD_INITIALIZER(head) \
187 { NULL }
189 #define SLIST_ENTRY(type) \
190 struct { \
191 struct type *sle_next; /* next element */ \
195 * Singly-linked List functions.
197 #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
198 #define SLIST_FIRST(head) ((head)->slh_first)
199 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
201 #define SLIST_FOREACH(var, head, field) \
202 for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
204 #define SLIST_INIT(head) do { \
205 (head)->slh_first = NULL; \
206 } while (/*CONSTCOND*/0)
208 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
209 (elm)->field.sle_next = (slistelm)->field.sle_next; \
210 (slistelm)->field.sle_next = (elm); \
211 } while (/*CONSTCOND*/0)
213 #define SLIST_INSERT_HEAD(head, elm, field) do { \
214 (elm)->field.sle_next = (head)->slh_first; \
215 (head)->slh_first = (elm); \
216 } while (/*CONSTCOND*/0)
218 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
220 #define SLIST_REMOVE_HEAD(head, field) do { \
221 (head)->slh_first = (head)->slh_first->field.sle_next; \
222 } while (/*CONSTCOND*/0)
224 #define SLIST_REMOVE(head, elm, type, field) do { \
225 if ((head)->slh_first == (elm)) { \
226 SLIST_REMOVE_HEAD((head), field); \
228 else { \
229 struct type *curelm = (head)->slh_first; \
230 while(curelm->field.sle_next != (elm)) \
231 curelm = curelm->field.sle_next; \
232 curelm->field.sle_next = \
233 curelm->field.sle_next->field.sle_next; \
235 } while (/*CONSTCOND*/0)
238 * Simple queue definitions.
240 #define SIMPLEQ_HEAD(name, type) \
241 struct name { \
242 struct type *sqh_first; /* first element */ \
243 struct type **sqh_last; /* addr of last next element */ \
246 #define SIMPLEQ_HEAD_INITIALIZER(head) \
247 { NULL, &(head).sqh_first }
249 #define SIMPLEQ_ENTRY(type) \
250 struct { \
251 struct type *sqe_next; /* next element */ \
255 * Simple queue functions.
257 #define SIMPLEQ_INIT(head) do { \
258 (head)->sqh_first = NULL; \
259 (head)->sqh_last = &(head)->sqh_first; \
260 } while (/*CONSTCOND*/0)
262 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
263 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
264 (head)->sqh_last = &(elm)->field.sqe_next; \
265 (head)->sqh_first = (elm); \
266 } while (/*CONSTCOND*/0)
268 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
269 (elm)->field.sqe_next = NULL; \
270 *(head)->sqh_last = (elm); \
271 (head)->sqh_last = &(elm)->field.sqe_next; \
272 } while (/*CONSTCOND*/0)
274 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
275 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
276 (head)->sqh_last = &(elm)->field.sqe_next; \
277 (listelm)->field.sqe_next = (elm); \
278 } while (/*CONSTCOND*/0)
280 #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
281 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
282 (head)->sqh_last = &(head)->sqh_first; \
283 } while (/*CONSTCOND*/0)
285 #define SIMPLEQ_REMOVE(head, elm, type, field) do { \
286 if ((head)->sqh_first == (elm)) { \
287 SIMPLEQ_REMOVE_HEAD((head), field); \
288 } else { \
289 struct type *curelm = (head)->sqh_first; \
290 while (curelm->field.sqe_next != (elm)) \
291 curelm = curelm->field.sqe_next; \
292 if ((curelm->field.sqe_next = \
293 curelm->field.sqe_next->field.sqe_next) == NULL) \
294 (head)->sqh_last = &(curelm)->field.sqe_next; \
296 } while (/*CONSTCOND*/0)
298 #define SIMPLEQ_FOREACH(var, head, field) \
299 for ((var) = ((head)->sqh_first); \
300 (var); \
301 (var) = ((var)->field.sqe_next))
304 * Simple queue access methods.
306 #define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
307 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
308 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
311 * Tail queue definitions.
313 #define TAILQ_HEAD(name, type) \
314 struct name { \
315 struct type *tqh_first; /* first element */ \
316 struct type **tqh_last; /* addr of last next element */ \
319 #define TAILQ_HEAD_INITIALIZER(head) \
320 { NULL, &(head).tqh_first }
322 #define TAILQ_ENTRY(type) \
323 struct { \
324 struct type *tqe_next; /* next element */ \
325 struct type **tqe_prev; /* address of previous next element */ \
329 * Tail queue functions.
331 #if defined(_KERNEL) && defined(QUEUEDEBUG)
332 #define QUEUEDEBUG_TAILQ_INSERT_HEAD(head, elm, field) \
333 if ((head)->tqh_first && \
334 (head)->tqh_first->field.tqe_prev != &(head)->tqh_first) \
335 panic("TAILQ_INSERT_HEAD %p %s:%d", (head), __FILE__, __LINE__);
336 #define QUEUEDEBUG_TAILQ_INSERT_TAIL(head, elm, field) \
337 if (*(head)->tqh_last != NULL) \
338 panic("TAILQ_INSERT_TAIL %p %s:%d", (head), __FILE__, __LINE__);
339 #define QUEUEDEBUG_TAILQ_OP(elm, field) \
340 if ((elm)->field.tqe_next && \
341 (elm)->field.tqe_next->field.tqe_prev != \
342 &(elm)->field.tqe_next) \
343 panic("TAILQ_* forw %p %s:%d", (elm), __FILE__, __LINE__);\
344 if (*(elm)->field.tqe_prev != (elm)) \
345 panic("TAILQ_* back %p %s:%d", (elm), __FILE__, __LINE__);
346 #define QUEUEDEBUG_TAILQ_POSTREMOVE(elm, field) \
347 (elm)->field.tqe_next = (void *)1L; \
348 (elm)->field.tqe_prev = (void *)1L;
349 #else
350 #define QUEUEDEBUG_TAILQ_INSERT_HEAD(head, elm, field)
351 #define QUEUEDEBUG_TAILQ_INSERT_TAIL(head, elm, field)
352 #define QUEUEDEBUG_TAILQ_OP(elm, field)
353 #define QUEUEDEBUG_TAILQ_POSTREMOVE(elm, field)
354 #endif
356 #define TAILQ_INIT(head) do { \
357 (head)->tqh_first = NULL; \
358 (head)->tqh_last = &(head)->tqh_first; \
359 } while (/*CONSTCOND*/0)
361 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
362 QUEUEDEBUG_TAILQ_INSERT_HEAD((head), (elm), field) \
363 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
364 (head)->tqh_first->field.tqe_prev = \
365 &(elm)->field.tqe_next; \
366 else \
367 (head)->tqh_last = &(elm)->field.tqe_next; \
368 (head)->tqh_first = (elm); \
369 (elm)->field.tqe_prev = &(head)->tqh_first; \
370 } while (/*CONSTCOND*/0)
372 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
373 QUEUEDEBUG_TAILQ_INSERT_TAIL((head), (elm), field) \
374 (elm)->field.tqe_next = NULL; \
375 (elm)->field.tqe_prev = (head)->tqh_last; \
376 *(head)->tqh_last = (elm); \
377 (head)->tqh_last = &(elm)->field.tqe_next; \
378 } while (/*CONSTCOND*/0)
380 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
381 QUEUEDEBUG_TAILQ_OP((listelm), field) \
382 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
383 (elm)->field.tqe_next->field.tqe_prev = \
384 &(elm)->field.tqe_next; \
385 else \
386 (head)->tqh_last = &(elm)->field.tqe_next; \
387 (listelm)->field.tqe_next = (elm); \
388 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
389 } while (/*CONSTCOND*/0)
391 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
392 QUEUEDEBUG_TAILQ_OP((listelm), field) \
393 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
394 (elm)->field.tqe_next = (listelm); \
395 *(listelm)->field.tqe_prev = (elm); \
396 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
397 } while (/*CONSTCOND*/0)
399 #define TAILQ_REMOVE(head, elm, field) do { \
400 QUEUEDEBUG_TAILQ_OP((elm), field) \
401 if (((elm)->field.tqe_next) != NULL) \
402 (elm)->field.tqe_next->field.tqe_prev = \
403 (elm)->field.tqe_prev; \
404 else \
405 (head)->tqh_last = (elm)->field.tqe_prev; \
406 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
407 QUEUEDEBUG_TAILQ_POSTREMOVE((elm), field); \
408 } while (/*CONSTCOND*/0)
411 * Tail queue access methods.
413 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
414 #define TAILQ_FIRST(head) ((head)->tqh_first)
415 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
417 #define TAILQ_LAST(head, headname) \
418 (*(((struct headname *)((head)->tqh_last))->tqh_last))
419 #define TAILQ_PREV(elm, headname, field) \
420 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
422 #define TAILQ_FOREACH(var, head, field) \
423 for ((var) = ((head)->tqh_first); \
424 (var); \
425 (var) = ((var)->field.tqe_next))
427 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
428 for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \
429 (var); \
430 (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
433 * Circular queue definitions.
435 #define CIRCLEQ_HEAD(name, type) \
436 struct name { \
437 struct type *cqh_first; /* first element */ \
438 struct type *cqh_last; /* last element */ \
441 #define CIRCLEQ_HEAD_INITIALIZER(head) \
442 { (void *)&head, (void *)&head }
444 #define CIRCLEQ_ENTRY(type) \
445 struct { \
446 struct type *cqe_next; /* next element */ \
447 struct type *cqe_prev; /* previous element */ \
451 * Circular queue functions.
453 #define CIRCLEQ_INIT(head) do { \
454 (head)->cqh_first = (void *)(head); \
455 (head)->cqh_last = (void *)(head); \
456 } while (/*CONSTCOND*/0)
458 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
459 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
460 (elm)->field.cqe_prev = (listelm); \
461 if ((listelm)->field.cqe_next == (void *)(head)) \
462 (head)->cqh_last = (elm); \
463 else \
464 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
465 (listelm)->field.cqe_next = (elm); \
466 } while (/*CONSTCOND*/0)
468 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
469 (elm)->field.cqe_next = (listelm); \
470 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
471 if ((listelm)->field.cqe_prev == (void *)(head)) \
472 (head)->cqh_first = (elm); \
473 else \
474 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
475 (listelm)->field.cqe_prev = (elm); \
476 } while (/*CONSTCOND*/0)
478 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
479 (elm)->field.cqe_next = (head)->cqh_first; \
480 (elm)->field.cqe_prev = (void *)(head); \
481 if ((head)->cqh_last == (void *)(head)) \
482 (head)->cqh_last = (elm); \
483 else \
484 (head)->cqh_first->field.cqe_prev = (elm); \
485 (head)->cqh_first = (elm); \
486 } while (/*CONSTCOND*/0)
488 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
489 (elm)->field.cqe_next = (void *)(head); \
490 (elm)->field.cqe_prev = (head)->cqh_last; \
491 if ((head)->cqh_first == (void *)(head)) \
492 (head)->cqh_first = (elm); \
493 else \
494 (head)->cqh_last->field.cqe_next = (elm); \
495 (head)->cqh_last = (elm); \
496 } while (/*CONSTCOND*/0)
498 #define CIRCLEQ_REMOVE(head, elm, field) do { \
499 if ((elm)->field.cqe_next == (void *)(head)) \
500 (head)->cqh_last = (elm)->field.cqe_prev; \
501 else \
502 (elm)->field.cqe_next->field.cqe_prev = \
503 (elm)->field.cqe_prev; \
504 if ((elm)->field.cqe_prev == (void *)(head)) \
505 (head)->cqh_first = (elm)->field.cqe_next; \
506 else \
507 (elm)->field.cqe_prev->field.cqe_next = \
508 (elm)->field.cqe_next; \
509 } while (/*CONSTCOND*/0)
511 #define CIRCLEQ_FOREACH(var, head, field) \
512 for ((var) = ((head)->cqh_first); \
513 (var) != (void *)(head); \
514 (var) = ((var)->field.cqe_next))
516 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
517 for ((var) = ((head)->cqh_last); \
518 (var) != (void *)(head); \
519 (var) = ((var)->field.cqe_prev))
522 * Circular queue access methods.
524 #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
525 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
526 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
527 #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
528 #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
529 #endif /* !_SYS_QUEUE_H_ */