2 * Copyright 2004-2007, Axel Dörfler, axeld@pinc-software.de.
3 * Based on code written by Travis Geiselbrecht for NewOS.
5 * Distributed under the terms of the MIT License.
9 #include "atari_memory_map.h"
13 #include <boot/platform.h>
14 #include <boot/stdio.h>
15 #include <boot/kernel_args.h>
16 #include <boot/stage2.h>
18 #include <arch_kernel.h>
27 /** The (physical) memory layout of the boot loader is currently as follows:
28 * 0x0500 - 0x10000 protected mode stack
29 * 0x0500 - 0x09000 real mode stack
30 * 0x10000 - ? code (up to ~500 kB)
31 * 0x90000 1st temporary page table (identity maps 0-4 MB)
32 * 0x91000 2nd (4-8 MB)
33 * 0x92000 - 0x92000 further page tables
34 * 0x9e000 - 0xa0000 SMP trampoline code
35 * [0xa0000 - 0x100000 BIOS/ROM/reserved area]
36 * 0x100000 page directory
37 * ... boot loader heap (32 kB)
38 * ... free physical memory
40 * The first 8 MB are identity mapped (0x0 - 0x0800000); paging is turned
41 * on. The kernel is mapped at 0x80000000, all other stuff mapped by the
42 * loader (kernel args, modules, driver settings, ...) comes after
43 * 0x81000000 which means that there is currently only 1 MB reserved for
44 * the kernel itself (see kMaxKernelSize).
48 /** The (physical) memory layout of the boot loader is currently as follows:
49 * 0x0800 - 0x10000 supervisor mode stack (1) XXX: more ? x86 starts at 500
50 * 0x10000 - ? code (up to ~500 kB)
51 * 0x100000 or FAST_RAM_BASE if any:
52 * ... page root directory
53 * ... interrupt vectors (VBR)
55 * ... boot loader heap (32 kB)
56 * ... free physical memory
57 * 0xdNNNNN video buffer usually there, as per v_bas_ad
58 * (=Logbase() but Physbase() is better)
60 * The first 32 MB (2) are identity mapped (0x0 - 0x1000000); paging
61 * is turned on. The kernel is mapped at 0x80000000, all other stuff
62 * mapped by the loader (kernel args, modules, driver settings, ...)
63 * comes after 0x81000000 which means that there is currently only
64 * 1 MB reserved for the kernel itself (see kMaxKernelSize).
66 * (1) no need for user stack, we are already in supervisor mode in the
68 * (2) maps the whole regular ST space; transparent translation registers
69 * have larger granularity anyway.
71 #warning M68K: check for Physbase() < ST_RAM_TOP
75 # define TRACE(x) dprintf x
81 // since the page root directory doesn't take a full page (1k)
82 // we stuff some other stuff after it, like the interrupt vectors (1k)
83 #define VBR_PAGE_OFFSET 1024
85 static const uint32 kDefaultPageTableFlags
= 0x07; // present, user, R/W
86 static const size_t kMaxKernelSize
= 0x100000; // 1 MB for the kernel
88 // working page directory and page table
91 static addr_t sNextPhysicalAddress
= 0x100000;
92 static addr_t sNextVirtualAddress
= KERNEL_LOAD_BASE
+ kMaxKernelSize
;
93 static addr_t sMaxVirtualAddress
= KERNEL_LOAD_BASE
/*+ 0x400000*/;
96 static addr_t sNextPageTableAddress
= 0x90000;
97 static const uint32 kPageTableRegionEnd
= 0x9e000;
98 // we need to reserve 2 pages for the SMP trampoline code XXX:no
101 static const struct boot_mmu_ops
*gMMUOps
;
104 get_next_virtual_address(size_t size
)
106 addr_t address
= sNextVirtualAddress
;
107 sNextVirtualAddress
+= size
;
109 TRACE(("%s(%d): %08x\n", __FUNCTION__
, size
, address
));
115 get_next_physical_address(size_t size
)
117 addr_t address
= sNextPhysicalAddress
;
118 sNextPhysicalAddress
+= size
;
120 TRACE(("%s(%d): %08x\n", __FUNCTION__
, size
, address
));
126 get_next_virtual_page()
128 TRACE(("%s\n", __FUNCTION__
));
129 return get_next_virtual_address(B_PAGE_SIZE
);
134 get_next_physical_page()
136 TRACE(("%s\n", __FUNCTION__
));
137 return get_next_physical_address(B_PAGE_SIZE
);
141 // allocate a page worth of page dir or tables
143 mmu_get_next_page_tables()
146 TRACE(("mmu_get_next_page_tables, sNextPageTableAddress %p, kPageTableRegionEnd %p\n",
147 sNextPageTableAddress
, kPageTableRegionEnd
));
149 addr_t address
= sNextPageTableAddress
;
150 if (address
>= kPageTableRegionEnd
)
151 return (uint32
*)get_next_physical_page();
153 sNextPageTableAddress
+= B_PAGE_SIZE
;
154 return (uint32
*)address
;
156 addr_t tbl
= get_next_physical_page();
159 // shouldn't we fill this ?
160 //gKernelArgs.arch_args.pgtables[gKernelArgs.arch_args.num_pgtables++] = (uint32)pageTable;
164 uint32
*p
= (uint32
*)tbl
;
165 for (int32 i
= 0; i
< 1024; i
++)
172 /** Adds a new page table for the specified base address */
175 add_page_table(addr_t base
)
177 TRACE(("add_page_table(base = %p)\n", (void *)base
));
180 // Get new page table and clear it out
181 uint32
*pageTable
= mmu_get_next_page_tables();
182 if (pageTable
> (uint32
*)(8 * 1024 * 1024))
183 panic("tried to add page table beyond the indentity mapped 8 MB region\n");
185 gKernelArgs
.arch_args
.pgtables
[gKernelArgs
.arch_args
.num_pgtables
++] = (uint32
)pageTable
;
187 for (int32 i
= 0; i
< 1024; i
++)
190 // put the new page table into the page directory
191 gPageRoot
[base
/(4*1024*1024)] = (uint32
)pageTable
| kDefaultPageTableFlags
;
198 unmap_page(addr_t virtualAddress
)
200 gMMUOps
->unmap_page(virtualAddress
);
204 /** Creates an entry to map the specified virtualAddress to the given
206 * If the mapping goes beyond the current page table, it will allocate
207 * a new one. If it cannot map the requested page, it panics.
211 map_page(addr_t virtualAddress
, addr_t physicalAddress
, uint32 flags
)
213 TRACE(("map_page: vaddr 0x%lx, paddr 0x%lx\n", virtualAddress
, physicalAddress
));
215 if (virtualAddress
< KERNEL_LOAD_BASE
)
216 panic("map_page: asked to map invalid page %p!\n", (void *)virtualAddress
);
218 // slow but I'm too lazy to fix the code below
219 gMMUOps
->add_page_table(virtualAddress
);
221 if (virtualAddress
>= sMaxVirtualAddress
) {
222 // we need to add a new page table
224 gMMUOps
->add_page_table(sMaxVirtualAddress
);
225 // 64 pages / page table
226 sMaxVirtualAddress
+= B_PAGE_SIZE
* 64;
228 if (virtualAddress
>= sMaxVirtualAddress
)
229 panic("map_page: asked to map a page to %p\n", (void *)virtualAddress
);
233 physicalAddress
&= ~(B_PAGE_SIZE
- 1);
235 // map the page to the correct page table
236 gMMUOps
->map_page(virtualAddress
, physicalAddress
, flags
);
241 init_page_directory(void)
243 TRACE(("init_page_directory\n"));
245 // allocate a new pg root dir
246 gPageRoot
= get_next_physical_page();
247 gKernelArgs
.arch_args
.phys_pgroot
= (uint32
)gPageRoot
;
248 gKernelArgs
.arch_args
.phys_vbr
= (uint32
)gPageRoot
+ VBR_PAGE_OFFSET
;
250 // set the root pointers
251 gMMUOps
->load_rp(gPageRoot
);
252 // allocate second level tables for kernel space
253 // this will simplify mmu code a lot, and only wastes 32KB
254 gMMUOps
->allocate_kernel_pgdirs();
255 // enable mmu translation
256 gMMUOps
->enable_paging();
257 //XXX: check for errors
259 //gKernelArgs.arch_args.num_pgtables = 0;
260 gMMUOps
->add_page_table(KERNEL_LOAD_BASE
);
265 // clear out the pgdir
266 for (int32 i
= 0; i
< 1024; i
++) {
270 // Identity map the first 8 MB of memory so that their
271 // physical and virtual address are the same.
272 // These page tables won't be taken over into the kernel.
274 // make the first page table at the first free spot
275 uint32
*pageTable
= mmu_get_next_page_tables();
277 for (int32 i
= 0; i
< 1024; i
++) {
278 pageTable
[i
] = (i
* 0x1000) | kDefaultPageFlags
;
281 gPageRoot
[0] = (uint32
)pageTable
| kDefaultPageFlags
;
283 // make the second page table
284 pageTable
= mmu_get_next_page_tables();
286 for (int32 i
= 0; i
< 1024; i
++) {
287 pageTable
[i
] = (i
* 0x1000 + 0x400000) | kDefaultPageFlags
;
290 gPageRoot
[1] = (uint32
)pageTable
| kDefaultPageFlags
;
292 gKernelArgs
.arch_args
.num_pgtables
= 0;
293 add_page_table(KERNEL_LOAD_BASE
);
295 // switch to the new pgdir and enable paging
296 asm("movl %0, %%eax;"
297 "movl %%eax, %%cr3;" : : "m" (gPageRoot
) : "eax");
298 // Important. Make sure supervisor threads can fault on read only pages...
299 asm("movl %%eax, %%cr0" : : "a" ((1 << 31) | (1 << 16) | (1 << 5) | 1));
308 mmu_map_physical_memory(addr_t physicalAddress
, size_t size
, uint32 flags
)
310 addr_t address
= sNextVirtualAddress
;
311 addr_t pageOffset
= physicalAddress
& (B_PAGE_SIZE
- 1);
313 physicalAddress
-= pageOffset
;
315 for (addr_t offset
= 0; offset
< size
; offset
+= B_PAGE_SIZE
) {
316 map_page(get_next_virtual_page(), physicalAddress
+ offset
, flags
);
319 return address
+ pageOffset
;
324 mmu_allocate(void *virtualAddress
, size_t size
)
326 TRACE(("mmu_allocate: requested vaddr: %p, next free vaddr: 0x%lx, size: %ld\n",
327 virtualAddress
, sNextVirtualAddress
, size
));
329 size
= (size
+ B_PAGE_SIZE
- 1) / B_PAGE_SIZE
;
330 // get number of pages to map
332 if (virtualAddress
!= NULL
) {
333 // This special path is almost only useful for loading the
334 // kernel into memory; it will only allow you to map the
335 // 1 MB following the kernel base address.
336 // Also, it won't check for already mapped addresses, so
337 // you better know why you are here :)
338 addr_t address
= (addr_t
)virtualAddress
;
340 // is the address within the valid range?
341 if (address
< KERNEL_LOAD_BASE
|| address
+ size
* B_PAGE_SIZE
342 >= KERNEL_LOAD_BASE
+ kMaxKernelSize
)
345 for (uint32 i
= 0; i
< size
; i
++) {
346 map_page(address
, get_next_physical_page(), kDefaultPageFlags
);
347 address
+= B_PAGE_SIZE
;
350 TRACE(("mmu_allocate(KERNEL, %d): done\n", size
));
351 return virtualAddress
;
354 void *address
= (void *)sNextVirtualAddress
;
356 for (uint32 i
= 0; i
< size
; i
++) {
357 map_page(get_next_virtual_page(), get_next_physical_page(), kDefaultPageFlags
);
360 TRACE(("mmu_allocate(NULL, %d): %p\n", size
, address
));
365 /** This will unmap the allocated chunk of memory from the virtual
366 * address space. It might not actually free memory (as its implementation
367 * is very simple), but it might.
371 mmu_free(void *virtualAddress
, size_t size
)
373 TRACE(("mmu_free(virtualAddress = %p, size: %ld)\n", virtualAddress
, size
));
375 addr_t address
= (addr_t
)virtualAddress
;
376 addr_t pageOffset
= address
% B_PAGE_SIZE
;
377 address
-= pageOffset
;
378 size
= (size
+ pageOffset
+ B_PAGE_SIZE
- 1) / B_PAGE_SIZE
* B_PAGE_SIZE
;
380 // is the address within the valid range?
381 if (address
< KERNEL_LOAD_BASE
|| address
+ size
> sNextVirtualAddress
) {
382 panic("mmu_free: asked to unmap out of range region (%p, size %lx)\n",
383 (void *)address
, size
);
386 // unmap all pages within the range
387 for (size_t i
= 0; i
< size
; i
+= B_PAGE_SIZE
) {
389 address
+= B_PAGE_SIZE
;
392 if (address
== sNextVirtualAddress
) {
393 // we can actually reuse the virtual address space
394 sNextVirtualAddress
-= size
;
399 /** Sets up the final and kernel accessible GDT and IDT tables.
400 * BIOS calls won't work any longer after this function has
405 mmu_init_for_kernel(void)
407 TRACE(("mmu_init_for_kernel\n"));
412 // remove identity mapping of ST space
413 // actually done by the kernel when it's done using query_early
414 //gMMUOps->set_tt(0, NULL, 0, 0);
419 struct gdt_idt_descr idtDescriptor
;
423 idt
= (uint32
*)get_next_physical_page();
424 gKernelArgs
.arch_args
.phys_idt
= (uint32
)idt
;
426 TRACE(("idt at %p\n", idt
));
428 // map the idt into virtual space
429 gKernelArgs
.arch_args
.vir_idt
= (uint32
)get_next_virtual_page();
430 map_page(gKernelArgs
.arch_args
.vir_idt
, (uint32
)idt
, kDefaultPageFlags
);
433 uint32
* virtualIDT
= (uint32
*)gKernelArgs
.arch_args
.vir_idt
;
434 for (int32 i
= 0; i
< IDT_LIMIT
/ 4; i
++) {
439 idtDescriptor
.limit
= IDT_LIMIT
- 1;
440 idtDescriptor
.base
= (uint32
*)gKernelArgs
.arch_args
.vir_idt
;
443 : : "m" (idtDescriptor
));
445 TRACE(("idt at virtual address 0x%lx\n", gKernelArgs
.arch_args
.vir_idt
));
450 struct gdt_idt_descr gdtDescriptor
;
451 segment_descriptor
*gdt
;
454 gdt
= (segment_descriptor
*)get_next_physical_page();
455 gKernelArgs
.arch_args
.phys_gdt
= (uint32
)gdt
;
457 TRACE(("gdt at %p\n", gdt
));
459 // map the gdt into virtual space
460 gKernelArgs
.arch_args
.vir_gdt
= (uint32
)get_next_virtual_page();
461 map_page(gKernelArgs
.arch_args
.vir_gdt
, (uint32
)gdt
, kDefaultPageFlags
);
463 // put standard segment descriptors in it
464 segment_descriptor
* virtualGDT
465 = (segment_descriptor
*)gKernelArgs
.arch_args
.vir_gdt
;
466 clear_segment_descriptor(&virtualGDT
[0]);
468 // seg 0x08 - kernel 4GB code
469 set_segment_descriptor(&virtualGDT
[1], 0, 0xffffffff, DT_CODE_READABLE
,
472 // seg 0x10 - kernel 4GB data
473 set_segment_descriptor(&virtualGDT
[2], 0, 0xffffffff, DT_DATA_WRITEABLE
,
476 // seg 0x1b - ring 3 user 4GB code
477 set_segment_descriptor(&virtualGDT
[3], 0, 0xffffffff, DT_CODE_READABLE
,
480 // seg 0x23 - ring 3 user 4GB data
481 set_segment_descriptor(&virtualGDT
[4], 0, 0xffffffff, DT_DATA_WRITEABLE
,
484 // virtualGDT[5] and above will be filled later by the kernel
485 // to contain the TSS descriptors, and for TLS (one for every CPU)
488 gdtDescriptor
.limit
= GDT_LIMIT
- 1;
489 gdtDescriptor
.base
= (uint32
*)gKernelArgs
.arch_args
.vir_gdt
;
492 : : "m" (gdtDescriptor
));
494 TRACE(("gdt at virtual address %p\n", (void *)gKernelArgs
.arch_args
.vir_gdt
));
498 // save the memory we've physically allocated
499 gKernelArgs
.physical_allocated_range
[0].size
= sNextPhysicalAddress
- gKernelArgs
.physical_allocated_range
[0].start
;
501 // save the memory we've virtually allocated (for the kernel and other stuff)
502 gKernelArgs
.virtual_allocated_range
[0].start
= KERNEL_LOAD_BASE
;
503 gKernelArgs
.virtual_allocated_range
[0].size
= sNextVirtualAddress
- KERNEL_LOAD_BASE
;
504 gKernelArgs
.num_virtual_allocated_ranges
= 1;
506 // sort the address ranges
507 sort_address_ranges(gKernelArgs
.physical_memory_range
,
508 gKernelArgs
.num_physical_memory_ranges
);
509 sort_address_ranges(gKernelArgs
.physical_allocated_range
,
510 gKernelArgs
.num_physical_allocated_ranges
);
511 sort_address_ranges(gKernelArgs
.virtual_allocated_range
,
512 gKernelArgs
.num_virtual_allocated_ranges
);
518 dprintf("phys memory ranges:\n");
519 for (i
= 0; i
< gKernelArgs
.num_physical_memory_ranges
; i
++) {
520 dprintf(" base 0x%08" B_PRIx64
", length 0x%08" B_PRIx64
"\n",
521 gKernelArgs
.physical_memory_range
[i
].start
,
522 gKernelArgs
.physical_memory_range
[i
].size
);
525 dprintf("allocated phys memory ranges:\n");
526 for (i
= 0; i
< gKernelArgs
.num_physical_allocated_ranges
; i
++) {
527 dprintf(" base 0x%08" B_PRIx64
", length 0x%08" B_PRIx64
"\n",
528 gKernelArgs
.physical_allocated_range
[i
].start
,
529 gKernelArgs
.physical_allocated_range
[i
].size
);
532 dprintf("allocated virt memory ranges:\n");
533 for (i
= 0; i
< gKernelArgs
.num_virtual_allocated_ranges
; i
++) {
534 dprintf(" base 0x%08" B_PRIx64
", length 0x%08" B_PRIx64
"\n",
535 gKernelArgs
.virtual_allocated_range
[i
].start
,
536 gKernelArgs
.virtual_allocated_range
[i
].size
);
546 TRACE(("mmu_init\n"));
547 switch (gKernelArgs
.arch_args
.mmu_type
) {
550 gMMUOps
= &k851MMUOps
;
554 gMMUOps
= &k030MMUOps
;
557 gMMUOps
= &k040MMUOps
;
561 gMMUOps
= &k060MMUOps
;
565 panic("unknown mmu type %d\n", gKernelArgs
.arch_args
.mmu_type
);
568 gMMUOps
->initialize();
570 addr_t fastram_top
= 0;
571 if (*TOSVARramvalid
== TOSVARramvalid_MAGIC
)
572 fastram_top
= *TOSVARramtop
;
574 // we have some fastram, use it first
575 sNextPhysicalAddress
= ATARI_FASTRAM_BASE
;
578 gKernelArgs
.physical_allocated_range
[0].start
= sNextPhysicalAddress
;
579 gKernelArgs
.physical_allocated_range
[0].size
= 0;
580 gKernelArgs
.num_physical_allocated_ranges
= 1;
581 // remember the start of the allocated physical pages
583 // enable transparent translation of the first 256 MB
584 gMMUOps
->set_tt(0, ATARI_CHIPRAM_BASE
, 0x10000000, 0);
585 // enable transparent translation of the 16MB ST shadow range for I/O
586 gMMUOps
->set_tt(1, ATARI_SHADOW_BASE
, 0x01000000, 0);
588 init_page_directory();
591 // Map the page directory into kernel space at 0xffc00000-0xffffffff
592 // this enables a mmu trick where the 4 MB region that this pgdir entry
593 // represents now maps the 4MB of potential pagetables that the pgdir
594 // points to. Thrown away later in VM bringup, but useful for now.
595 gPageRoot
[1023] = (uint32
)gPageRoot
| kDefaultPageFlags
;
598 // also map it on the next vpage
599 gKernelArgs
.arch_args
.vir_pgroot
= get_next_virtual_page();
600 map_page(gKernelArgs
.arch_args
.vir_pgroot
, (uint32
)gPageRoot
, kDefaultPageFlags
);
602 // set virtual addr for interrupt vector table
603 gKernelArgs
.arch_args
.vir_vbr
= gKernelArgs
.arch_args
.vir_pgroot
606 // map in a kernel stack
607 gKernelArgs
.cpu_kstack
[0].start
= (addr_t
)mmu_allocate(NULL
,
608 KERNEL_STACK_SIZE
+ KERNEL_STACK_GUARD_PAGES
* B_PAGE_SIZE
);
609 gKernelArgs
.cpu_kstack
[0].size
= KERNEL_STACK_SIZE
610 + KERNEL_STACK_GUARD_PAGES
* B_PAGE_SIZE
;
612 TRACE(("kernel stack at 0x%lx to 0x%lx\n", gKernelArgs
.cpu_kstack
[0].start
,
613 gKernelArgs
.cpu_kstack
[0].start
+ gKernelArgs
.cpu_kstack
[0].size
));
615 // st ram as 1st range
616 gKernelArgs
.physical_memory_range
[0].start
= ATARI_CHIPRAM_BASE
;
617 gKernelArgs
.physical_memory_range
[0].size
= *TOSVARphystop
- ATARI_CHIPRAM_BASE
;
618 gKernelArgs
.num_physical_memory_ranges
= 1;
620 // fast ram as 2nd range
622 gKernelArgs
.physical_memory_range
[1].start
=
624 gKernelArgs
.physical_memory_range
[1].size
=
625 fastram_top
- ATARI_FASTRAM_BASE
;
626 gKernelArgs
.num_physical_memory_ranges
++;
630 // mark the video area allocated
631 addr_t video_base
= *TOSVAR_memtop
;
632 video_base
&= ~(B_PAGE_SIZE
-1);
633 gKernelArgs
.physical_allocated_range
[gKernelArgs
.num_physical_allocated_ranges
].start
= video_base
;
634 gKernelArgs
.physical_allocated_range
[gKernelArgs
.num_physical_allocated_ranges
].size
= *TOSVARphystop
- video_base
;
635 gKernelArgs
.num_physical_allocated_ranges
++;
638 gKernelArgs
.arch_args
.plat_args
.atari
.nat_feat
.nf_page
=
639 get_next_physical_page() /*| 0xff000000*/;
648 platform_allocate_region(void **_address
, size_t size
, uint8 protection
,
649 bool /*exactAddress*/)
651 void *address
= mmu_allocate(*_address
, size
);
661 platform_free_region(void *address
, size_t size
)
663 mmu_free(address
, size
);
669 platform_release_heap(struct stage2_args
*args
, void *base
)
671 // It will be freed automatically, since it is in the
672 // identity mapped region, and not stored in the kernel's
678 platform_init_heap(struct stage2_args
*args
, void **_base
, void **_top
)
680 void *heap
= (void *)get_next_physical_address(args
->heap_size
);
685 *_top
= (void *)((int8
*)heap
+ args
->heap_size
);