1 /* Floating point output for `printf'.
2 Copyright (C) 1995-1999, 2000, 2001 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21 /* The gmp headers need some configuration frobs. */
32 #include <gmp-mparam.h>
34 #include <stdlib/gmp-impl.h>
35 #include <stdlib/longlong.h>
36 #include <stdlib/fpioconst.h>
37 #include <locale/localeinfo.h>
47 # define NDEBUG /* Undefine this for debugging assertions. */
51 /* This defines make it possible to use the same code for GNU C library and
52 the GNU I/O library. */
54 # define PUT(f, s, n) _IO_sputn (f, s, n)
55 # define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : _IO_padn (f, c, n))
56 /* We use this file GNU C library and GNU I/O library. So make
59 # define putc(c, f) (wide \
60 ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
61 # define size_t _IO_size_t
62 # define FILE _IO_FILE
63 #else /* ! USE_IN_LIBIO */
64 # define PUT(f, s, n) fwrite (s, 1, n, f)
65 # define PAD(f, c, n) __printf_pad (f, c, n)
66 ssize_t __printf_pad
__P ((FILE *, char pad
, int n
)); /* In vfprintf.c. */
67 #endif /* USE_IN_LIBIO */
69 /* Macros for doing the actual output. */
74 register const int outc = (ch); \
75 if (putc (outc, fp) == EOF) \
80 #define PRINT(ptr, wptr, len) \
83 register size_t outlen = (len); \
86 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
94 while (outlen-- > 0) \
97 while (outlen-- > 0) \
102 #define PADN(ch, len) \
105 if (PAD (fp, ch, len) != len) \
111 /* We use the GNU MP library to handle large numbers.
113 An MP variable occupies a varying number of entries in its array. We keep
114 track of this number for efficiency reasons. Otherwise we would always
115 have to process the whole array. */
116 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
118 #define MPN_ASSIGN(dst,src) \
119 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
120 #define MPN_GE(u,v) \
121 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
123 extern int __isinfl (long double), __isnanl (long double);
125 extern mp_size_t
__mpn_extract_double (mp_ptr res_ptr
, mp_size_t size
,
126 int *expt
, int *is_neg
,
128 extern mp_size_t
__mpn_extract_long_double (mp_ptr res_ptr
, mp_size_t size
,
129 int *expt
, int *is_neg
,
131 extern unsigned int __guess_grouping (unsigned int intdig_max
,
132 const char *grouping
);
135 static wchar_t *group_number (wchar_t *buf
, wchar_t *bufend
,
136 unsigned int intdig_no
, const char *grouping
,
137 wchar_t thousands_sep
, int ngroups
)
142 __printf_fp (FILE *fp
,
143 const struct printf_info
*info
,
144 const void *const *args
)
146 /* The floating-point value to output. */
150 __long_double_t ldbl
;
154 /* Locale-dependent representation of decimal point. */
158 /* Locale-dependent thousands separator and grouping specification. */
159 const char *thousands_sep
= NULL
;
160 wchar_t thousands_sepwc
= 0;
161 const char *grouping
;
163 /* "NaN" or "Inf" for the special cases. */
164 const char *special
= NULL
;
165 const wchar_t *wspecial
= NULL
;
167 /* We need just a few limbs for the input before shifting to the right
169 mp_limb_t fp_input
[(LDBL_MANT_DIG
+ BITS_PER_MP_LIMB
- 1) / BITS_PER_MP_LIMB
];
170 /* We need to shift the contents of fp_input by this amount of bits. */
173 /* The fraction of the floting-point value in question */
175 /* and the exponent. */
177 /* Sign of the exponent. */
179 /* Sign of float number. */
182 /* Scaling factor. */
185 /* Temporary bignum value. */
188 /* Digit which is result of last hack_digit() call. */
191 /* The type of output format that will be used: 'e'/'E' or 'f'. */
194 /* Counter for number of written characters. */
197 /* General helper (carry limb). */
200 /* Nonzero if this is output on a wide character stream. */
201 int wide
= info
->wide
;
203 wchar_t hack_digit_ret
;
204 int hack_digit_callee
;
211 if (expsign
!= 0 && type
== 'f' && exponent
-- > 0)
213 else if (scalesize
== 0)
215 hi
= frac
[fracsize
- 1];
216 cy
= __mpn_mul_1 (frac
, frac
, fracsize
- 1, 10);
217 frac
[fracsize
- 1] = cy
;
221 if (fracsize
< scalesize
)
225 hi
= mpn_divmod (tmp
, frac
, fracsize
, scale
, scalesize
);
226 tmp
[fracsize
- scalesize
] = hi
;
229 fracsize
= scalesize
;
230 while (fracsize
!= 0 && frac
[fracsize
- 1] == 0)
234 /* We're not prepared for an mpn variable with zero
237 hack_digit_ret
= L
'0' + hi
;
242 cy
= __mpn_mul_1 (frac
, frac
, fracsize
, 10);
244 frac
[fracsize
++] = cy
;
247 hack_digit_ret
= L
'0' + hi
;
249 switch (hack_digit_callee
)
251 case 1: goto hack_digit_callee1
;
252 case 2: goto hack_digit_callee2
;
253 case 3: goto hack_digit_callee3
;
259 /* Figure out the decimal point character. */
260 if (info
->extra
== 0)
262 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
263 decimalwc
= _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_DECIMAL_POINT_WC
);
267 decimal
= _NL_CURRENT (LC_MONETARY
, MON_DECIMAL_POINT
);
268 if (*decimal
== '\0')
269 decimal
= _NL_CURRENT (LC_NUMERIC
, DECIMAL_POINT
);
270 decimalwc
= _NL_CURRENT_WORD (LC_MONETARY
,
271 _NL_MONETARY_DECIMAL_POINT_WC
);
272 if (decimalwc
== L
'\0')
273 decimalwc
= _NL_CURRENT_WORD (LC_NUMERIC
,
274 _NL_NUMERIC_DECIMAL_POINT_WC
);
276 /* The decimal point character must not be zero. */
277 assert (*decimal
!= '\0');
278 assert (decimalwc
!= L
'\0');
282 if (info
->extra
== 0)
283 grouping
= _NL_CURRENT (LC_NUMERIC
, GROUPING
);
285 grouping
= _NL_CURRENT (LC_MONETARY
, MON_GROUPING
);
287 if (*grouping
<= 0 || *grouping
== CHAR_MAX
)
291 /* Figure out the thousands separator character. */
294 if (info
->extra
== 0)
296 _NL_CURRENT_WORD (LC_NUMERIC
, _NL_NUMERIC_THOUSANDS_SEP_WC
);
299 _NL_CURRENT_WORD (LC_MONETARY
,
300 _NL_MONETARY_THOUSANDS_SEP_WC
);
304 if (info
->extra
== 0)
305 thousands_sep
= _NL_CURRENT (LC_NUMERIC
, THOUSANDS_SEP
);
307 thousands_sep
= _NL_CURRENT (LC_MONETARY
, MON_THOUSANDS_SEP
);
310 if ((wide
&& thousands_sepwc
== L
'\0')
311 || (! wide
&& *thousands_sep
== '\0'))
313 else if (thousands_sepwc
== L
'\0')
314 /* If we are printing multibyte characters and there is a
315 multibyte representation for the thousands separator,
316 we must ensure the wide character thousands separator
317 is available, even if it is fake. */
318 thousands_sepwc
= 0xfffffffe;
324 /* Fetch the argument value. */
325 #ifndef __NO_LONG_DOUBLE_MATH
326 if (info
->is_long_double
&& sizeof (long double) > sizeof (double))
328 fpnum
.ldbl
= *(const long double *) args
[0];
330 /* Check for special values: not a number or infinity. */
331 if (__isnanl (fpnum
.ldbl
))
333 if (isupper (info
->spec
))
345 else if (__isinfl (fpnum
.ldbl
))
347 if (isupper (info
->spec
))
357 is_neg
= fpnum
.ldbl
< 0;
361 fracsize
= __mpn_extract_long_double (fp_input
,
363 sizeof (fp_input
[0])),
366 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- LDBL_MANT_DIG
;
370 #endif /* no long double */
372 fpnum
.dbl
= *(const double *) args
[0];
374 /* Check for special values: not a number or infinity. */
375 if (__isnan (fpnum
.dbl
))
377 if (isupper (info
->spec
))
389 else if (__isinf (fpnum
.dbl
))
391 if (isupper (info
->spec
))
401 is_neg
= fpnum
.dbl
< 0;
405 fracsize
= __mpn_extract_double (fp_input
,
407 / sizeof (fp_input
[0])),
408 &exponent
, &is_neg
, fpnum
.dbl
);
409 to_shift
= 1 + fracsize
* BITS_PER_MP_LIMB
- DBL_MANT_DIG
;
415 int width
= info
->width
;
417 if (is_neg
|| info
->showsign
|| info
->space
)
421 if (!info
->left
&& width
> 0)
426 else if (info
->showsign
)
428 else if (info
->space
)
431 PRINT (special
, wspecial
, 3);
433 if (info
->left
&& width
> 0)
440 /* We need three multiprecision variables. Now that we have the exponent
441 of the number we can allocate the needed memory. It would be more
442 efficient to use variables of the fixed maximum size but because this
443 would be really big it could lead to memory problems. */
445 mp_size_t bignum_size
= ((ABS (exponent
) + BITS_PER_MP_LIMB
- 1)
446 / BITS_PER_MP_LIMB
+ 4) * sizeof (mp_limb_t
);
447 frac
= (mp_limb_t
*) alloca (bignum_size
);
448 tmp
= (mp_limb_t
*) alloca (bignum_size
);
449 scale
= (mp_limb_t
*) alloca (bignum_size
);
452 /* We now have to distinguish between numbers with positive and negative
453 exponents because the method used for the one is not applicable/efficient
460 int explog
= LDBL_MAX_10_EXP_LOG
;
462 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
465 if ((exponent
+ to_shift
) % BITS_PER_MP_LIMB
== 0)
467 MPN_COPY_DECR (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
469 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
473 cy
= __mpn_lshift (frac
+ (exponent
+ to_shift
) / BITS_PER_MP_LIMB
,
475 (exponent
+ to_shift
) % BITS_PER_MP_LIMB
);
476 fracsize
+= (exponent
+ to_shift
) / BITS_PER_MP_LIMB
;
478 frac
[fracsize
++] = cy
;
480 MPN_ZERO (frac
, (exponent
+ to_shift
) / BITS_PER_MP_LIMB
);
482 assert (powers
> &_fpioconst_pow10
[0]);
487 /* The number of the product of two binary numbers with n and m
488 bits respectively has m+n or m+n-1 bits. */
489 if (exponent
>= scaleexpo
+ powers
->p_expo
- 1)
493 #ifndef __NO_LONG_DOUBLE_MATH
494 if (LDBL_MANT_DIG
> _FPIO_CONST_OFFSET
* BITS_PER_MP_LIMB
495 && info
->is_long_double
)
497 #define _FPIO_CONST_SHIFT \
498 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
499 - _FPIO_CONST_OFFSET)
500 /* 64bit const offset is not enough for
501 IEEE quad long double. */
502 tmpsize
= powers
->arraysize
+ _FPIO_CONST_SHIFT
;
503 memcpy (tmp
+ _FPIO_CONST_SHIFT
,
504 &__tens
[powers
->arrayoff
],
505 tmpsize
* sizeof (mp_limb_t
));
506 MPN_ZERO (tmp
, _FPIO_CONST_SHIFT
);
511 tmpsize
= powers
->arraysize
;
512 memcpy (tmp
, &__tens
[powers
->arrayoff
],
513 tmpsize
* sizeof (mp_limb_t
));
518 cy
= __mpn_mul (tmp
, scale
, scalesize
,
519 &__tens
[powers
->arrayoff
520 + _FPIO_CONST_OFFSET
],
521 powers
->arraysize
- _FPIO_CONST_OFFSET
);
522 tmpsize
= scalesize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
527 if (MPN_GE (frac
, tmp
))
530 MPN_ASSIGN (scale
, tmp
);
531 count_leading_zeros (cnt
, scale
[scalesize
- 1]);
532 scaleexpo
= (scalesize
- 2) * BITS_PER_MP_LIMB
- cnt
- 1;
533 exp10
|= 1 << explog
;
538 while (powers
> &_fpioconst_pow10
[0]);
541 /* Optimize number representations. We want to represent the numbers
542 with the lowest number of bytes possible without losing any
543 bytes. Also the highest bit in the scaling factor has to be set
544 (this is a requirement of the MPN division routines). */
547 /* Determine minimum number of zero bits at the end of
549 for (i
= 0; scale
[i
] == 0 && frac
[i
] == 0; i
++)
552 /* Determine number of bits the scaling factor is misplaced. */
553 count_leading_zeros (cnt_h
, scale
[scalesize
- 1]);
557 /* The highest bit of the scaling factor is already set. So
558 we only have to remove the trailing empty limbs. */
561 MPN_COPY_INCR (scale
, scale
+ i
, scalesize
- i
);
563 MPN_COPY_INCR (frac
, frac
+ i
, fracsize
- i
);
571 count_trailing_zeros (cnt_l
, scale
[i
]);
575 count_trailing_zeros (cnt_l2
, frac
[i
]);
581 count_trailing_zeros (cnt_l
, frac
[i
]);
583 /* Now shift the numbers to their optimal position. */
584 if (i
== 0 && BITS_PER_MP_LIMB
- cnt_h
> cnt_l
)
586 /* We cannot save any memory. So just roll both numbers
587 so that the scaling factor has its highest bit set. */
589 (void) __mpn_lshift (scale
, scale
, scalesize
, cnt_h
);
590 cy
= __mpn_lshift (frac
, frac
, fracsize
, cnt_h
);
592 frac
[fracsize
++] = cy
;
594 else if (BITS_PER_MP_LIMB
- cnt_h
<= cnt_l
)
596 /* We can save memory by removing the trailing zero limbs
597 and by packing the non-zero limbs which gain another
600 (void) __mpn_rshift (scale
, scale
+ i
, scalesize
- i
,
601 BITS_PER_MP_LIMB
- cnt_h
);
603 (void) __mpn_rshift (frac
, frac
+ i
, fracsize
- i
,
604 BITS_PER_MP_LIMB
- cnt_h
);
605 fracsize
-= frac
[fracsize
- i
- 1] == 0 ? i
+ 1 : i
;
609 /* We can only save the memory of the limbs which are zero.
610 The non-zero parts occupy the same number of limbs. */
612 (void) __mpn_rshift (scale
, scale
+ (i
- 1),
614 BITS_PER_MP_LIMB
- cnt_h
);
616 (void) __mpn_rshift (frac
, frac
+ (i
- 1),
618 BITS_PER_MP_LIMB
- cnt_h
);
619 fracsize
-= frac
[fracsize
- (i
- 1) - 1] == 0 ? i
: i
- 1;
624 else if (exponent
< 0)
628 int explog
= LDBL_MAX_10_EXP_LOG
;
629 const struct mp_power
*powers
= &_fpioconst_pow10
[explog
+ 1];
630 mp_size_t used_limbs
= fracsize
- 1;
632 /* Now shift the input value to its right place. */
633 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, to_shift
);
634 frac
[fracsize
++] = cy
;
635 assert (cy
== 1 || (frac
[fracsize
- 2] == 0 && frac
[0] == 0));
638 exponent
= -exponent
;
640 assert (powers
!= &_fpioconst_pow10
[0]);
645 if (exponent
>= powers
->m_expo
)
647 int i
, incr
, cnt_h
, cnt_l
;
650 /* The __mpn_mul function expects the first argument to be
651 bigger than the second. */
652 if (fracsize
< powers
->arraysize
- _FPIO_CONST_OFFSET
)
653 cy
= __mpn_mul (tmp
, &__tens
[powers
->arrayoff
654 + _FPIO_CONST_OFFSET
],
655 powers
->arraysize
- _FPIO_CONST_OFFSET
,
658 cy
= __mpn_mul (tmp
, frac
, fracsize
,
659 &__tens
[powers
->arrayoff
+ _FPIO_CONST_OFFSET
],
660 powers
->arraysize
- _FPIO_CONST_OFFSET
);
661 tmpsize
= fracsize
+ powers
->arraysize
- _FPIO_CONST_OFFSET
;
665 count_leading_zeros (cnt_h
, tmp
[tmpsize
- 1]);
666 incr
= (tmpsize
- fracsize
) * BITS_PER_MP_LIMB
667 + BITS_PER_MP_LIMB
- 1 - cnt_h
;
669 assert (incr
<= powers
->p_expo
);
671 /* If we increased the exponent by exactly 3 we have to test
672 for overflow. This is done by comparing with 10 shifted
673 to the right position. */
674 if (incr
== exponent
+ 3)
676 if (cnt_h
<= BITS_PER_MP_LIMB
- 4)
680 = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4 - cnt_h
);
684 topval
[0] = ((mp_limb_t
) 10) << (BITS_PER_MP_LIMB
- 4);
686 (void) __mpn_lshift (topval
, topval
, 2,
687 BITS_PER_MP_LIMB
- cnt_h
);
691 /* We have to be careful when multiplying the last factor.
692 If the result is greater than 1.0 be have to test it
693 against 10.0. If it is greater or equal to 10.0 the
694 multiplication was not valid. This is because we cannot
695 determine the number of bits in the result in advance. */
696 if (incr
< exponent
+ 3
697 || (incr
== exponent
+ 3 &&
698 (tmp
[tmpsize
- 1] < topval
[1]
699 || (tmp
[tmpsize
- 1] == topval
[1]
700 && tmp
[tmpsize
- 2] < topval
[0]))))
702 /* The factor is right. Adapt binary and decimal
705 exp10
|= 1 << explog
;
707 /* If this factor yields a number greater or equal to
708 1.0, we must not shift the non-fractional digits down. */
712 /* Now we optimize the number representation. */
713 for (i
= 0; tmp
[i
] == 0; ++i
);
714 if (cnt_h
== BITS_PER_MP_LIMB
- 1)
716 MPN_COPY (frac
, tmp
+ i
, tmpsize
- i
);
717 fracsize
= tmpsize
- i
;
721 count_trailing_zeros (cnt_l
, tmp
[i
]);
723 /* Now shift the numbers to their optimal position. */
724 if (i
== 0 && BITS_PER_MP_LIMB
- 1 - cnt_h
> cnt_l
)
726 /* We cannot save any memory. Just roll the
727 number so that the leading digit is in a
730 cy
= __mpn_lshift (frac
, tmp
, tmpsize
, cnt_h
+ 1);
731 fracsize
= tmpsize
+ 1;
732 frac
[fracsize
- 1] = cy
;
734 else if (BITS_PER_MP_LIMB
- 1 - cnt_h
<= cnt_l
)
736 (void) __mpn_rshift (frac
, tmp
+ i
, tmpsize
- i
,
737 BITS_PER_MP_LIMB
- 1 - cnt_h
);
738 fracsize
= tmpsize
- i
;
742 /* We can only save the memory of the limbs which
743 are zero. The non-zero parts occupy the same
746 (void) __mpn_rshift (frac
, tmp
+ (i
- 1),
748 BITS_PER_MP_LIMB
- 1 - cnt_h
);
749 fracsize
= tmpsize
- (i
- 1);
752 used_limbs
= fracsize
- 1;
757 while (powers
!= &_fpioconst_pow10
[1] && exponent
> 0);
758 /* All factors but 10^-1 are tested now. */
763 cy
= __mpn_mul_1 (tmp
, frac
, fracsize
, 10);
765 assert (cy
== 0 || tmp
[tmpsize
- 1] < 20);
767 count_trailing_zeros (cnt_l
, tmp
[0]);
768 if (cnt_l
< MIN (4, exponent
))
770 cy
= __mpn_lshift (frac
, tmp
, tmpsize
,
771 BITS_PER_MP_LIMB
- MIN (4, exponent
));
773 frac
[tmpsize
++] = cy
;
776 (void) __mpn_rshift (frac
, tmp
, tmpsize
, MIN (4, exponent
));
779 assert (frac
[fracsize
- 1] < 10);
785 /* This is a special case. We don't need a factor because the
786 numbers are in the range of 0.0 <= fp < 8.0. We simply
787 shift it to the right place and divide it by 1.0 to get the
788 leading digit. (Of course this division is not really made.) */
789 assert (0 <= exponent
&& exponent
< 3 &&
790 exponent
+ to_shift
< BITS_PER_MP_LIMB
);
792 /* Now shift the input value to its right place. */
793 cy
= __mpn_lshift (frac
, fp_input
, fracsize
, (exponent
+ to_shift
));
794 frac
[fracsize
++] = cy
;
799 int width
= info
->width
;
800 wchar_t *wbuffer
, *wstartp
, *wcp
;
804 int intdig_max
, intdig_no
= 0;
805 int fracdig_min
, fracdig_max
, fracdig_no
= 0;
810 if (_tolower (info
->spec
) == 'e')
814 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
815 chars_needed
= 1 + 1 + fracdig_max
+ 1 + 1 + 4;
816 /* d . ddd e +- ddd */
817 dig_max
= INT_MAX
; /* Unlimited. */
818 significant
= 1; /* Does not matter here. */
820 else if (info
->spec
== 'f')
823 fracdig_min
= fracdig_max
= info
->prec
< 0 ? 6 : info
->prec
;
826 intdig_max
= exponent
+ 1;
827 /* This can be really big! */ /* XXX Maybe malloc if too big? */
828 chars_needed
= exponent
+ 1 + 1 + fracdig_max
;
833 chars_needed
= 1 + 1 + fracdig_max
;
835 dig_max
= INT_MAX
; /* Unlimited. */
836 significant
= 1; /* Does not matter here. */
840 dig_max
= info
->prec
< 0 ? 6 : (info
->prec
== 0 ? 1 : info
->prec
);
841 if ((expsign
== 0 && exponent
>= dig_max
)
842 || (expsign
!= 0 && exponent
> 4))
844 if ('g' - 'G' == 'e' - 'E')
845 type
= 'E' + (info
->spec
- 'G');
847 type
= isupper (info
->spec
) ? 'E' : 'e';
848 fracdig_max
= dig_max
- 1;
850 chars_needed
= 1 + 1 + fracdig_max
+ 1 + 1 + 4;
855 intdig_max
= expsign
== 0 ? exponent
+ 1 : 0;
856 fracdig_max
= dig_max
- intdig_max
;
857 /* We need space for the significant digits and perhaps
858 for leading zeros when < 1.0. The number of leading
859 zeros can be as many as would be required for
860 exponential notation with a negative two-digit
861 exponent, which is 4. */
862 chars_needed
= dig_max
+ 1 + 4;
864 fracdig_min
= info
->alt
? fracdig_max
: 0;
865 significant
= 0; /* We count significant digits. */
870 /* Guess the number of groups we will make, and thus how
871 many spaces we need for separator characters. */
872 ngroups
= __guess_grouping (intdig_max
, grouping
);
873 chars_needed
+= ngroups
;
876 /* Allocate buffer for output. We need two more because while rounding
877 it is possible that we need two more characters in front of all the
878 other output. If the amount of memory we have to allocate is too
879 large use `malloc' instead of `alloca'. */
880 buffer_malloced
= chars_needed
> 5000;
883 wbuffer
= (wchar_t *) malloc ((2 + chars_needed
) * sizeof (wchar_t));
885 /* Signal an error to the caller. */
889 wbuffer
= (wchar_t *) alloca ((2 + chars_needed
) * sizeof (wchar_t));
890 wcp
= wstartp
= wbuffer
+ 2; /* Let room for rounding. */
892 /* Do the real work: put digits in allocated buffer. */
893 if (expsign
== 0 || type
!= 'f')
895 assert (expsign
== 0 || intdig_max
== 1);
896 while (intdig_no
< intdig_max
)
899 hack_digit_callee
= 1;
902 *wcp
++ = hack_digit_ret
;
907 || (fracdig_max
> 0 && (fracsize
> 1 || frac
[0] != 0)))
912 /* |fp| < 1.0 and the selected type is 'f', so put "0."
919 /* Generate the needed number of fractional digits. */
920 while (fracdig_no
< fracdig_min
921 || (fracdig_no
< fracdig_max
&& (fracsize
> 1 || frac
[0] != 0)))
924 hack_digit_callee
= 2;
927 *wcp
= hack_digit_ret
;
930 else if (significant
== 0)
940 hack_digit_callee
= 3;
943 digit
= hack_digit_ret
;
949 && ((*(wcp
- 1) != decimalwc
&& (*(wcp
- 1) & 1) == 0)
950 || ((*(wcp
- 1) == decimalwc
&& (*(wcp
- 2) & 1) == 0))))
952 /* This is the critical case. */
953 if (fracsize
== 1 && frac
[0] == 0)
954 /* Rest of the number is zero -> round to even.
955 (IEEE 754-1985 4.1 says this is the default rounding.) */
957 else if (scalesize
== 0)
959 /* Here we have to see whether all limbs are zero since no
960 normalization happened. */
961 size_t lcnt
= fracsize
;
962 while (lcnt
>= 1 && frac
[lcnt
- 1] == 0)
965 /* Rest of the number is zero -> round to even.
966 (IEEE 754-1985 4.1 says this is the default rounding.) */
973 /* Process fractional digits. Terminate if not rounded or
974 radix character is reached. */
975 while (*--wtp
!= decimalwc
&& *wtp
== L
'9')
977 if (*wtp
!= decimalwc
)
982 if (fracdig_no
== 0 || *wtp
== decimalwc
)
984 /* Round the integer digits. */
985 if (*(wtp
- 1) == decimalwc
)
988 while (--wtp
>= wstartp
&& *wtp
== L
'9')
995 /* It is more critical. All digits were 9's. */
1000 exponent
+= expsign
== 0 ? 1 : -1;
1002 else if (intdig_no
== dig_max
)
1004 /* This is the case where for type %g the number fits
1005 really in the range for %f output but after rounding
1006 the number of digits is too big. */
1007 *--wstartp
= decimalwc
;
1010 if (info
->alt
|| fracdig_no
> 0)
1012 /* Overwrite the old radix character. */
1013 wstartp
[intdig_no
+ 2] = L
'0';
1017 fracdig_no
+= intdig_no
;
1019 fracdig_max
= intdig_max
- intdig_no
;
1021 /* Now we must print the exponent. */
1022 type
= isupper (info
->spec
) ? 'E' : 'e';
1026 /* We can simply add another another digit before the
1032 /* While rounding the number of digits can change.
1033 If the number now exceeds the limits remove some
1034 fractional digits. */
1035 if (intdig_no
+ fracdig_no
> dig_max
)
1037 wcp
-= intdig_no
+ fracdig_no
- dig_max
;
1038 fracdig_no
-= intdig_no
+ fracdig_no
- dig_max
;
1045 /* Now remove unnecessary '0' at the end of the string. */
1046 while (fracdig_no
> fracdig_min
&& *(wcp
- 1) == L
'0')
1051 /* If we eliminate all fractional digits we perhaps also can remove
1052 the radix character. */
1053 if (fracdig_no
== 0 && !info
->alt
&& *(wcp
- 1) == decimalwc
)
1057 /* Add in separator characters, overwriting the same buffer. */
1058 wcp
= group_number (wstartp
, wcp
, intdig_no
, grouping
, thousands_sepwc
,
1061 /* Write the exponent if it is needed. */
1064 *wcp
++ = (wchar_t) type
;
1065 *wcp
++ = expsign
? L
'-' : L
'+';
1067 /* Find the magnitude of the exponent. */
1069 while (expscale
<= exponent
)
1073 /* Exponent always has at least two digits. */
1079 *wcp
++ = L
'0' + (exponent
/ expscale
);
1080 exponent
%= expscale
;
1082 while (expscale
> 10);
1083 *wcp
++ = L
'0' + exponent
;
1086 /* Compute number of characters which must be filled with the padding
1088 if (is_neg
|| info
->showsign
|| info
->space
)
1090 width
-= wcp
- wstartp
;
1092 if (!info
->left
&& info
->pad
!= '0' && width
> 0)
1093 PADN (info
->pad
, width
);
1097 else if (info
->showsign
)
1099 else if (info
->space
)
1102 if (!info
->left
&& info
->pad
== '0' && width
> 0)
1106 char *buffer
= NULL
;
1112 /* Create the single byte string. */
1114 size_t thousands_sep_len
;
1117 decimal_len
= strlen (decimal
);
1119 if (thousands_sep
== NULL
)
1120 thousands_sep_len
= 0;
1122 thousands_sep_len
= strlen (thousands_sep
);
1124 if (buffer_malloced
)
1126 buffer
= (char *) malloc (2 + chars_needed
+ decimal_len
1127 + ngroups
* thousands_sep_len
);
1129 /* Signal an error to the caller. */
1133 buffer
= (char *) alloca (2 + chars_needed
+ decimal_len
1134 + ngroups
* thousands_sep_len
);
1136 /* Now copy the wide character string. Since the character
1137 (except for the decimal point and thousands separator) must
1138 be coming from the ASCII range we can esily convert the
1139 string without mapping tables. */
1140 for (cp
= buffer
, copywc
= wstartp
; copywc
< wcp
; ++copywc
)
1141 if (*copywc
== decimalwc
)
1142 cp
= (char *) __mempcpy (cp
, decimal
, decimal_len
);
1143 else if (*copywc
== thousands_sepwc
)
1144 cp
= (char *) __mempcpy (cp
, thousands_sep
, thousands_sep_len
);
1146 *cp
++ = (char) *copywc
;
1150 PRINT (tmpptr
, wstartp
, wide
? wcp
- wstartp
: cp
- tmpptr
);
1152 /* Free the memory if necessary. */
1153 if (buffer_malloced
)
1160 if (info
->left
&& width
> 0)
1161 PADN (info
->pad
, width
);
1166 /* Return the number of extra grouping characters that will be inserted
1167 into a number with INTDIG_MAX integer digits. */
1170 __guess_grouping (unsigned int intdig_max
, const char *grouping
)
1172 unsigned int groups
;
1174 /* We treat all negative values like CHAR_MAX. */
1176 if (*grouping
== CHAR_MAX
|| *grouping
<= 0)
1177 /* No grouping should be done. */
1181 while (intdig_max
> (unsigned int) *grouping
)
1184 intdig_max
-= *grouping
++;
1186 if (*grouping
== CHAR_MAX
1191 /* No more grouping should be done. */
1193 else if (*grouping
== 0)
1195 /* Same grouping repeats. */
1196 groups
+= (intdig_max
- 1) / grouping
[-1];
1204 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1205 There is guaranteed enough space past BUFEND to extend it.
1206 Return the new end of buffer. */
1210 group_number (wchar_t *buf
, wchar_t *bufend
, unsigned int intdig_no
,
1211 const char *grouping
, wchar_t thousands_sep
, int ngroups
)
1218 /* Move the fractional part down. */
1219 __wmemmove (buf
+ intdig_no
+ ngroups
, buf
+ intdig_no
,
1220 bufend
- (buf
+ intdig_no
));
1222 p
= buf
+ intdig_no
+ ngroups
- 1;
1225 unsigned int len
= *grouping
++;
1227 *p
-- = buf
[--intdig_no
];
1229 *p
-- = thousands_sep
;
1231 if (*grouping
== CHAR_MAX
1236 /* No more grouping should be done. */
1238 else if (*grouping
== 0)
1239 /* Same grouping repeats. */
1241 } while (intdig_no
> (unsigned int) *grouping
);
1243 /* Copy the remaining ungrouped digits. */
1245 *p
-- = buf
[--intdig_no
];
1248 return bufend
+ ngroups
;