Restore the "GPL licensing not permitted" in GLUT license headers.
[haiku.git] / headers / cpp / stl_function.h
bloba5a8486576e9aedfd09a452b6084b8e4de2c3619
1 /*
3 * Copyright (c) 1994
4 * Hewlett-Packard Company
6 * Permission to use, copy, modify, distribute and sell this software
7 * and its documentation for any purpose is hereby granted without fee,
8 * provided that the above copyright notice appear in all copies and
9 * that both that copyright notice and this permission notice appear
10 * in supporting documentation. Hewlett-Packard Company makes no
11 * representations about the suitability of this software for any
12 * purpose. It is provided "as is" without express or implied warranty.
15 * Copyright (c) 1996-1998
16 * Silicon Graphics Computer Systems, Inc.
18 * Permission to use, copy, modify, distribute and sell this software
19 * and its documentation for any purpose is hereby granted without fee,
20 * provided that the above copyright notice appear in all copies and
21 * that both that copyright notice and this permission notice appear
22 * in supporting documentation. Silicon Graphics makes no
23 * representations about the suitability of this software for any
24 * purpose. It is provided "as is" without express or implied warranty.
27 /* NOTE: This is an internal header file, included by other STL headers.
28 * You should not attempt to use it directly.
31 #ifndef __SGI_STL_INTERNAL_FUNCTION_H
32 #define __SGI_STL_INTERNAL_FUNCTION_H
34 __STL_BEGIN_NAMESPACE
36 template <class _Arg, class _Result>
37 struct unary_function {
38 typedef _Arg argument_type;
39 typedef _Result result_type;
42 template <class _Arg1, class _Arg2, class _Result>
43 struct binary_function {
44 typedef _Arg1 first_argument_type;
45 typedef _Arg2 second_argument_type;
46 typedef _Result result_type;
47 };
49 template <class _Tp>
50 struct plus : public binary_function<_Tp,_Tp,_Tp> {
51 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
54 template <class _Tp>
55 struct minus : public binary_function<_Tp,_Tp,_Tp> {
56 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
59 template <class _Tp>
60 struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
61 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
64 template <class _Tp>
65 struct divides : public binary_function<_Tp,_Tp,_Tp> {
66 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
69 // identity_element (not part of the C++ standard).
71 template <class _Tp> inline _Tp identity_element(plus<_Tp>) {
72 return _Tp(0);
74 template <class _Tp> inline _Tp identity_element(multiplies<_Tp>) {
75 return _Tp(1);
78 template <class _Tp>
79 struct modulus : public binary_function<_Tp,_Tp,_Tp>
81 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
84 template <class _Tp>
85 struct negate : public unary_function<_Tp,_Tp>
87 _Tp operator()(const _Tp& __x) const { return -__x; }
90 template <class _Tp>
91 struct equal_to : public binary_function<_Tp,_Tp,bool>
93 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
96 template <class _Tp>
97 struct not_equal_to : public binary_function<_Tp,_Tp,bool>
99 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
102 template <class _Tp>
103 struct greater : public binary_function<_Tp,_Tp,bool>
105 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
108 template <class _Tp>
109 struct less : public binary_function<_Tp,_Tp,bool>
111 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
114 template <class _Tp>
115 struct greater_equal : public binary_function<_Tp,_Tp,bool>
117 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
120 template <class _Tp>
121 struct less_equal : public binary_function<_Tp,_Tp,bool>
123 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
126 template <class _Tp>
127 struct logical_and : public binary_function<_Tp,_Tp,bool>
129 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
132 template <class _Tp>
133 struct logical_or : public binary_function<_Tp,_Tp,bool>
135 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
138 template <class _Tp>
139 struct logical_not : public unary_function<_Tp,bool>
141 bool operator()(const _Tp& __x) const { return !__x; }
144 template <class _Predicate>
145 class unary_negate
146 : public unary_function<typename _Predicate::argument_type, bool> {
147 protected:
148 _Predicate _M_pred;
149 public:
150 explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
151 bool operator()(const typename _Predicate::argument_type& __x) const {
152 return !_M_pred(__x);
156 template <class _Predicate>
157 inline unary_negate<_Predicate>
158 not1(const _Predicate& __pred)
160 return unary_negate<_Predicate>(__pred);
163 template <class _Predicate>
164 class binary_negate
165 : public binary_function<typename _Predicate::first_argument_type,
166 typename _Predicate::second_argument_type,
167 bool> {
168 protected:
169 _Predicate _M_pred;
170 public:
171 explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
172 bool operator()(const typename _Predicate::first_argument_type& __x,
173 const typename _Predicate::second_argument_type& __y) const
175 return !_M_pred(__x, __y);
179 template <class _Predicate>
180 inline binary_negate<_Predicate>
181 not2(const _Predicate& __pred)
183 return binary_negate<_Predicate>(__pred);
186 template <class _Operation>
187 class binder1st
188 : public unary_function<typename _Operation::second_argument_type,
189 typename _Operation::result_type> {
190 protected:
191 _Operation op;
192 typename _Operation::first_argument_type value;
193 public:
194 binder1st(const _Operation& __x,
195 const typename _Operation::first_argument_type& __y)
196 : op(__x), value(__y) {}
197 typename _Operation::result_type
198 operator()(const typename _Operation::second_argument_type& __x) const {
199 return op(value, __x);
203 template <class _Operation, class _Tp>
204 inline binder1st<_Operation>
205 bind1st(const _Operation& __oper, const _Tp& __x)
207 typedef typename _Operation::first_argument_type _Arg1_type;
208 return binder1st<_Operation>(__oper, _Arg1_type(__x));
211 template <class _Operation>
212 class binder2nd
213 : public unary_function<typename _Operation::first_argument_type,
214 typename _Operation::result_type> {
215 protected:
216 _Operation op;
217 typename _Operation::second_argument_type value;
218 public:
219 binder2nd(const _Operation& __x,
220 const typename _Operation::second_argument_type& __y)
221 : op(__x), value(__y) {}
222 typename _Operation::result_type
223 operator()(const typename _Operation::first_argument_type& __x) const {
224 return op(__x, value);
228 template <class _Operation, class _Tp>
229 inline binder2nd<_Operation>
230 bind2nd(const _Operation& __oper, const _Tp& __x)
232 typedef typename _Operation::second_argument_type _Arg2_type;
233 return binder2nd<_Operation>(__oper, _Arg2_type(__x));
236 // unary_compose and binary_compose (extensions, not part of the standard).
238 template <class _Operation1, class _Operation2>
239 class unary_compose
240 : public unary_function<typename _Operation2::argument_type,
241 typename _Operation1::result_type>
243 protected:
244 _Operation1 __op1;
245 _Operation2 __op2;
246 public:
247 unary_compose(const _Operation1& __x, const _Operation2& __y)
248 : __op1(__x), __op2(__y) {}
249 typename _Operation1::result_type
250 operator()(const typename _Operation2::argument_type& __x) const {
251 return __op1(__op2(__x));
255 template <class _Operation1, class _Operation2>
256 inline unary_compose<_Operation1,_Operation2>
257 compose1(const _Operation1& __op1, const _Operation2& __op2)
259 return unary_compose<_Operation1,_Operation2>(__op1, __op2);
262 template <class _Operation1, class _Operation2, class _Operation3>
263 class binary_compose
264 : public unary_function<typename _Operation2::argument_type,
265 typename _Operation1::result_type> {
266 protected:
267 _Operation1 _M_op1;
268 _Operation2 _M_op2;
269 _Operation3 _M_op3;
270 public:
271 binary_compose(const _Operation1& __x, const _Operation2& __y,
272 const _Operation3& __z)
273 : _M_op1(__x), _M_op2(__y), _M_op3(__z) { }
274 typename _Operation1::result_type
275 operator()(const typename _Operation2::argument_type& __x) const {
276 return _M_op1(_M_op2(__x), _M_op3(__x));
280 template <class _Operation1, class _Operation2, class _Operation3>
281 inline binary_compose<_Operation1, _Operation2, _Operation3>
282 compose2(const _Operation1& __op1, const _Operation2& __op2,
283 const _Operation3& __op3)
285 return binary_compose<_Operation1,_Operation2,_Operation3>
286 (__op1, __op2, __op3);
289 template <class _Arg, class _Result>
290 class pointer_to_unary_function : public unary_function<_Arg, _Result> {
291 protected:
292 _Result (*_M_ptr)(_Arg);
293 public:
294 pointer_to_unary_function() {}
295 explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
296 _Result operator()(_Arg __x) const { return _M_ptr(__x); }
299 template <class _Arg, class _Result>
300 inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
302 return pointer_to_unary_function<_Arg, _Result>(__x);
305 template <class _Arg1, class _Arg2, class _Result>
306 class pointer_to_binary_function :
307 public binary_function<_Arg1,_Arg2,_Result> {
308 protected:
309 _Result (*_M_ptr)(_Arg1, _Arg2);
310 public:
311 pointer_to_binary_function() {}
312 explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
313 : _M_ptr(__x) {}
314 _Result operator()(_Arg1 __x, _Arg2 __y) const {
315 return _M_ptr(__x, __y);
319 template <class _Arg1, class _Arg2, class _Result>
320 inline pointer_to_binary_function<_Arg1,_Arg2,_Result>
321 ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
322 return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
325 // identity is an extensions: it is not part of the standard.
326 template <class _Tp>
327 struct _Identity : public unary_function<_Tp,_Tp> {
328 const _Tp& operator()(const _Tp& __x) const { return __x; }
331 template <class _Tp> struct identity : public _Identity<_Tp> {};
333 // select1st and select2nd are extensions: they are not part of the standard.
334 template <class _Pair>
335 struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
336 const typename _Pair::first_type& operator()(const _Pair& __x) const {
337 return __x.first;
341 template <class _Pair>
342 struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
344 const typename _Pair::second_type& operator()(const _Pair& __x) const {
345 return __x.second;
349 template <class _Pair> struct select1st : public _Select1st<_Pair> {};
350 template <class _Pair> struct select2nd : public _Select2nd<_Pair> {};
352 // project1st and project2nd are extensions: they are not part of the standard
353 template <class _Arg1, class _Arg2>
354 struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> {
355 _Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; }
358 template <class _Arg1, class _Arg2>
359 struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> {
360 _Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; }
363 template <class _Arg1, class _Arg2>
364 struct project1st : public _Project1st<_Arg1, _Arg2> {};
366 template <class _Arg1, class _Arg2>
367 struct project2nd : public _Project2nd<_Arg1, _Arg2> {};
369 // constant_void_fun, constant_unary_fun, and constant_binary_fun are
370 // extensions: they are not part of the standard. (The same, of course,
371 // is true of the helper functions constant0, constant1, and constant2.)
372 template <class _Result>
373 struct constant_void_fun
375 typedef _Result result_type;
376 result_type __val;
377 constant_void_fun(const result_type& __v) : __val(__v) {}
378 const result_type& operator()() const { return __val; }
381 #ifndef __STL_LIMITED_DEFAULT_TEMPLATES
382 template <class _Result, class _Argument = _Result>
383 #else
384 template <class _Result, class _Argument>
385 #endif
386 struct constant_unary_fun : public unary_function<_Argument, _Result> {
387 _Result _M_val;
388 constant_unary_fun(const _Result& __v) : _M_val(__v) {}
389 const _Result& operator()(const _Argument&) const { return _M_val; }
392 #ifndef __STL_LIMITED_DEFAULT_TEMPLATES
393 template <class _Result, class _Arg1 = _Result, class _Arg2 = _Arg1>
394 #else
395 template <class _Result, class _Arg1, class _Arg2>
396 #endif
397 struct constant_binary_fun : public binary_function<_Arg1, _Arg2, _Result> {
398 _Result _M_val;
399 constant_binary_fun(const _Result& __v) : _M_val(__v) {}
400 const _Result& operator()(const _Arg1&, const _Arg2&) const {
401 return _M_val;
405 template <class _Result>
406 inline constant_void_fun<_Result> constant0(const _Result& __val)
408 return constant_void_fun<_Result>(__val);
411 template <class _Result>
412 inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val)
414 return constant_unary_fun<_Result,_Result>(__val);
417 template <class _Result>
418 inline constant_binary_fun<_Result,_Result,_Result>
419 constant2(const _Result& __val)
421 return constant_binary_fun<_Result,_Result,_Result>(__val);
424 // subtractive_rng is an extension: it is not part of the standard.
425 // Note: this code assumes that int is 32 bits.
426 class subtractive_rng : public unary_function<unsigned int, unsigned int> {
427 private:
428 unsigned int _M_table[55];
429 size_t _M_index1;
430 size_t _M_index2;
431 public:
432 unsigned int operator()(unsigned int __limit) {
433 _M_index1 = (_M_index1 + 1) % 55;
434 _M_index2 = (_M_index2 + 1) % 55;
435 _M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];
436 return _M_table[_M_index1] % __limit;
439 void _M_initialize(unsigned int __seed)
441 unsigned int __k = 1;
442 _M_table[54] = __seed;
443 size_t __i;
444 for (__i = 0; __i < 54; __i++) {
445 size_t __ii = (21 * (__i + 1) % 55) - 1;
446 _M_table[__ii] = __k;
447 __k = __seed - __k;
448 __seed = _M_table[__ii];
450 for (int __loop = 0; __loop < 4; __loop++) {
451 for (__i = 0; __i < 55; __i++)
452 _M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];
454 _M_index1 = 0;
455 _M_index2 = 31;
458 subtractive_rng(unsigned int __seed) { _M_initialize(__seed); }
459 subtractive_rng() { _M_initialize(161803398u); }
463 // Adaptor function objects: pointers to member functions.
465 // There are a total of 16 = 2^4 function objects in this family.
466 // (1) Member functions taking no arguments vs member functions taking
467 // one argument.
468 // (2) Call through pointer vs call through reference.
469 // (3) Member function with void return type vs member function with
470 // non-void return type.
471 // (4) Const vs non-const member function.
473 // Note that choice (3) is nothing more than a workaround: according
474 // to the draft, compilers should handle void and non-void the same way.
475 // This feature is not yet widely implemented, though. You can only use
476 // member functions returning void if your compiler supports partial
477 // specialization.
479 // All of this complexity is in the function objects themselves. You can
480 // ignore it by using the helper function mem_fun and mem_fun_ref,
481 // which create whichever type of adaptor is appropriate.
482 // (mem_fun1 and mem_fun1_ref are no longer part of the C++ standard,
483 // but they are provided for backward compatibility.)
486 template <class _Ret, class _Tp>
487 class mem_fun_t : public unary_function<_Tp*,_Ret> {
488 public:
489 explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
490 _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
491 private:
492 _Ret (_Tp::*_M_f)();
495 template <class _Ret, class _Tp>
496 class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
497 public:
498 explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
499 _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
500 private:
501 _Ret (_Tp::*_M_f)() const;
505 template <class _Ret, class _Tp>
506 class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
507 public:
508 explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
509 _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
510 private:
511 _Ret (_Tp::*_M_f)();
514 template <class _Ret, class _Tp>
515 class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
516 public:
517 explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
518 _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
519 private:
520 _Ret (_Tp::*_M_f)() const;
523 template <class _Ret, class _Tp, class _Arg>
524 class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
525 public:
526 explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
527 _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
528 private:
529 _Ret (_Tp::*_M_f)(_Arg);
532 template <class _Ret, class _Tp, class _Arg>
533 class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
534 public:
535 explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
536 _Ret operator()(const _Tp* __p, _Arg __x) const
537 { return (__p->*_M_f)(__x); }
538 private:
539 _Ret (_Tp::*_M_f)(_Arg) const;
542 template <class _Ret, class _Tp, class _Arg>
543 class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
544 public:
545 explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
546 _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
547 private:
548 _Ret (_Tp::*_M_f)(_Arg);
551 template <class _Ret, class _Tp, class _Arg>
552 class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
553 public:
554 explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
555 _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
556 private:
557 _Ret (_Tp::*_M_f)(_Arg) const;
560 #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
562 template <class _Tp>
563 class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
564 public:
565 explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
566 void operator()(_Tp* __p) const { (__p->*_M_f)(); }
567 private:
568 void (_Tp::*_M_f)();
571 template <class _Tp>
572 class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
573 public:
574 explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
575 void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
576 private:
577 void (_Tp::*_M_f)() const;
580 template <class _Tp>
581 class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
582 public:
583 explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
584 void operator()(_Tp& __r) const { (__r.*_M_f)(); }
585 private:
586 void (_Tp::*_M_f)();
589 template <class _Tp>
590 class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
591 public:
592 explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
593 void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
594 private:
595 void (_Tp::*_M_f)() const;
598 template <class _Tp, class _Arg>
599 class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
600 public:
601 explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
602 void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
603 private:
604 void (_Tp::*_M_f)(_Arg);
607 template <class _Tp, class _Arg>
608 class const_mem_fun1_t<void, _Tp, _Arg>
609 : public binary_function<const _Tp*,_Arg,void> {
610 public:
611 explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
612 void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
613 private:
614 void (_Tp::*_M_f)(_Arg) const;
617 template <class _Tp, class _Arg>
618 class mem_fun1_ref_t<void, _Tp, _Arg>
619 : public binary_function<_Tp,_Arg,void> {
620 public:
621 explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
622 void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
623 private:
624 void (_Tp::*_M_f)(_Arg);
627 template <class _Tp, class _Arg>
628 class const_mem_fun1_ref_t<void, _Tp, _Arg>
629 : public binary_function<_Tp,_Arg,void> {
630 public:
631 explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
632 void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
633 private:
634 void (_Tp::*_M_f)(_Arg) const;
637 #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
639 // Mem_fun adaptor helper functions. There are only two:
640 // mem_fun and mem_fun_ref. (mem_fun1 and mem_fun1_ref
641 // are provided for backward compatibility, but they are no longer
642 // part of the C++ standard.)
644 template <class _Ret, class _Tp>
645 inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
646 { return mem_fun_t<_Ret,_Tp>(__f); }
648 template <class _Ret, class _Tp>
649 inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
650 { return const_mem_fun_t<_Ret,_Tp>(__f); }
652 template <class _Ret, class _Tp>
653 inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)())
654 { return mem_fun_ref_t<_Ret,_Tp>(__f); }
656 template <class _Ret, class _Tp>
657 inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
658 { return const_mem_fun_ref_t<_Ret,_Tp>(__f); }
660 template <class _Ret, class _Tp, class _Arg>
661 inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
662 { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
664 template <class _Ret, class _Tp, class _Arg>
665 inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
666 { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
668 template <class _Ret, class _Tp, class _Arg>
669 inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
670 { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
672 template <class _Ret, class _Tp, class _Arg>
673 inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
674 mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
675 { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
677 template <class _Ret, class _Tp, class _Arg>
678 inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg))
679 { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
681 template <class _Ret, class _Tp, class _Arg>
682 inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const)
683 { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
685 template <class _Ret, class _Tp, class _Arg>
686 inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg))
687 { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
689 template <class _Ret, class _Tp, class _Arg>
690 inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
691 mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const)
692 { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
694 __STL_END_NAMESPACE
696 #endif /* __SGI_STL_INTERNAL_FUNCTION_H */
698 // Local Variables:
699 // mode:C++
700 // End: